- 无标题文档
查看论文信息

中文题名:

 基于硫、鏻盐以及氮杂环卡宾盐电荷转移复合物的光反应及机理研究    

姓名:

 任颖政    

学号:

 20212307208    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 081705    

学科名称:

 工学 - 化学工程与技术 - 工业催化    

学生类型:

 博士    

学位:

 工学博士    

学位类型:

 学术学位    

学位年度:

 2024    

学校:

 石河子大学    

院系:

 化学化工学院    

专业:

 化学工程与技术    

研究方向:

 工业催化    

第一导师姓名:

 何林    

第一导师单位:

 石河子大学    

第二导师姓名:

 陈祥雨    

完成日期:

 2024-05-09    

答辩日期:

 2024-05-09    

外文题名:

 Photoreaction and mechanism study of electron charge transfer complexes based on sulfonium salts, phosphonium and N-heterocyclic carbene salts    

中文关键词:

 光催化 ; 电荷转移复合物 ; 硫盐 ; 鏻盐 ; 双功能NHC     

外文关键词:

 Photoreactions ; charge transfer complex ; Sulfur salts ;   ; Phosphonium salt ;   ; Bifunctional NHC     

中文摘要:

光反应是指利用光能驱动的化学反应,相较于传统的反应模式,光反应具有反应条件温和、绿色、化学选择性高等优点,符合“绿色化学原则”。自本世纪以来,光催化得到显著的发展,但是依旧面临着一系列问题,如所需的金属配合物光催化剂或其他光催化剂设计复杂、成本高昂,甚至还需要高能光源(例如紫外)的照射。电荷转移复合物(CTC)参与的光反应因不需要光催化剂、反应温和等优点而得到越来越多的关注和发展。本文基于弱相互作用并围绕电荷转移复合物开展相关研究:(1)利用可见光诱导硫盐实现对烯烃的单电子还原;(2)利用可见光诱导三氘甲基鏻盐发展新的烯烃氘甲基化策略;(3)利用可见光诱导双功能氮杂环卡宾(NHC)实现Caryl-O键裂解。研究内容分为以下三个部分:

1)我们基于烯酰胺与硫酚盐间的弱相互作用开发了一种新型光催化CTC策略,以硫酚盐为电子供体,TMEDA为质子穿梭催化剂,通过单电子还原策略实现活化和未活化烯烃的氢芳基化反应。该策略使N-芳基丙烯酰胺、N-甲基丙烯酰苯甲酰胺、N-烯基喹唑啉酮类化合物合成各种杂环分子成为可能。机理研究揭示了催化剂硫盐和烯烃之间形成的光活性CTC是反应成功的关键,通过DFT计算解释了N-苯基丙烯酰胺发生两分子聚合反应的反应机理。该方法的特点是操作简单、不使用光催化剂、酸和还原剂。

2)我们利用三氘甲基鏻盐与四甲基胍(TMG)通过弱相互作用形成光活性CTC,通过可见光诱导发生单电子转移(SET)产生三氘甲基自由基,然后依次经过自由基加成、分子内环化、单电子转移、去质子化过程构建出氘甲基类化合物。该方法的特点是对底物具有良好的普适性,其中包含大量天然产物和药物分子。

3)我们使用全新设计的新型双功能NHC实现了单电子还原二芳基醚的CTC光化学反应,该NHC可以通过与二芳基醚形成氢键来提高催化活性和选择性。机理实验证实了关键中间体NHC阴离子自由基的存在,同时也发现二芳基膦负离子和叔丁醇负离子在反应中均充当着电子供体的角色,并通过UV-vis实验和DFT计算佐证了新设计的双功能NHC与二芳基醚之间形成的氢键是形成光活性CTC的关键。值得注意的是,不对称的二芳基醚在该反应体系中拥有良好的反应选择性。该方法具有反应装置简单、高反应选择性等特点。

综上所述,本文基于分子间弱相互作用开展了以下研究:(1)可见光诱导硫盐单电子还原烯烃的反应及机理研究;(2)可见光诱导氘代甲基鏻盐制备氘代甲基化合物的反应及机理研究;(3)可见光诱导双功能NHC选择性单电子还原二芳基醚的反应及机理研究。这些研究符合“绿色化学”理念,具有反应条件温和、无过渡金属、无需光催化剂、底物普适性广、适合放大反应等优点。

外文摘要:

Photoreactions refers to the chemical reaction driven by light energy. Compared with the traditional reaction modes, photoreactions have the advantages of mild reaction conditions, eco-friendly, high chemical selectivity and so on, which conforms to the "green chemistry principle". Since the beginning of this century, photocatalysis has developed significantly, but it still faces a series of problems, such as the required metal complex photocatalysts or other photocatalysts are complex in design, expensive, and even require high-energy light source (such as ultraviolet) irradiation. The photoreaction induced by charge transfer complex has attracted more and more attention due to its advantages such as no photocatalyst and mild reaction. Based on the weak interaction and the charge transfer  complex(CTC), the following studies were carried out: (1) the single electron reduction of olefin by sulfur induced by visible light; (2) A new deuterylation strategy of olefin was developed by inducting trideuteromethium phosphonium salts with visible light; (3) The cleavage of Caryl-O bond was achieved by inducing bifunctional nitrogen heterocyclic carbene (NHC) with visible light. The research is divided into the following three parts:

1) Based on the weak interaction between enamide and thiophenol salts, we have developed a novel photocatalytic CTC strategy, which uses thiophenol salts as electron donors and TMEDA as proton shuttle catalysts to realize the hydrogen arylation of activated and unactivated olefins through a single-electron reduction strategy. This strategy enables the synthesis of various heterocyclic molecules from N-aryl acrylamide, N-methacryloylbenzamide, and N-enylquinazolinone. The mechanism study revealed that the photoactive CTC formed between the thiophenol salt and the olefin of the catalyst was the key to the success of the reaction, and the reaction mechanism of the two-molecule polymerization reaction of N-phenylacrylamide was explained by DFT calculation. The method is characterized by its simple operation and does not use photocatalysts, acids and reducing agents.

2) In this study, trideuterium methyl phosphonium salt and tetramethylguanidine (TMG) were used to form photoactive CTC, and trideuterium methyl radicals were produced by visible light-induced single electron transfer (SET), and then deuterium methyl compounds were constructed through free radical addition, intramolecular cyclization, single electron transfer, and deprotonation. The method is characterized by good generalizability to substrates, which contain a large number of natural products and drug molecules.

3) We have realized a CTC photochemical reaction of single-electron reduction of diaryl ether using a newly designed bifunctional NHC, which can improve catalytic activity and selectivity by forming hydrogen bonds with diaryl ether. Mechanistic experiments confirmed the existence of the key intermediate NHC anion radicals, and also found that both diarylphosphine anion and tert-butanol anion acted as electron donors in the reaction, and UV-vis experiments and DFT calculations proved that the hydrogen bond formed between the newly designed bifunctional NHC and diaryl ether was the key to the formation of photoactive CTC. It is worth noting that the asymmetric diaryl ether has good reactivity selectivity in this reaction system. This method has the characteristics of simple reaction device and high reaction selectivity.

