- 无标题文档
查看论文信息

中文题名:

 基于MIKE BASIN的肯斯瓦特水库优化调度研究    

姓名:

 胡永旭    

学号:

 20212110060    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085902    

学科名称:

 工学 - 土木水利 - 水利工程    

学生类型:

 硕士    

学位:

 土木水利硕士    

学位类型:

 专业学位    

学位年度:

 2024    

学校:

 石河子大学    

院系:

 水利建筑工程学院    

专业:

 土木水利    

研究方向:

 水资源优化调配    

第一导师姓名:

 乔长录    

第一导师单位:

 石河子大学    

完成日期:

 2024-10-24    

答辩日期:

 2024-10-25    

外文题名:

 Optimal scheduling study of Ken Swart Reservoir based on MIKE BASIN    

中文关键词:

 肯斯瓦特水库 ; 径流预测 ; MIKE BASIN ; NSGA-Ⅱ算法 ; 模拟调度     

外文关键词:

 Ken Swart Reservoir ; Runoff prediction ; MIKE BASIN ; NSGA-II algorithm ; Simulation scheduling     

中文摘要:

目的:新疆玛纳斯河属于典型的干旱区内陆河,位于中游的肯斯瓦特水库具有防洪、灌溉和发电三大功能,但水库现行“按需泄流”的灌溉和发电调度方式还难以达到优化调度的目的,而且可能会对水库下游生态系统的健康造成不利影响。因此,本文通过对肯斯瓦特水库“灌溉-发电”优化调度开展研究,以期提高水资源综合利用效率,缓解流域内水资源供需矛盾。

方法:首先,通过统计法对肯斯瓦特水库的来需水进行平衡分析,并采用P-Ⅲ型曲线配线完成年径流理论频率曲线,确定了典型水文年;其次,借鉴“分解-预测-重构”方法,结合自适应动态分解策略(AS)、集合经验模态分解(EEMD)、秃鹰搜索(BES)算法、网格搜索法(GS)和极限学习机(ELM)构建出水库入库月径流预测模型(ASEEMD-BES-ELM);然后,结合流域数据、水文数据、水库特性数据和需水数据、水库调度规则等资料完成基于MIKE BASIN的肯斯瓦特水库模型构建,并结合实测下泄流量完成模型的率定和验证;最后,采用带有精英策略的快速非支配遗传算法(NSGA-Ⅱ)完成肯斯瓦特水库“灌溉-发电”优化调度模型的构建和求解,得到非劣解集,再通过构建多目标优化调度方案的评价指标体系,利用主客观结合法确定指标权重,构建模糊优选评判模型,对不同研究年份内的非劣解集进行优属度计算,并将较优方案输入到基于MIKE BASIN的肯斯瓦特水库调度模型中进行模拟调度。

结果:(1)肯斯瓦特水库多年平均来水量为1.259×109 m³,需水量为1.452×109 m³,丰水年、平水年和枯水年的年内总来水量分别为1.379×109 m³、1.199×109 m³和1.074×109 m³。

(2)ASEEMD-BES-ELM水库入库月径流预测模型的纳什效率系数为0.971,平均绝对误差为5.173 m³·s-1,均方根误差为8.282 m³·s-1,平均绝对百分比误差为16.033%,模型预测效果较优。

(3)在率定期内(2015~2018年)实测下泄流量和MIKE BASIN水库模拟下泄流量绝对误差分别为2.4×107 m³、2.0×107 m³、9.0×106 m³和1.2×107 m³,相对误差分别为2.13%、1.18%、0.68%和1.04%;在验证期内(2019~2020年)实测下泄流量和MIKE BASIN模拟下泄流量绝对误差分别为2.8×107 m³和8.0×106 m³,相对误差分别为2.21%和0.69%,模拟模型具有较好的适用性。