In summary, the following studies are carried out based on the weak interaction between molecules: (1) the reaction and mechanism of visible light-induced reduction of olefins by sulfur salts with single electrons; (2) visible light-induced reaction and mechanism of deuterated methyl phosphonium salt to prepare deuterated methyl compounds; (3) visible light-induced reaction and mechanism of selective single-electron reduction of diaryl ether by bifunctional NHC. These studies are in line with the concept of "green chemistry", and have the advantages of mild reaction conditions, no transition metals, no need for photocatalysts, wide universality of substrates, and suitable for scale-up reactions.

参考文献:

[1]Tian Y-M, Hofmann E, Silva W, Pu X, Touraud D, Gschwind R M, Kunz W, König B. Enforced Electronic-Donor-Acceptor Complex Formation in Water for Photochemical Cross-Coupling [J]. Angewandte Chemie International Edition, 2023, 62, e202218775.

[2]Protti S, Dondi D, Fagnoni M, Albini A. Assessing Photochemistry as a Green Synthetic method. Carbon-Carbon Bond Forming Reactions [J]. Green Chemistry, 2009, 11, 239-249.

[3]Yoon T P, Ischay M A, Du J. Visible Light Photocatalysis as a Greener Approach to Photochemical Synthesis [J]. Nature Chemistry, 2010, 2, 527-532.

[4]Prier C K, Rankic D A, MacMillan D W C. Visible Light Photoredox Catalysis with Transition Metal Complexes: Applications in Organic Synthesis [J]. Chemical Reviews, 2013, 113, 5322-5363.

[5]Nicewicz D A, Nguyen T M. Recent Applications of Organic Dyes as Photoredox Catalysts in Organic Synthesis [J]. ACS Catalysis, 2014, 4, 355-360.

[6]Rosokha S V, Kochi J K. ChemInform Abstract: Fresh Look at Electron-Transfer Mechanisms via the Donor/Acceptor Bindings in the Critical Encounter Complex [J]. ChemInform, 2008, 39.

[7]Benesi H A, Hildebrand J H. A Spectrophotometric Investigation of the Interaction of Iodine with Aromatic Hydrocarbons [J]. Journal of the American Chemical Society, 1949, 71, 2703-2707.

[8]Mulliken R S. Structures of Complexes Formed by Halogen Molecules with Aromatic and with Oxygenated Solvents1 [J]. Journal of the American Chemical Society, 1950, 72, 600-608.

[9]Mulliken R S. Molecular Compounds and Their Spectra. Ⅱ [J]. Journal of the American Chemical Society, 1952, 74, 811-824.

[10]Mulliken R S. Molecular Compounds and their Spectra. Ⅲ. The Interaction of Electron Donors and Acceptors [J]. The Journal of Physical Chemistry, 1952, 56, 801-822.

[11]Zhao G.-J, Han K.-L. Hydrogen Bonding in the Electronic Excited State [J]. Accounts of Chemical Research, 2012, 45, 404-413.

[12]Yang R, Chen D, Lin S, Yang X, Hu X, Gao S, Shi L, Liang D. Cation-π-Interaction-Facilitated, Self-Photocatalyzed and Regioselective Perfluoroalkylation of 3-Aza-1,5-Dienes [J]. Molecular Catalysis, 2023, 547, 113360.

[13]Crisenza G E M, Mazzarella D, Melchiorre P. Synthetic Methods Driven by the Photoactivity of Electron Donor-Acceptor Complexes [J]. Journal of the American Chemical Society, 2020, 142, 5461-5476.

[14]Rathore R, Kochi J K. Donor/Acceptor Organizations and the Electron-Transfer Paradigm for Organic Reactivity. In Advances in Physical Organic Chemistry, Academic, 2000, 35, 193-318.

[15]Marcus R A. Electron Transfer Reactions in Chemistry. Theory and Experiment [J]. Reviews of Modern Physics, 1993, 65, 599-610.

[16]Marcus R A. Electron Transfer Reactions in Chemistry: Theory and Experiment (Nobel Lecture) [J]. Angewandte Chemie International Edition, 1993, 32, 1111-1121.

[17]Taube H. Electron Transfer between Metal Complexes - A Retrospective View (Nobel Lecture) [J]. Angewandte Chemie International Edition, 1984, 23, 329-339.

[18]Hush N S. Adiabatic Theory of Outer Sphere Electron-transfer Reactions in Solution [J]. Transactions of the Faraday Society, 1961, 57, 557-580.

[19]Hubig S M, Bockman T M, Kochi J K. Optimized Electron Transfer in Charge-Transfer Ion Pairs. Pronounced Inner-Sphere Behavior of Olefin Donors [J]. Journal of the American Chemical Society, 1996, 118, 3842-3851.

[20]Kochi J K. Charge-Transfer Excitation of Molecular Complexes in Organic and Organometallic Chemistry [J]. Pure and Applied Chemistry, 1991, 63, 255-264.

[21]Fukuzumi S, Mochida K, Kochi J K. A Unified Mechanism for Thermal and Photochemical Activation of Charge-Transfer Processes with Organometals. Steric Effects in the Insertion of Tetracyanoethylene [J]. Journal of the American Chemical Society, 1979, 101, 5961-5972.

[22]Mattay J. Charge Transfer and Radical Ions in Photochemistry [J]. Angewandte Chemie International Edition, 1987, 26, 825-845.

[23]Fukuzumi S, Kochi J K. Electron Transfer Activation of the Diels-Alder Reaction: Quantitative Relationship to Charge Transfer Excited States [J]. Tetrahedron, 1982, 38, 1035-1049.

[24]Fox M A, Younathan J, Fryxell G E. Photoinitiation of the SRN1 Reaction by Excitation of Charge-transfer Complexes [J]. The Journal of Organic Chemistry, 1983, 48, 3109-3112.

[25]Wade P A, Morrison H A, Kornblum N. Substitution Reactions which Proceed via Radical Anion Intermediates. Part 30. Effect of Light on Electron Transfer Substitution at a Saturated Carbon Atom [J]. The Journal of Organic Chemistry, 1987, 52, 3102-3107.

[26]Sankararaman S, Haney W A, Kochi J K. Annihilation of Aromatic Cation Radicals by Ion-pair and Radical Pair Collapse. Unusual Solvent and Salt Effects in the Competition for Aromatic Substitution [J]. Journal of the American Chemical Society, 1987, 109, 7824-7838.

[27]Russell G A, Wang K. Electron Transfer Processes. 53. Homolytic Alkylation of Enamines by Electrophilic Radicals [J]. The Journal of Organic Chemistry, 1991, 56 (11), 3475-3479.

[28]Van Dalsen L, Brown R E, Rossi-Ashton J A, Procter D J. Sulfonium Salts as Acceptors in Electron Donor-Acceptor Complexes [J]. Angewandte Chemie International Edition, 2023, 62, e202303104.

[29]Wei J, Meng J, Zhang C, Liu Y, Jiao N. Dioxygen Compatible Electron Donor-Acceptor Catalytic System and its Enabled Aerobic Oxygenation [J]. Nature Communications, 2024, 15, 1886.

[30]Tian Y, Hofmann E, Silva W, Pu X, Tourand D, Gschwind R M, Kunz W, Knig B. Enforced Electronic-Donor-Acceptor Complex Formation in Water for Photochemical Cross-Coupling [J]. Angewandte Chemie International Edition, 2023, 62, e202218775.

[31]Wortman A K, Stephenson C R J. EDA Photochemistry: Mechanistic Investigations and Future Opportunities [J]. Chem, 2023, 9, 2390-2415.

[32]Shirke R P, Ramasastry S S V. Organocatalytic β-Azidation of Enones Initiated by an Electron-Donor-Acceptor Complex [J]. Organic Letters, 2017, 19, 5482-5485.

[33]Zhou S, Song T, Chen H, Liu Z, Shen H, Li C. Catalytic Radical Trifluoromethylalkynylation of Unactivated Alkenes [J]. Organic Letters, 2017, 19, 698-701.

[34]Tse E G, Houston S D, Williams C M, Savage G P, Rendina L M, Hallyburton I, Anderson M, Sharma R, Walker G S, Obach R S, Todd M H. Nonclassical Phenyl Bioisosteres as Effective Replacements in a Series of Novel Open-Source Antimalarials [J]. Journal of Medicinal Chemistry, 2020, 63, 11585-11601.

[35]Meanwell N A. Fluorine and Fluorinated Motifs in the Design and Application of Bioisosteres for Drug Design [J]. Journal of Medicinal Chemistry, 2018, 61, 5822-5880.

[36]Cuadros S, Goti G, Barison G, Raulli A, Bortolato T, Pelosi G, Costa P, Dell'Amico L. A General Organophotoredox Strategy to Difluoroalkyl Bicycloalkane (CF2-BCA) Hybrid Bioisosteres [J]. Angewandte Chemie International Edition, 2023, 62, e202303585.

[37]Le C, Liang Y, Evans R W, Li X, MacMillan D W C. Selective sp3 C-H Alkylation via Polarity-Match-Based Cross-Coupling [J]. Nature, 2017, 547, 79-83.

[38]Kim J, Li B X, Huang R Y C, Qiao J X, Ewing W R, MacMillan D W C. Site-Selective Functionalization of Methionine Residues via Photoredox Catalysis [J]. Journal of the American Chemical Society, 2020, 142, 21260-21266.

[39]Roy P K, Hitomi Y. A Simple Method for the Formation of α-Thioalkyl Radicals and the Promotion of Carbon-Carbon Bond Formation by Photoirradiation of Electron Donor-Acceptor Complexes [J]. Asian Journal of Organic Chemistry, 2023, 12, e202300378.

[40]Shi S, Zhao X, Chen D, Luo J, Liao S, Huang S. C(sp3)-H Fluorosulfonylvinylation/Aza-Michael Addition Approach to FSO2-Functionalized Tetrahydropyridines [J]. Organic Chemistry Frontiers, 2023, 10, 3805-3810.

[41]Ouyang K, Hao W, Zhang W-X, Xi Z. Transition-Metal-Catalyzed Cleavage of C-N Single Bonds [J]. Chemical Reviews, 2015, 115, 12045-12090.

[42]Wu J, He L, Noble A, Aggarwal V K. Photoinduced Deaminative Borylation of Alkylamines [J]. Journal of the American Chemical Society, 2018, 140 10700-10704.

[43]Wu J, Grant P S, Li X, Noble A, Aggarwal V K. Catalyst-Free Deaminative Functionalizations of Primary Amines by Photoinduced Single-Electron Transfer [J]. Angewandte Chemie International Edition, 2019, 58 , 5697-5701..

[44]Ma Y, Pang Y, Niski J, Leutzsch M, Cornella J. Radical CN Borylation of Aromatic Amines Enabled by a Pyrylium Reagent [J]. 2019 26, 3738-3743.

[45]Fu M-C, Shang R, Zhao B, Wang B, Fu Y. Photocatalytic Decarboxylative Alkylations Mediated by Triphenylphosphine and Sodium Iodide [J]. Science, 2019, 363, 1429-1434.

[46]Ferko B, Marčeková M, Detková K R, Doháňošová J, Berkeš D, Jakubec P. Visible-Light-Promoted Cross-Coupling of N-Alkylpyridinium Salts and Nitrostyrenes [J]. Organic Letters, 2021, 23, 8705-8710.

[47]Wang M, Wang C, Huo Y, Dang X, Xue H, Liu L, Chai H, Xie X, Li Z, Lu D, Xu Z. Visible-Light-Mediated Catalyst-Free Synthesis of Unnatural α-Amino Acids and Peptide Macrocycles [J]. Nature Communications, 2021, 12, 6873.

[48]Cai Z, Gu R, Si W, Xiang Y, Sun J, Jiao Y, Zhang X. Photoinduced Allylic Defluorinative Alkylation of Trifluoromethyl Alkenes with Katritzky Salts under Catalyst- and Metal-Free Conditions [J]. Green Chemistry, 2022, 24, 6830-6835.

[49]Laroche B, Tang X, Archer G, Di Sanza R, Melchiorre P. Photochemical Chemoselective Alkylation of Tryptophan-Containing Peptides [J]. Organic Letters, 2021, 23, 285-289.

[50]James M J, Strieth-Kalthoff F, Sandfort F, Klauck F J R, Wagener F, Glorius F. Visible-Light-Mediated Charge Transfer Enables C-C Bond Formation with Traceless Acceptor Groups [J]. Chemistry - A European Journal, 2019, 25, 8240-8244.

[51]Andrews J A, Pantaine L R E, Palmer C F, Poole D L, Willis M C. Sulfinates from Amines: A Radical Approach to Alkyl Sulfonyl Derivatives via Donor-Acceptor Activation of Pyridinium Salts [J]. Organic Letters, 2021, 23, 8488-8493.

[52]Li X, Cui W, Deng Q, Song X, Lv J, Yang D. Three-Component Reaction Access to S-Alkyl Dithiocarbamates under Visible-Light Irradiation Conditions in Water [J]. Green Chemistry, 2022, 24, 1302-1307.

[53]Gao P, Zhang Q, Li Y, Cui L, Fan X, Zhang G, Chen F. Catalyst-Free Defluoroalkylation of Trifluoromethylated Alkenes via Photoinduced Electron Donor-Acceptor Complex [J]. ChemistrySelect, 2023, 8, e202300665.

[54]Treacy S M, Vaz D R, Noman S, Tard C, Rovis T. Coupling of α-Bromoamides and Unactivated Alkenes to form γ-Lactams through EDA and Photocatalysis [J]. Chemical Science, 2023, 14, 1569-1574.

[55]Mamone M, Gentile G, Dosso J, Prato M, Filippini G. Direct C2-H Alkylation of Indoles Driven by the Photochemical Activity of Halogen-Bonded Complexes [J]. Beilstein Journal of Organic Chemistry, 2023, 19, 575-581.