(4)在研究年份中,丰水年、平水年、枯水年和2030年优化后的灌溉缺水量分别为8.9550×107 m³、2.9025×108 m³、3.7565×108 m³和2.8787×108 m³,发电量分别为2.8412×108 kW·h、2.6979×108 kW·h、2.4286×108 kW·h和2.6962×108 kW·h,与优化前相比灌溉缺水量分别降低了15.98%、11.68%、10.25%和13.18%,发电量分别升高了1.53%、3.13%、3.75%和3.62%。

结论:MIKE BAISN在肯斯瓦特水库的模拟调度中具有很好的适用性,且在基于NSGA-Ⅱ算法的多目标水库优化调度方案研究中具有可行性,有助于决策者更好地理解和管理水资源并制定合理的调度策略,同时结合ASEEMD-BES-ELM模型可进一步提高水库优化调度方案的适应性和灵活性。

外文摘要:

Purpose: The Manas River in Xinjiang is a typical inland river in arid areas. The Ken Swart Reservoir in the middle reaches has three functions: flood control, irrigation and power generation. However, the current irrigation and power generation dispatching mode of "on-demand discharge" of the reservoir is difficult to achieve the purpose of optimal operation, and may cause adverse effects on the health of the downstream ecosystem of the reservoir. Therefore, this thesis studies the optimal operation of "irrigation-power generation" in Ken Swart Reservoir, in order to improve the comprehensive utilization efficiency of water resources and alleviate the contradiction between supply and demand of water resources in the basin.

Methods: Firstly, the balance analysis of water demand of Ken Swart Reservoir was carried out by statistical method, and the theoretical frequency curve of annual runoff was completed by P-III curve distribution, and the typical hydrological year was determined. Secondly, used the decomposing-prediction-reconstruction method, the monthly runoff prediction model (ASEEMD-BES-ELM) was constructed by combining the Self-adaptation Decomposition Strategy (AS), Ensemble Empirical Mode Decomposition (EEMD), Bald Eagle Search (BES) algorithm, Grid Search method (GS) and Extreme Learning Machine (ELM). Then, combining basin data, hydrological data, reservoir characteristics data, water demand data, reservoir dispatching rules and other data, the construction of Ken Swart reservoir model based on MIKE BASIN was completed, and the model was calibrated and verified in combination with the measured discharge flow. Finally, the Non-dominated Sorting Genetic Algorithm Ⅱ (NSGA-Ⅱ) with elite strategy was used to construct and solve the optimal scheduling model of "irrigation-power generation" of Ken Swart Reservoir, and the non-inferior solution set was obtained. Then, the evaluation index system of multi-objective optimal scheduling scheme was constructed, and the index weight was determined by subjection-objective combination method, and the fuzzy optimization evaluation model was constructed. The dominance of non-inferior solution sets in different study years was calculated, and the optimal solution was input into the MIKE Basin-based Ken Swart Reservoir dispatching model for simulation dispatching.

Results:(1) The average annual inflow of Ken Swart Reservoir is 1.259×109 m³, the water demand is 1.452×109 m³, and the total annual inflow of water in wet, normal and dry years is 1.379×109 m³, 1.199×109 m³ and 1.074×109 m³, respectively.

(2) The Nash-Sutcliffe efficiency coefficient of ASEEMD-BES-ELM reservoir monthly runoff prediction model is 0.971, the mean absolute error is 5.173 m³·s-1, the root-mean-square error is 8.282 m³·s-1, and the mean absolute percentage error is 16.033%, indicating that the model has better prediction effect.

(3) In the rate period (2015~2018), the absolute errors of the measured discharge and the simulated discharge of MIKE BASIN reservoir are 2.4×107 m³, 2.0×107 m³, 9.0×106 m³ and 1.2×107 m³, respectively. The relative errors are 2.13%, 1.18%, 0.68% and 1.04%, respectively. During the validation period (2019~2020), the absolute errors of the measured discharge and MIKE BASIN simulated discharge are 2.8×107 m³ and 8.0×106 m³, respectively, and the relative errors are 2.21% and 0.69%, respectively, indicating that the simulation model had good applicability.