[56]Zhao G, Lim S, Musaev D G, Ngai M-Y. Expanding Reaction Profile of Allyl Carboxylates via 1,2-Radical Migration (RaM): Visible-Light-Induced Phosphine-Catalyzed 1,3-Carbobromination of Allyl Carboxylates [J]. Journal of the American Chemical Society, 2023, 145, 8275-8284.

[57]Balletti M, Wachsmuth T, Di Sabato A, Hartley W C, Melchiorre P. Enantioselective Catalytic Remote Perfluoroalkylation of α-Branched Enals Driven by Light [J]. Chemical Science, 2023, 14, 4923-4927.

[58]Lasso J D, Castillo-Pazos D J, Sim M, Barroso-Flores J, Li C-J. EDA Mediated S-N Bond Coupling of Nitroarenes and Sodium Sulfinate Salts [J]. Chemical Science, 2023, 14, 525-532.

[59]Yang, W-C, Sun Y, Bao X-B, Zhang S-P, Shen L-Y. A General Electron Donor-Acceptor Complex Enabled Cascade Cyclization of Alkynes to Access Sulfur-Containing Heterocycles [J]. Green Chemistry, 2023, 25, 3111-3116.

[60]Pavithra T, Rajkumar D B, Gnanaoli K, Sunil Gowda S N, Devipriya N, Maheswari C U. A Catalyst- and Solvent- Free Synthesis of Tetra-Substituted Pyrroles by Multicomponent Reaction [J]. ChemistrySelect, 2023, 8, e202204564.

[61]Tulchinsky Y, Iron M A, Botoshansky M, Gandelman M. Nitrenium Ions as Ligands for Transition Metals [J]. Nature Chemistry, 2011, 3, 525-531.

[62]Pogoreltsev A, Tulchinsky Y, Fridman N, Gandelman M. Nitrogen Lewis Acids [J]. Journal of the American Chemical Society, 2017, 139, 4062-4067.

[63]Zhou J, Liu L L, Cao L L, Stephan D W. Nitrogen-Based Lewis Acids: Synthesis and Reactivity of a Cyclic (Alkyl)(Amino) Nitrenium Cation [J]. Angewandte Chemie International Edition, 2018, 57, 3322-3326.

[64]Zhu D, Qu Z-W, Zhou J, Stephan D W. The Reactivity of Isomeric Nitrenium Lewis Acids with Phosphines, Carbenes, and Phosphide [J]. Chemistry - A European Journal, 2021, 27, 2861-2867.

[65]Mehta M, Goicoechea J M. Nitrenium Salts in Lewis Acid Catalysis [J]. Angewandte Chemie International Edition, 2020, 59, 2715-2719.

[66]Chen K-Q, Zhang B-B, Wang Z-X, Chen X-Y. N-Heterocyclic Nitreniums Can Be Employed as Photoredox Catalysts for the Single-Electron Reduction of Aryl Halides [J]. Organic Letters, 2022, 24, 4598-4602.

[67]Su X-D, Yang Z-S, Gong W, Wang Z-X, Chen X-Y. Additive Free, N-Heterocyclic Nitrenium Catalyzed Photoreduction of Cycloketone Oxime Esters [J]. Organic Chemistry Frontiers, 2023, 10, 1160-1165.

[68]Lasso J D, Castillo-Pazos D J, Salgado J M, Ruchlin C, Lefebvre L, Farajat D, Perepichka D F, Li C-J. A General Platform for Visible Light Sulfonylation Reactions Enabled by Catalytic Triarylamine EDA Complexes [J]. Journal of the American Chemical Society, 2024, 146, 2583-2592.

[69]Xu H, Li X, Ma J, Zuo J, Song X, Lv J, Yang D. An Electron Donor-Acceptor Photoactivation Strategy for the Synthesis of S-aryl Dithiocarbamates Using Thianthrenium Salts Under Mild Aqueous Micellar Conditions [J]. Chinese Chemical Letters, 2023, 34, 108403.

[70]Bugaenko D I, Karchava A V. Electron Donor-Acceptor Complex Initiated Photochemical Phosphorus Arylation with Diaryliodonium Salts toward the Synthesis of Phosphine Oxides [J]. Advanced Synthesis & Catalysis, 2023, 365, 1893-1900.

[71]Mori T, Inoue Y. Charge-Transfer Excitation: Unconventional yet Practical Means for Controlling Stereoselectivity in Asymmetric Photoreactions [J]. Chemical Society Reviews, 2013, 42, 8122-8133.

[72]Lima C G S, de M Lima T, Duarte M, Jurberg I D, Paixão M W. Organic Synthesis Enabled by Light-Irradiation of EDA Complexes: Theoretical Background and Synthetic Applications [J]. ACS Catalysis, 2016, 6, 1389-1407.

[73]Jäger C M, Croft A K. Anaerobic Radical Enzymes for Biotechnology [J]. ChemBioEng Reviews, 2018, 5, 143-162.

[74]Hollmann F, Fernandez‐Lafuente R. Grand Challenges in Biocatalysis [J]. Frontiers in Catalysis, 2021, 1.

[75]Chen K, Arnold F H. Engineering New Catalytic Activities in Enzymes [J]. Nature Catalysis, 2020, 3, 203-213.

[76]Emmanuel M A, Greenberg N R, Oblinsky D G, Hyster T K. Accessing Non-Natural Reactivity by Irradiating Nicotinamide-Dependent Enzymes with Light [J]. Nature, 2016, 540, 414-417.

[77]Biegasiewicz K F, Cooper S J, Emmanuel M A, Miller D C, Hyster T K. Catalytic Promiscuity Enabled by Photoredox Catalysis in Nicotinamide-Dependent Oxidoreductases [J]. Nature Chemistry, 2018, 10, 770-775.

[78]Litman Z C, Wang Y, Zhao H, Hartwig J F. Cooperative Asymmetric Reactions Combining Photocatalysis and Enzymatic Catalysis [J]. Nature, 2018, 560, 355-359.

[79]Xu J, Hu Y, Fan J, Wu Q. Light-Driven Kinetic Resolution of α-Functionalized Carboxylic Acids Enabled by Engineered Fatty Acid Photodecarboxylase [J]. Angewandte Chemie International Edition, 2019, 58, 8474.

[80]Biegasiewicz K F, Cooper S J, Gao X, Oblinsky D G, Kim J H, Garfinkle S E, Joyce L A, Sandoval B A, Scholes G D, Hyster T K. Photoexcitation of Flavoenzymes Enables a Stereoselective Radical Cyclization [J]. Science, 2019, 364, 1166-1169.

[81]Black M J, Biegasiewicz K F, Meichan A J, Oblinsky D G, Kudisch B, Scholes G D, Hyster T K. Asymmetric Redox-Neutral Radical Cyclization Catalysed by Flavin-Dependent ‘Ene’-Reductases [J]. Nature Chemistry, 2020, 12, 71-75.

[82]Clayman P D, Hyster T K. Photoenzymatic Generation of Unstabilized Alkyl Radicals: An Asymmetric Reductive Cyclization [J]. Journal of the American Chemical Society, 2020, 142, 15673-15677.

[83]Fu H, Cao J, Qiao T, Qi Y, Charnock S J, Garfinkle S, Hyster T K. An Asymmetric sp3-sp3 Cross-Electrophile Coupling Using ‘Ene’-Reductases [J]. Nature, 2022, 610, 302-307.

[84]Peng Y, Wang Z, Chen Y, Xu W, Hu Y, Chen Z, Xu J, Wu Q. Photoinduced Promiscuity of Cyclohexanone Monooxygenase for the Enantioselective Synthesis of α-Fluoroketones [J]. Angewandte Chemie International Edition, 2022, 61, e202211199.

[85]Huang X, Feng J, Cui J, Jiang G, Harrison W, Zang X, Zhou J, Wang B, Zhao H. Photoinduced Chemomimetic Biocatalysis for Enantioselective Intermolecular Radical Conjugate Addition [J]. Nature Catalysis, 2022, 5, 586-593.

[86]Matos J L M, Green S A, Chun Y, Dang V Q, Dushin R G, Richardson P, Chen J S, Piotrowski D W, Paegel B M, Shenvi R A. Cycloisomerization of Olefins in Water [J]. Angewandte Chemie International Edition, 2020, 59, 12998-13003.

[87]Vrubliauskas D, Gross B M, Vanderwal C D. Stereocontrolled Radical Bicyclizations of Oxygenated Precursors Enable Short Syntheses of Oxidized Abietane Diterpenoids [J]. Journal of the American Chemical Society, 2021, 143, 2944-2952.

[88]Yamaguchi Y, Seino Y, Suzuki A, Kamei Y, Yoshino T, Kojima M, Matsunaga S. Intramolecular Hydrogen Atom Transfer Hydroarylation of Alkenes toward δ-Lactams Using Cobalt-Photoredox Dual Catalysis [J]. Organic Letters, 2022, 24, 2441-2445.

[89]Romero N A, Nicewicz D A. Organic Photoredox Catalysis [J]. Chemical Reviews, 2016, 116, 10075-10166.

[90]Neunteufel R A, Arnold D R. Radical Ions in Photochemistry. I. 1,1-Diphenylethylene Cation Radical [J]. Journal of the American Chemical Society, 1973, 95, 4080-4081.

[91]Wilger D J, Grandjean J-M M, Lammert T R, Nicewicz, D. A. The Direct Anti-Markovnikov Addition of Mineral Acids to Styrenes [J]. Nature Chemistry, 2014, 6, 720-726.

[92]Margrey K A, Nicewicz D A. A General Approach to Catalytic Alkene Anti-Markovnikov Hydrofunctionalization Reactions via Acridinium Photoredox Catalysis [J]. Accounts of Chemical Research, 2016, 49, 1997-2006.

[93]Czyz M L, Taylor M S, Horngren T H, Polyzos A. Reductive Activation and Hydrofunctionalization of Olefins by Multiphoton Tandem Photoredox Catalysis [J]. ACS Catalysis, 2021, 11 5472-5480.

[94]Huang H, Ye J-H, Zhu L, Ran C-K, Miao M, Wang W, Chen H, Zhou W-J, Lan Y, Yu B, Yu D-G. Visible-Light-Driven Anti-Markovnikov Hydrocarboxylation of Acrylates and Styrenes with CO2 [J]. CCS Chemistry, 2021, 3, 1746-1756.

[95]Betori R C, Scheidt K A. Reductive Arylation of Arylidene Malonates Using Photoredox Catalysis [J]. ACS Catalysis, 2019, 9, 10350-10357.

[96]Betori R C, McDonald B R, Scheidt K A. Reductive Annulations of Arylidene Malonates with Unsaturated Electrophiles Using Photoredox/Lewis Acid Cooperative Catalysis [J]. Chemical Science, 2019, 10, 3353-3359.

[97]Liu Z, Zhong S, Ji X, Deng G-J, Huang H. Hydroarylation of Activated Alkenes Enabled by Proton-Coupled Electron Transfer [J]. ACS Catalysis, 2021, 11, 4422-4429.

[98]Foja R, Walter A, Jandl C, Thyrhaug E, Hauer J, Storch G. Reduced Molecular Flavins as Single-Electron Reductants after Photoexcitation [J]. Journal of the American Chemical Society, 2022, 144, 4721-4726.

[99]Lu Y, Liu Q, Wang Z-X, Chen X-Y. Alkynyl Sulfonium Salts Can Be Employed as Chalcogen-Bonding Catalysts and Generate Alkynyl Radicals under Blue-Light Irradiation [J]. Angewandte Chemie International Edition, 2022, 61, e202116071.

[100]Wang S, Wang H, König B. Light-Induced Single-Electron Transfer Processes involving Sulfur Anions as Catalysts [J]. Journal of the American Chemical Society, 2021, 143, 15530-15537.

[101]Li H, Liu Y, Chiba S. Leveraging of Sulfur Anions in Photoinduced Molecular Transformations [J]. JACS Au, 2021, 1, 2121-2129.

[102]Wang S, Wang H, Koenig B. Photo-Induced Thiolate Catalytic Activation of Inert Caryl-Hetero Bonds for Radical Borylation [J]. Chem, 2022, 7, 1653-1665.

[103]Oddy M J, Kusza D A, Petersen W F. Visible-Light Mediated Metal-Free 6π-Photocyclization of N-Acrylamides: Thioxanthone Triplet Energy Transfer Enables the Synthesis of 3,4-Dihydroquinolin-2-ones [J]. Organic Letters, 2021, 23, 8963-8967.

[104]Liu Z, Zhong S, Ji X, Deng G-J, Huang H. Photoredox Cyclization of N-Arylacrylamides for Synthesis of Dihydroquinolinones [J]. Organic Letters, 2022, 24, 349-353.

[105]Yang Z, Wu X, Zhang J, Yu J-T, Pan C. Metal-Free Photoinduced Hydrocyclization of Unactivated Alkenes toward Ring-Fused Quinazolin-4(3H)-ones via Intermolecular Hydrogen Atom Transfer [J]. Organic Letters, 2023, 25, 1683-1688.

[106]Wan X, Wang D, Huang H, Mao G-J, Deng G-J. Radical-Mediated Photoredox Hydroarylation with Thiosulfonate [J]. Chemical Communications, 2023, 59, 2767-2770.

[107]Mahindroo N, Ahmed Z, Bhagat A, Lal Bedi K, Kant Khajuria R, Kumar Kapoor V, Lal Dhar K. Synthesis and Structure-Activity Relationships of Vasicine Analogues as Bronchodilatory Agents [J]. Medicinal Chemistry Research, 2005, 14, 347-368.

[108]Zheng F, Zhan M, Huang X, Abdul Hameed M D M, Zhan C G. Modeling in Vitro Inhibition of Butyrylcholinesterase Using Molecular Docking, Multi-linear Regression and Artificial Neural Network Approaches [J]. Bioorganic & Medicinal Chemistry, 2014, 22 , 538-549.