(4) In the study years, the optimized irrigation water shortage in wet, normal, dry and 2030 year is 8.9550×107 m³, 2.9025×108 m³, 3.7565×108 m³ and 2.8787×108 m³, respectively. The power generation is 2.8412×108 kW·h, 2.6979×108 kW·h, 2.4286×108 kW·h and 2.6962×108 kW·h, respectively, and the irrigation water shortage is reduced by 15.98%, 11.68%, 10.25% and 13.18%, respectively, compared with before optimization. Power generation increased by 1.53%, 3.13%, 3.75% and 3.62%, respectively.

Conclusion: The MIKE BAISN has good applicability in the simulation dispatching of Ken Swart Reservoir, and is feasible in the research of multi-objective reservoir optimal dispatching scheme based on NSGA-Ⅱ algorithm, which helps decision makers to better understand and manage water resources and formulate reasonable dispatching strategies. At the same time, the combination of ASEEMD-BES-ELM model can further improve the adaptability and flexibility of reservoir optimal dispatching scheme.

参考文献:

[1]左其亭,吴青松,纪义虎,等.区域水平衡及失衡程度度量方法[J].水利学报,2024,55(01):1-12.

[2]Gleick H P. Water and Conflict:Fresh Water Resources and International Security[J]. International Security,2011,18(1):79-112.

[3]吴炳方,曾红伟,马宗瀚,等.完善新时期水资源管理指标的方法[J].水科学进展,2022,33(04):553-566.

[4]朱亚美.基于递归均匀设计的水库优化调度[D].河南:河南大学,2023.

[5]中华人民共和国水利部.2022年全国水利发展统计公报[R].北京:水利部,2023.

[6]Zhang Z, Qin H, Yao L,et al. Improved Multi-objective Moth-flame Optimization Algorithm based on R-domination for cascade reservoirs operation[J]. Journal of Hydrology,2020,581 124431-124431.

[7]Mahsa M, R. H S, Farshad R. An improved MOPSO algorithm for multi-objective optimization of reservoir operation under climate change[J]. Environmental Monitoring and Assessment,2022,194(4):261-261.

[8]艾学山,郭佳俊,穆振宇,等.梯级水库群多目标优化调度模型及CPF-DPSA算法研究[J].水利学报,2023,54(01):68-78.

[9]陆文,唐家良,章熙锋,等.山地流域水文模拟研究进展与展望[J].山地学报,2020,38(01):50-61.

[10]张楠,夏自强,江红.基于多因子量化指标的支持向量机径流预测[J].水利学报,2010,41(11):1318-1324.

[11]陈图峥,李艳红,李发东,等.玛纳斯河流域不同绿洲生态系统棉田土壤水分-盐分-养分空间变异特征[J].农业资源与环境学报,2022,39(06):1133-1144.

[12]张海川.肯斯瓦特水库汛限水位动态控制方案研究[D].新疆:石河子大学,2023.

[13]MULVANEY T J. On the use of self-registering rain and flood gauges in making observations of the relations of rainfall and of flood discharges in a given catchment[J]. Proceedings Institution of Civil Engineers,1850,4:18–31.

[14]郭田丽,宋松柏,张特,等.基于两阶段粒子群优化算法的新型逐步分解集成径流预测模型[J].水利学报,2022,53(12):1456-1466.

[15]常远.基于改进经验模态分解与集成学习的径流预测方法研究[D].河南:华北水利水电大学,2021.

[16]He X, Luo J, Li P,et al. A Hybrid Model Based on Variational Mode Decomposition and Gradient Boosting Regression Tree for Monthly Runoff Forecasting[J]. Water Resources Management,2020,34(2):865-884.

[17]左岗岗.基于机器学习的径流预测方法及适应性预测机制研究[D].陕西:西安理工大学:2021.

[18]胡和平,田富强.物理性流域水文模型研究新进展[J].水利学报,2007,(05):511-517.