[109]Xia Y, Liang Y, Chen Y, Wang M, Jiao L, Huang F, Liu S, Li Y, Yu Z-X. An Unexpected Role of a Trace Amount of Water in Catalyzing Proton Transfer in Phosphine-Catalyzed (3+2) Cycloaddition of Allenoates and Alkenes [J]. Journal of the American Chemical Society, 2007, 129, 3470-3471.

[110]Wang C, Qi R, Xue H, Shen Y, Chang M, Chen Y, Wang R, Xu Z. Visible-Light-Promoted C(sp3)-H Alkylation by Intermolecular Charge Transfer: Preparation of Unnatural α-Amino Acids and Late-Stage Modification of Peptides [J]. Angewandte Chemie International Edition, 2020, 59, 7531-7536.

[111]Du L, Cao P, Xing J, Lou Y, Jiang L, Li L, Liao J. Hydrogen-Bond-Promoted Palladium Catalysis: Allylic Alkylation of Indoles with Unsymmetrical 1,3-Disubstituted Allyl Acetates Using Chiral Bis(sulfoxide) Phosphine Ligands [J]. ChemInform, 2013, 52, 4207-4211

[112]Takeda Y, Hisakuni D, Lin C-H, Minakata S. 2-Halogenoimidazolium Salt Catalyzed Aza-Diels-Alder Reaction through Halogen-Bond Formation [J]. Organic Letters, 2015, 17, 318-321.

[113]He X, Wang X, Tse Y L S, Ke Z, Yeung Y Y. Bis-Selenonium Cations as Bidentate Chalcogen Bond Donors in Catalysis [J]. ACS catalysis, 2021, 11, 12632-12642.

[114]Urey H C, Brickwedde F G, Murphy G M. A Hydrogen Isotope of Mass 2 and its Concentration [J]. Physical Review, 1932, 40, 1-15.

[115]Meanwell N A. Synopsis of Some Recent Tactical Application of Bioisosteres in Drug Design [J]. Journal of Medicinal Chemistry, 2011, 54, 2529-2591.

[116]Pirali T, Serafini M, Cargnin S, Genazzani A A. Applications of Deuterium in Medicinal Chemistry [J]. Journal of Medicinal Chemistry, 2019, 62, 5276-5297.

[117]O'Ferrall R A M. A Pictorial Representation of Zero-Point Energy and Tunnelling Contributions to Primary Hydrogen Isotope Effects [J]. Journal of Physical Organic Chemistry, 2010, 23, 572-579.

[118]Rosman K J R, Taylor P D P. Isotopic Compositions of the Elements 1997 (Technical Report) [J]. Pure and Applied Chemistry, 1998, 70, 217-235.

[119]Foster A B. Deuterium Isotope Effects in Studies of Drug Metabolism [J]. Trends in Pharmacological Sciences, 1984, 5, 524-527.

[120]Murray S, Lynch A M, Knize M G, Gooderham N J. Quantification of the Carcinogens 2-Amino-3,8-Dimethyl- and 2-Amino-3,4,8-Trimethylimidazo[4,5-f]Quinoxaline and 2-Amino-1-Methyl-6-Phenylimidazo[4,5-b]Pyridine in Food Using a Combined Assay Based on Gas Chromatography-Negative Ion Mass Spectrometry [J]. Journal of Chromatography B: Biomedical Sciences and Applications, 1993, 616, 211-219.

[121]Rudel R A, Camann D E, Spengler J D, Korn L R, Brody J G. Phthalates, Alkylphenols, Pesticides, Polybrominated Diphenyl Ethers, and Other Endocrine-Disrupting Compounds in Indoor Air and Dust [J]. Environmental Science & Technology, 2003, 37, 4543-4553.

[122]Gant T G. Using Deuterium in Drug Discovery: Leaving the Label in the Drug [J]. Journal of Medicinal Chemistry, 2014, 57 3595-3611.

[123]Di Martino R M C, Maxwell B D, Pirali T. Deuterium in Drug Discovery: Progress, Opportunities and Challenges [J]. Nature Reviews Drug Discovery, 2023, 22, 562-584.

[124]Barreiro E J, Kümmerle A E, Fraga C A M. The Methylation Effect in Medicinal Chemistry [J]. Chemical Reviews, 2011, 111, 5215-5246.

[125]Steverlynck J, Sitdikov R, Rueping M. The Deuterated "Magic Methyl" Group: A Guide to Site-Selective Trideuteromethyl Incorporation and Labeling by Using CD3 Reagents [J]. Chemistry - A European Journal, 2021, 27, 11751-11772.

[126]Schönherr H, Cernak T. Profound Methyl Effects in Drug Discovery and a Call for New C-H Methylation Reactions [J]. Angewandte Chemie International Edition, 2013, 52, 12256-12267.

[127]Hu L, Liu X, Liao X. Nickel-Catalyzed Methylation of Aryl Halides with Deuterated Methyl Iodide [J]. Angewandte Chemie International Edition, 2016, 55, 9743-9747.

[128]Liu Q, Lu Y, Sheng H, Zhang C-S, Su X-D, Wang Z-X, Chen X-Y. Visible-Light-Induced Selective Photolysis of Phosphonium Iodide Salts for Monofluoromethylations [J]. Angewandte Chemie International Edition, 2021, 60, 25477-25484.

[129]Liu Q, Zhang B-B, Sheng H, Qiao S, Wang Z-X, Chen X-Y. Visible-Light-Induced Photoreduction of Carborane Phosphonium Salts: Efficient Synthesis of Carborane-Oxindole-Pharmaceutical Hybrids [J]. Angewandte Chemie International Edition, 2023, 62, e202305088.

[130]Ren X-J, Liu Q, Wang Z-X, Chen X-Y. Visible-Light-Induced Direct Hydrodifluoromethylation of Alkenes with Difluoromethyltriphenylphosphonium Iodide Salt [J]. Chinese Chemical Letters, 2023, 34, 107473.

[131]Liu Q, Zhang B-B, Zhang C-S, Han J-N, Wang Z-X, Chen X-Y. Pnictogen Bonding Enabled Photosynthesis of Chiral Selenium-Containing Pyridines from Pyridylphosphonium Salts [J]. Fundamental Research, 2023.

[132]Zhang Q-S, He L, Liu Q, Chen X-Y. Charge Transfer Complex-Enabled Synthesis of (Hetero)Arylated m-Carboranes from m-Carborane Phosphonium Salts [J]. Organic Letters, 2023, 25, 5768-5773.

[133]Hu T-J, Zhang G, Chen Y-H, Feng C-G, Lin G-Q. Borylation of Olefin C-H Bond via Aryl to Vinyl Palladium 1,4-Migration [J]. Journal of the American Chemical Society, 2016, 138, 2897-2900.

[134]Zhou Q, Li S, Zhang Y, Wang J. Rhodium(Ⅱ)- or Copper(I)-Catalyzed Formal Intramolecular Carbene Insertion into Vinylic C(sp2)-H Bonds: Access to Substituted 1H-Indenes [J]. Angewandte Chemie International Edition, 2017, 56, 16013-16017.

[135]Ren X-J, Liu Q, Wang Z-X, Chen X-Y. Visible-Light-Induced Direct Hydrodifluoromethylation of Alkenes with Difluoromethyltriphenylphosphonium Iodide Salt [J]. Chinese Chemical Letters, 2023, 34, 107473.

[136]Tan F, Zheng P, Liu Q, Chen X-Y. Charge Transfer Complex Enabled Photoreduction of Wittig Phosphonium Salts [J]. Organic Chemistry Frontiers, 2022, 9, 5469-5472.

[137]Qiao S, Chen K-Q, Liu Q, Wang Z-X, Chen X-Y. Charge Transfer Complex Enabled Photoreduction of Ether Phosphonium Salts for the Selective Oxyalkylation of Enamides [J]. Chinese Chemical Letters, 2024, 35, 108979.

[138]Boerjan W, Ralph J, Baucher M. Lignin Biosynthesis [J]. Annual Review of Plant Biology, 2003, 54, 519-546.

[139]Zakzeski J, Bruijnincx P C A, Jongerius A L, Weckhuysen B M. The Catalytic Valorization of Lignin for the Production of Renewable Chemicals [J]. Chemical Reviews, 2010, 110, 3552-3599.

[140]Li C, Zhao X, Wang A, Huber G W, Zhang T. Catalytic Transformation of Lignin for the Production of Chemicals and Fuels [J]. Chemical Reviews, 2015, 115, 11559-11624.

[141]Meng Q, Hou M, Liu H, Song J, Han B. Synthesis of Ketones from Biomass-Derived Feedstock [J]. Nature Communications, 2017, 8, 14190.

[142]Upton B M, Kasko A M. Strategies for the Conversion of Lignin to High-Value Polymeric Materials: Review and Perspective [J]. Chemical Reviews, 2016, 116, 2275-2306.

[143]Shuai L, Amiri M T, Questell-Santiago Y M, Héroguel F. Formaldehyde Stabilization Facilitates Lignin Monomer Production during Biomass Depolymerization [J]. Science, 2016, 354, 329-333.

[144]Pierce J. A. The Effects of Increased Syringyl to Guaiacyl Lignin Monomer Ratios on Xylem Hydraulic Properties in Hybrid Poplar (Populus tremula x P. alba). Michigan State University, 2012.

[145]Tan F F, He X Y, Tian W F, Li Y. Visible-Light Photoredox-Catalyzed C-O Bond Cleavage of Diaryl Ethers by Acridinium Photocatalysts at Room Temperature [J]. Nature Communications, 2020, 11, 6126.

[146]Guo M, Peng J, Yang Q, Can L, Highly Active and Selective RuPd Bimetallic NPs for the Cleavage of the Diphenyl Ether C-O Bond [J]. ACS catalysis, 2018, 8, 11174-11183.

[147]Hu R G, Sang Y, Tan F F. Photoredox and Vanadate Cocatalyzed Hydrolysis of Aryl Ethers at Ambient Temperature [J]. ACS catalysis, 2023, 13, 9264-9273.

[148]Parthasarathi R, Romero R A, Redondo A, Gnanakaran S. Theoretical Study of the Remarkably Diverse Linkages in Lignin [J]. Journal of Physical Chemistry Letters, 2011, 2, 2660-2666.

[149]Li C, Zhao X, Wang A, Huber G W, Zhang T. Catalytic Transformation of Lignin for the Production of Chemicals and Fuels [J]. Chemical Reviews, 2015, 11559-11624.

[150]Zhang Z, Song J, Han B. Catalytic Transformation of Lignocellulose into Chemicals and Fuel Products in Ionic Liquids [J]. Chemical Reviews, 2016, 117, 6834-6880.

[151]Zakzeski J, Bruijnincx P C A, Jongerius A L; Weckhuysen Bert M. The Catalytic Valorization of Lignin for the Production of Renewable Chemicals [J]. Chemical Reviews, 2010, 110, 3552-3599.

[152]Sun Z, Fridrich B, de Santi A, Elangovan S, Barta K. Bright Side of Lignin Depolymerization: Toward New Platform Chemicals. Chemical Reviews, 2018, 118, 614-678.

[153]Sergeev, A. G, Hartwig, J. F. Selective, Nickel-Catalyzed Hydrogenolysis of Aryl Ethers [J]. Science, 2011, 332, 439-443.

[154]Truce W E, Ray W J Jr, Norman O L, Eickemeyer D B. Rearrangements of Aryl Sulfones. I. The Metalation and Rearrangement of Mesityl Phenyl Sulfone1 [J]. Journal of the American Chemical Society, 1958, 80, 3625-3629.

[155]Snape T J. A Truce on the Smiles Rearrangement: Revisiting an Old Reaction-the Truce-Smiles Rearrangement [J]. Chemical Society Reviews, 2008, 37, 2452-2458.

[156]Li J, Liu Z, Wu S, Chen Y. Acyl Radical Smiles Rearrangement To Construct Hydroxybenzophenones by Photoredox Catalysis [J]. Organic Letters, 2019, 21, 2077-2080.

[157]Dou Q, Li C-J, Zeng H. Photoinduced Transition-Metal- and External-Photosensitizer-Free Intramolecular Aryl Rearrangement via C(Ar)-O Bond Cleavage [J]. Chemical Science, 2020, 11 5740-5744.

[158]Xia Z-H, Dai L, Gao Z-H, Ye S. N-Heterocyclic Carbene/Photo-Cocatalyzed Oxidative Smiles Rearrangement: Synthesis of Aryl Salicylates from O-Aryl Salicylaldehydes [J]. Chemical Communications, 2020, 56, 1525-1528.

[159]Whalley D M, Greaney M F. Recent Advances in the Smiles Rearrangement: New Opportunities for Arylation [J]. Synthesis, 2022, 54, 1908-1918.

[160]Siskin M, Katritzky A R, Balasubramanian M. Aqueous Organic Chemistry. 4. Cleavage of Diaryl Ethers [J]. Energy & Fuels, 1991, 5, 770-771.

[161]Huber G W, Iborra S, Corma A. Synthesis of Transportation Fuels from Biomass:  Chemistry, Catalysts, and Engineering [J]. Chemical Reviews 2006, 106, 4044-4098.

[162]Zhou Y, Hu D, Li D, Jiang X. Uranyl-Photocatalyzed Hydrolysis of Diaryl Ethers at Ambient Environment for the Directional Degradation of 4-O-5 Lignin [J]. JACS Au, 2021, 1, 1141-1146.

[163]Hu R-G, Sang Y, Tan F-F, Sun Y-L, Xue X-S, Li Y. Photoredox and Vanadate Cocatalyzed Hydrolysis of Aryl Ethers at Ambient Temperature [J]. ACS Catalysis, 2023, 13, 9264-9273.

[164]Tan F-F, He X-Y, Tian W-F, Li Y. Visible-light Photoredox-Catalyzed C-O Bond Cleavage of Diaryl Ethers by Acridinium Photocatalysts at Room Temperature [J]. Nature Communications, 2020, 11 (1), 6126.