[19]张璐.基于变分模态分解和贝叶斯神经网络的月径流预测方法研究[D].河北:河北工程大学,2022.

[20]谷一,王国庆,郝振纯,等.基于新安江模型的曲江流域水文模拟研究[J].水资源与水工程学报,2018,29(02):50-55.

[21]Kunnath-Poovakka A, Eldho I T. A comparative study of conceptual rainfall-runoff models GR4J, AWBM and Sacramento at catchments in the upper Godavari river basin,India[J]. Journal of Earth System Science,2019,128(2):33.

[22]张海川,尤洋,乔长录,等.HBV模型在玛纳斯河流域的适用性[J],长江科学院院报,2023,40(12):37-44+80.

[23]谭伟丽.基于深度学习方法的长江流域径流预测及可解释性研究[D].江苏:南京信息工程大学,2023.

[24]George C, James J E. Estimation of streamflow of the ungauged mountainous watersheds of the Western Ghats in India using the SWAT model[J]. River Research and Applications,2023,40(1):49-62.

[25]肖森元,杨广,何新林,等.玛纳斯河流域MIKE SHE水文模型率定[J].山地学报,2021,39(01):1-9.

[26]祁继霞,粟晓玲,张更喜,等.VMD-LSTM模型对不同预见期月径流的预测研究[J].干旱地区农业研究,2022,40(06):258-267.

[27]Umar S, Khan N J, Malik A M,et al. Prediction of Runoff in Dachigam Catchment and Generation of Time Series Autoregressive Model[J]. Current Journal of Applied Science and Technology,2018,27(5):1-12.

[28]李安安.大伙房水库入库径流变化特征分析[J].浙江水利科技,2019,47(04):24-25+32.

[29]Nasir N, Samsudin R, Shabri A. Monthly streamflow forecasting with auto-regressive integrated moving average[J]. Journal of Physics:Conference Series,2017,890(1).012141-012141.

[30]岳兆新,艾萍,熊传圣,等.基于改进深度信念网络模型的中长期径流预测[J].水力发电学报,2020,39(10):33-46.

[31]莫崇勋,王大洋,钟欢欢,等.人工神经网络在澄碧河年径流预测中的应用研究[J].水力发电,2016,42(09):25-28.

[32]王瑞芳,姜玥玮,易琦.基于SVM模型的宝象河流域降雨—径流预测研究[J].云南地理环境研究,2020,32(05):1-8.

[33]Peng F, Feng P, Jie W,et al. Monthly Streamflow Prediction Based on Random Forest Algorithm and Phase Space Reconstruction Theory[J]. Journal of physics.Conference series,2020,1637 (1):012091 (6pp).

[34]王迁,杨明祥,雷晓辉,等.基于PSO-SVR的丹江口年径流预报[J].南水北调与水利科技,2018,16(03):65-71.

[35]褚继花.遗传算法优化BP神经网络水文预报过程模型研究[J],水利规划与设计,2018,(01):65-66+118.

[36]杨鑫,任海霞,万芳.水库径流预报的蚁群优化神经网络算法应用研究[J].中国农村水利水电,2013,(12):9-12+18.

[37]李月玉,李磊.免疫粒子群算法与支持向量机在枯水期月径流预测中的应用[J].水资源与水工程学报,2015,26(03):124-128+135.

[38]崔东文,郭荣.基于随机漂移粒子群优化的随机森林预测模型及水文应用实例[J].三峡大学学报(自然科学版),2019,41(02):6-10.

[39]张森,颜志俊,徐春晓,等.基于MPGA-LSTM月径流预测模型及应用[J].水电能源科学,2020,38(05):38-41+75.

[40]张洪波,王斌,兰甜,等.基于经验模态分解的非平稳水文序列预测研究[J].水力发电学报,2015,34(12):42-53.

[41]Ruifang Y, Siyu C, Weihong L,et al. Daily Runoff Forecasting Using Ensemble Empirical Mode Decomposition and Long Short-Term Memory[J]. Frontiers in Earth Science,2021,9

[42]王秀杰,王玲,滕振敏,等.VMD-PSO-LSTM模型的日径流多步预测[J].水利水运工程学报,2023,(04):81-90.

[43]徐冬梅,廖安栋,王文川.基于VMD-EEMD-CNN-LSTM混合模型的月径流预测[J].水利规划与设计,2023,(07):57-63.

[44]王文川,杜玉瑾,和吉,等.基于CEEMDAN-VMD-BP模型的月径流量预测研究[J].华北水利水电大学学报(自然科学版),2023,44(01):32-40+48.

[45]ZHANG X, PENG Y, ZHANG C,et al. Are hybrid models integrated with data preprocessing techniques suitable for monthly streamflow forecasting? Some experiment evidences[J]. Journal of Hydrology,2015,530:137–152.

[46]QUILTY J, ADAMOWSKI J. Addressing the incorrect usage of wavelet-based hydrological and water resources forecasting models for real-world applications with best practices and a new forecasting framework[J]. Journal of Hydrology,2018,563:336–353.

[47]张上要,罗军刚,石国栋,等.基于VMD-TCN模型的渭河流域月径流量预测研究[J].人民黄河,2023,45(10):25-29.

[48]熊怡,周建中,孙娜,等.基于自适应变分模态分解和长短期记忆网络的月径流预报[J].水利学报,2023,54(02):172-183+198.

[49]唐铭泽,杨银科,张菁雯.基于ASWPD-BO-GRU的月径流量预测模型[J].水资源与水工程学报,2023,34(04):84-91.

[50]朱凯莉.基于特征选择的数据驱动水库动态调度决策算法研究[D].浙江:浙江工业大学,2019.

[51]汤生城.改进麻雀优化算法在水库优化调度中的应用研究[D].河南:华北水利水电大学,2023.

[52]马光文,刘金焕,李菊根.流域梯级水电站群联合优化运行.北京:中国电力出版社[M].2008.

[53]王利.三门峡水库多目标优化调度研究[D].江苏:河海大学,2006.

[54]W.W-G. Yeh. Reservoir Management and Operations Models: A State-of-the-Art Review[J]. Water Resources Research,1985,21(12):1797-1818.

[55]Windsor, James S. Optimization model for the operation of flood control systems[J]. Water Resources Research,1973,9(5).1219-1226.

[56]都金康,李罕,王腊春,等.防洪水库(群)洪水优化调度的线性规划方法[J].南京大学学报(自然科学版),1995,(02):301-309.

[57]何素明,谭乔凤,雷晓辉,等.漓江实时补水优化调度研究[J].南水北调与水利科技,2018,16(04):98-103.

[58]Chu W S, W.W-G. Yeh. A nonlinear programming algorithm for real-time hourly reservoir operations1[J]. Journal of the American Water Resources Association,1978,14(5):1048-1063.

[59]Unver O I, Mays L W. Model for real-time optimal flood control operation of a reservoir system[J]. Water Resources Management,1990,4(1):21-46.

[60]李想,魏加华,司源,等.权衡供水与发电目标的水库调度建模及优化[J].南水北调与水利科技,2015,13(05):973-979.

[61]Little J D. The use of storage water in a hydroelectric system[J]. Journal of the Operations Research Society of America,1955,3(2):187-197.

[62]谭维炎,刘健民,黄守信,等.应用随机动态规划进行水电站水库的最优调度[J].水利学报,1982,(07):1-7.

[63]万俊,雷卫东.混联水库群联合调度图的绘制探讨[J].水电能源科学,1988,(03):274-279.

[64]张玉新,冯尚友.水库水沙联调的多目标规划模型及其应用研究[J].水利学报,1988,(09):19-27.

[65]姚华明,张勇传,钟琦,等.双状态动态规划算法(BSDP)及其在水库群补偿调节中的应用[J].人民长江,1988,(10):11-16.