[165]Sergeev A G, Hartwig J F. Selective, Nickel-Catalyzed Hydrogenolysis of Aryl Ethers [J]. Science, 2011, 332, 439-443.

[166]Sergeev A G, Webb J D, Hartwig J F. A Heterogeneous Nickel Catalyst for the Hydrogenolysis of Aryl Ethers without Arene Hydrogenation [J]. Journal of the American Chemical Society, 2012, 134, 20226-20229.

[167]Saper N I, Hartwig J F. Mechanistic Investigations of the Hydrogenolysis of Diaryl Ethers Catalyzed by Nickel Complexes of N-Heterocyclic Carbene Ligands [J]. Journal of the American Chemical Society, 2017, 139, 17667-17676.

[168]Villo P, Shatskiy A, Krks M D, Lundberg H. Electrosynthetic C-O Bond Activation in Alcohols and Alcohol Derivatives [J]. Angewandte Chemie International Edition, 2023, 62, e202211952.

[169]Qiu Z, Li C J. Transformations of Less-Activated Phenols and Phenol Derivatives via C-O Cleavage [J]. Chemical Reviews, 2020, 120, 10454-10515.

[170]Xu L, Chung L W, Wu Y-D. Mechanism of Ni-NHC Catalyzed Hydrogenolysis of Aryl Ethers: Roles of the Excess Base [J]. ACS Catalysis, 2016, 6, 483-493.

[171]Gao F, Webb J D, Hartwig J F. Chemo- and Regioselective Hydrogenolysis of Diaryl Ether C-O Bonds by a Robust Heterogeneous Ni/C Catalyst: Applications to the Cleavage of Complex Lignin-Related Fragments [J]. Angewandte Chemie International Edition, 2016, 55, 1474-1478

[172]Zhou Y, Hu D, Li D, Jiang X. Uranyl-Photocatalyzed Hydrolysis of Diaryl Ethers at Ambient Environment for the Directional Degradation of 4-O-5 Lignin [J]. 2021, 1, 1141-1146..

[173]Tay N E S, Chen W, Levens A, Pistritto V A, Huang Z, Wu Z, Li Z, Nicewicz D A. 19F- and 18F-arene Deoxyfluorination via Organic Photoredox-Catalysed Polarity-Reversed Nucleophilic Aromatic Substitution [J]. Nature Catalysis, 2020, 3, 734-742.

[174]Liang K, Liu Q, Shen L, Li X, Xia C. Intermolecular Oxyarylation of Olefins with Aryl Halides and TEMPOH Catalyzed by Phenolate Anion under Visible Light [J]. Chemical Science, 2020, 11, 6996-7002.

[175]Kerzig C, Guo X, Wenger O S. Unexpected Hydrated Electron Source for Preparative Visible-Light Driven Photoredox Catalysis [J]. Journal of the American Chemical Society, 2019, 141, 2122-2127.

[176]Giedyk M, Narobe R, Weiß S, Touraud D, Kunz W, König B. Photocatalytic Activation of Alkyl Chlorides by Assembly-Promoted Single Electron Transfer in Microheterogeneous Solutions [J]. Nature Catalysis, 2020, 3, 40-47.

[177]MacKenzie I A, Wang L, Onuska N P R, Williams O F, Begam K, Moran A M, Dunietz B D, Nicewicz D A. Discovery and Characterization of an Acridine Radical Photoreductant [J]. Nature, 2020, 580, 76-80.

[178]Halder S, Mandal S, Kundu A, Mandal B, Adhikari D. Super-Reducing Behavior of Benzo[b]phenothiazine Anion Under Visible-Light Photoredox Condition [J]. Journal of the American Chemical Society, 2023, 145, 22403-22412.

[179]Wang S, Wang H, Knig B. Photo-Induced Thiolate Catalytic Activation of Inert Caryl-hetero Bonds for Radical Borylation [J]. Chem, 2021, 7, 1653-1665.

[180]Sheng H, Liu Q, Zhang B-B, Wang Z-X, Chen X-Y. Visible-Light-Induced N-Heterocyclic Carbene-Catalyzed Single Electron Reduction of Mono-Fluoroarenes [J]. Angewandte Chemie International Edition, 2023, 62, e202218468.

[181]Chen X-Y, Gao Z-H, Ye S. Bifunctional N-Heterocyclic Carbenes Derived from l-Pyroglutamic Acid and Their Applications in Enantioselective Organocatalysis [J]. Accounts of Chemical Research, 2020, 53, 690-702.

[182]Ni H, Chan W-L, Lu Y. Phosphine-Catalyzed Asymmetric Organic Reactions [J]. Chemical Reviews, 2018, 118, 9344-9411.

[183]Sato A, Yorimitsu H, Oshima K. Radical Phosphination of Organic Halides and Alkyl Imidazole-1-carbothioates [J]. Journal of the American Chemical Society, 2006, 128, 4240-4241.

[184]Jin S, Haug G C, Nguyen V T, Flores-Hansen C, Arman H D, Larionov O V. Decarboxylative Phosphine Synthesis: Insights into the Catalytic, Autocatalytic, and Inhibitory Roles of Additives and Intermediates [J]. ACS Catalysis 2019, 9, 9764-9774.

[185]Tu Y-L, Zhang B-B, Qiu B-S, Wang Z-X, Chen X-Y. Cross-Electrophile C-PIII Coupling of Chlorophosphines with Organic Halides: Photoinduced PIII and Aminoalkyl Radical Generation Enabled by Pnictogen Bonding [J]. Angewandte Chemie International Edition 2023, 62, e202310764.

[186]Shih W-C, Wang C-H, Chang Y-T, Yap G P A, Ong T-G. Synthesis and Structure of an Amino-Linked N-Heterocyclic Carbene and the Reactivity of its Aluminum Adduct [J]. Organometallics 2009, 28, 1060-1067.

[187]Chen W-C, Hsu Y-C, Shih W-C, Lee C-Y, Chuang W-H, Tsai Y-F, Chen P P-Y, Ong T-G. Metal-Free Arylation of Benzene and Pyridine Promoted by Amino-Linked Nitrogen Heterocyclic Carbenes [J]. Chemical Communications 2012, 48, 6702-6704.

[188]Zhou H, Zhang J, Yang H, Xia C, Jiang G. Rhodium-Catalyzed Double Alkyl-Oxygen Bond Cleavage: An Alkyl Transfer Reaction from Bis/Tris(o-alkyloxyphenyl)phosphine to Aryl Acids [J]. Organometallics 2016, 35, 3406-3412.

[189]Fu C, Yu L, Miao Y, Liu X, Yu Z, Wei M. Peptide-drug conjugates (PDCs): a novel trend of research and development on targeted therapy, hype or hope? [J]. Acta Pharmaceutica Sinica B 2023, 13, 498-516.

[190]Farrugia L J. WinGX and ORTEP for Windows: an Update [J]. Journal of Applied Crystallography 2012, 45.

中图分类号:

 O62    

开放日期:

 2024-05-21    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式