[66]孙平,王丽萍,蒋志强,等.两种多维动态规划算法在梯级水库优化调度中的应用[J].水利学报,2014,45(11):1327-1335.

[67]Foufoula E , Kitanidis P K. Gradient dynamic programming for stochastic optimal control of multidimensional water resources systems[J]. Water Resources Research,1988,24(8):1345-1359.

[68]李想,魏加华,姚晨晨,等.基于并行动态规划的水库群优化[J].清华大学学报(自然科学版),2013,53(09):1235-1240.

[69]冯仲恺,程春田,牛文静,等.均匀动态规划方法及其在水电系统优化调度中的应用[J].水利学报,2015,46(12):1487-1496.

[70]吴信益.模糊数学在水库调度中的应用[J].水力发电,1983,(05):13-17.

[71]陈守煜,赵瑛琪.系统层次分析模糊优选模型[J].水利学报,1988,(10):1-10.

[72]陈守煜.多阶段多目标决策系统模糊优选理论及其应用[J].水利学报,1990,(01):1-10.

[73]董增川,陈牧风,倪效宽,等.考虑模糊区间的水库群优化调度决策方法[J].河海大学学报(自然科学版),2021,49(03):233-240.

[74]高岳林,杨钦文,王晓峰,等.新型群体智能优化算法综述[J].郑州大学学报(工学版),2022,43(03):21-30.

[75]罗华.新型智能优化算法及其应用研究[D].江西:江西理工大学,2023.

[76]张靖文.基于数据驱动方法的水库调度研究[D].湖北:武汉大学,2019.

[77]刘攀,郭生练,李玮,等.遗传算法在水库调度中的应用综述[J].水利水电科技进展,2006,(04):78-83.

[78]SeethaRam V K. Three Level Rule Curve for Optimum Operation of a Multipurpose Reservoir using Genetic Algorithms[J]. Water Resources Management,2021,35(1):1-16.

[79]Nakorn S P, Tippayawong, Ngamsanroaj K. Optimal Operation of Two Cascading Reservoir System for Maximizing Hydropower Generation Based on Particle Swarm Algorithm[J]. International Journal of Electronics and Electrical Engineering,2021,9(1):21-25.

[80]Yun, Ruan. Comparative Analysis of Genetic Algorithms and Particle Swarm Optimization Algorithms for Optimal Reservoir Operation[J]. Applied Mechanics and Materials,2011,1446(90-93):2727-2733.

[81]杨道辉,马光文,过夏明,等.粒子群算法在水电站优化调度中的应用[J],水力发电学报,2006,(05):5-7+45.

[82]刘贵明,李晓英.水库优化调度的粒子群算法[J].中国农村水利水电,2013,(06):156-158.

[83]徐刚,马光文,梁武湖,等.蚁群算法在水库优化调度中的应用[J].水科学进展,2005,(03):397-400.

[84]纪昌明,喻杉,周婷,等.蚁群算法在水电站调度函数优化中的应用[J].电力系统自动化,2011,35(20):103-107.

[85]游进军,纪昌明,付湘.基于遗传算法的多目标问题求解方法[J].水利学报,2003,(07):64-69.

[86]Minglei R, Qi Z, Yuxia Y,et al. Research and Application of Reservoir Flood Control Optimal Operation Based on Improved Genetic Algorithm[J]. Water,2022,14(8):1272-1272.

[87]张琪.遗传算法在水库(群)防洪调度中的应用研究[D].重庆:重庆交通大学,2023.

[88]Yanfang D, Haoran M, Hao W,et al. Optimal Flood-Control Operation of Cascade Reservoirs Using an Improved Particle Swarm Optimization Algorithm[J]. Water,2022,14(8):1239-1239.

[89]黄炜斌,马光文,王和康,等.混沌粒子群算法在水库中长期优化调度中的应用[J].水力发电学报,2010,29(01):102-105.

[90]汪涛,徐杨,刘亚新,等.基于多种群引力粒子群算法的金沙江下游—三峡梯级水库群优化调度[J].长江科学院院报,2023,40(12):30-36+58.

[91]Tong X X, Xu S W, Wang F Y,et al. Application of the dynamic ant colony algorithm on the optimal operation of cascade reservoirs[J]. IOP Conference Series:Earth and Environmental Science,2016,39 (1):012042-012042.

[92]刘玒玒,汪妮,解建仓,等.水库群供水优化调度的改进蚁群算法应用研究[J].水力发电学报,2015,34(02):31-36.

[93]Lesnik John R, Holdstock Ramona T, Martin Johnny D. The Cap Fear River Basin model: A study in water resource management[J]. World Water and Environmental Resources Congress,2001:1-6.

[94]Jha K M, Gupta D A. Application of Mike Basin for Water Management Strategies in a Watershed[J]. Water International,2003,28(1):27-35.

[95]Ireson A, Makropoulos C, Maksimovic C. Water Resources Modelling under Data Scarcity: Coupling MIKE BASIN and ASM Groundwater Model[J]. Water resources management,2006,20(4):567-590.

[96]Charalampos Doulgeris, Pantazis Georgiou, Dimitris Papadimos,et, al. Water allocation under deficit irrigation using MIKE BASIN model for the mitigation of climate change[J]. Irrigation Science,2015,33(6):469-482.

[97]Hassaballah K, Jonoski A, Popescu I,et al. Model-Based Optimization of Downstream Impact during Filling of a New Reservoir: Case Study of Mandaya/Roseires Reservoirs on the Blue Nile River[J]. WATER RESOURCES MANAGEMENT,2012,26:273-293.

[98]谭炳卿,张国平.淮河流域水质管理模型[J].水资源保护,2001,(03):15-18+46-60.

[99]莫铠,李军,贾鹏.MIKE BASIN水资源模型对复杂水库调度程序的开发及应用[J].水科学与工程技术,2008,(05):24-27.

[100]莫铠,李军,贾鹏.Mike Basin水资源模型在水库调度中的应用介绍[J].水利水文自动化,2008,(03):19-22+39.

[101]吴俊秀,郭清.大凌河流域MIKE BASIN水资源模型[J].水文,2011,31(01):70-75.

[102]王海潮,来海亮,尚静石,等.基于MIKE BASIN的水库供水调度模型构建[J].水利水电技术,2012,43(02):94-98.

[103]张李萍,彭周峰.MIKE BASIN在综合利用水库兴利调度中的应用[J].浙江水利科技,2014,42(06):65-68.

[104]杜倩,苗伟波.基于Mike Basin的复杂水库群联合调度模型研究[J].人民长江,2016,47(04):88-92.

[105]卢书超.基于MIKE BASIN的石羊河流域水资源管理模型研究[D].北京:清华大学,2016.

[106]吴迪.基于MIKE BASIN的浑河流域水资源管理模型模拟研究[J].黑龙江水利科技,2018,46(05):25-29.

[107]张旭昇,单金红.改进的MIKE BASIN在水库调节计算中的应用[J].人民黄河,2019,41(12):55-58+78.

[108]魏健.引汉济渭工程初期运行的调水区河道水文响应及生态流量研究[D].陕西:西安理工大学,2020.

[109]王瑶瑶,董洁,陈学群,等.基于Mike Basin模型的莱州市水资源配置研究[J].山东农业大学学报(自然科学版),2021,52(06):984-989.

[110]蔡国涛.基于正态变换的干旱区河流水文频率研究[D].新疆: 石河子大学,2021.

[111]赵宝峰.干旱区水资源特征及其合理开发模式研究[D].陕西:长安大学,2010.

[112]侯昕悦.变化环境下玛纳斯河流域地下水环境演化及调控机制研究[D].陕西:长安大学,2023.

[113]李冬波.环境变化对玛纳斯河流域山区水资源影响研究[D].新疆:石河子大学,2023.

[114]温川,蒙宏卫,巨兰香,等.新疆肯斯瓦特水利枢纽工程的作用及其影响研究[J].水资源与水工程学报,2015,26(05):156-161.

[115]陈伏龙.流域环境变化下玛纳斯河融雪洪水的水文效应及其防洪风险不确定性问题研究[D].天津:天津大学,2017.

[116]陈伏龙,王怡璇,吴泽斌,等.气候变化和人类活动对干旱区内陆河径流量的影响——以新疆玛纳斯河流域肯斯瓦特水文站为例[J].干旱区研究,2015,32(04):692-697.

[117]蔡文静.基于时频分析和神经网络方法的玛纳斯河径流预测研究[D].新疆:石河子大学,2022.

[118]晋健,刘育,王琴慧,等.基于小波去噪和FA-SVM的中长期径流预报[J].人民长江,2020,51(09):67-72.

[119]吴贤钟,王锋,邱新元.肯斯瓦特水电站机组台数选择[J].农村电气化,2011,(11):53.

[120]谢富东.肯斯瓦特水库建成后对玛纳斯河灌区水资源的影响分析[J].中国水能及电气化,2014,(09):28-32.

[121]Huang N E, Shen Z, Long S R,et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society A:Mathematical Physical and Engineering Sciences,1998,454(1971):903-995.

[122]王佳,王旭,王浩,等.基于EEMD与ANN混合方法的水库月径流预测[J].人民黄河,2019,41(05):43-46.

[123]Alsattar A H, Zaidan A A, Zaidan B B. Novel meta-heuristic bald eagle search optimisation algorithm[J]. Artificial Intelligence Review: An International Science and Engineering Journal,2020,53(8):2237-2264.

[124]贾鹤鸣,姜子超,李瑶.基于改进秃鹰搜索算法的同步优化特征选择[J].控制与决策,2022,37 (02):445-454.

[125]HUANG G, ZHU Q, SIEW C. Extreme learning machine: Theory and applications[J]. Neurocomputing,2005,70(1):489-501.

[126]FENG Z K, NIU W J, TANG Z Y,et al. Monthly runoff time series prediction by variational mode decomposition and support vector machine based on quantum-behaved particle swarm optimization[J]. Journal of Hydrology,2020,583:124627.

[127]Matondo I J. A comparison between conventional and integrated water resources planning and management[J]. Physics and Chemistry of the Earth,2002,27(11):831-838.

[128]雷德义.基于改进遗传算法的故县水库优化调度研究[D].河南:郑州大学,2017.

[129]高媛.非支配排序遗传算法(NSGA)的研究与应用[D].浙江:浙江大学,2006.

[130]Deb K, Agrawal S, Pratap A,et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Trans.Evolutionary Computation,2002,6(2):182-197.

[131]金文婷,王义民,白涛,等.枯水年引汉济渭并联水库多目标调度及决策[J].水力发电学报,2019,38(02):68-81.

[132]李伟琨.多目标进化算法研究及其在水库优化调度中的应用[D].浙江:浙江工业大学,2020.

[133]孙桂凯,石锐,刘思怡,等.基于长期与中长期嵌套的水库优化调度[J].长江科学院院报,2022,39(08):23-28.

[134]潘月,杨广,田浩,等.水资源总量约束条件下玛纳斯河灌区水资源优化配置[J].排灌机械工程学报,2023,41(10):1065-1072.

[135]贾蕊宁.黑河黄藏寺水库生态调度研究[D].陕西:西北大学,2019.

[136]王晨晖,魏娜,解建仓,等.基于多目标模糊优选模型的引嘉入汉工程调蓄方案优选[J].水资源与水工程学报,2018,29(01):144-148.

[137]刘斌.水库适应性调度方法研究[D].陕西:西安理工大学,2017.

中图分类号:

 TV1    

开放日期:

 2024-11-08    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式