- 无标题文档
查看论文信息

中文题名:

 20212007018-张俊婷-1,2-位β-咔啉并咪唑衍生物的合成及抗肿瘤活性分析    

姓名:

 张俊婷    

学号:

 20212007018    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0703    

学科名称:

 理学 - 化学    

学生类型:

 硕士    

学位:

 理学硕士    

学位类型:

 学术学位    

学位年度:

 2024    

学校:

 石河子大学    

院系:

 化学化工学院    

专业:

 化学    

研究方向:

 有机化学    

第一导师姓名:

 张洁    

第一导师单位:

 石河子大学    

完成日期:

 2024-05-08    

答辩日期:

 2024-05-08    

外文题名:

 Synthesis and Antitumor Activity Analysis of 1,2-β-Carboline Fused Imidazole Derivatives    

中文关键词:

 &beta ; -咔啉 ; 咪唑并[1 ; 2-a]吡啶 ; 构效关系 ; 抗肿瘤活性&beta ; -咔啉 ; 咪唑并[1 ; 2-a]吡啶 ; 构效关系 ; 抗肿瘤活性     

外文关键词:

 &beta ; -carboline ; imidazo[1 ; 2-a]pyridine ; structure-activity relationship ; anti-tumor activity     

中文摘要:

β-咔啉是一种天然生物碱,存在于动植物和微生物中,表现出广泛的生物学和药理学活性,如抗菌、抗肿瘤、抗病毒、抗疟疾、抗惊厥、抗血栓和中枢神经系统抑制活性等。咪唑并[1,2-a]吡啶化合物是有机化学中的重要中间体,广泛分布于天然产物和有机金属中,具有抗肿瘤、抗寄生虫、抗微生物、抗真菌、抗炎和催眠等生物活性,目前已应用于多种上市药物中。

本文基于药效拼接原理,对β-咔啉骨架进行修饰,在β-咔啉环1,2-位引入稠合咪唑结构,合成一系列新型β-咔啉衍生物,并从中筛选出抗肿瘤活性高的化合物,以期在癌症药物方面有所突破。

第一部分,以L-色氨酸和甲醛为原料,经过Pictet-Spengler反应、氧化、氨基取代和N9-烷基化等多步反应,生成中间体化合物9-取代-1-氨基-β-咔啉,再与不同的溴代酮反应,共合成40个2,11-二取代β-咔啉并咪唑衍生物。

第二部分,以前期合成的重要中间体化合物9-取代-1-氨基-β-咔啉为原料,与不同的醛进行反应,共合成29个3,11-二取代β-咔啉并咪唑衍生物。

以上两部分共合成69个化合物,化合物结构通过1H NMR、13C NMR、HRMS和X单晶衍射进行确证,并采用MTT法,将化合物对肺癌(A549)、胃癌(BGC-823)、小鼠结肠癌(CT-26)、肝癌(Bel-7402)和乳腺癌(MCF-7)五种肿瘤细胞进行了体外抗肿瘤活性测试。结果表明,大部分化合物对肿瘤细胞具有一定的活性,部分化合物对一种或多种肿瘤细胞表现出高于阳性对照顺铂的抑制活性。

初步的构效关系分析表明,第一部分化合物中,在目标化合物骨架的C 2位引入4-氟苯基、4-三氟甲基苯基或4-甲氧基苯基,或在C 11位引入苄基或4-氟苄基,可提高化合物的抗肿瘤活性;C 2位为芳基取代基时,相比于烷基取代基活性有所提高。第二部分化合物中,在化合物骨架的C 3位引入4-氟苯基或4-甲氧基苯基,或在C 11位引入苄基或4-氟苄基,化合物的抗肿瘤活性有所提高;化合物抗肿瘤活性与C 11位取代基的关系:4-氟苄基>苄基>苯丙基>甲基>氢。此外,使用OpenEye软件对合成的化合物进行了分子对接模拟,并用PyMOL和Discovery Studio(DS)软件进行可视化分析。结果显示,目标化合物能够与靶标蛋白形成相对稳定的结合,并与蛋白质产生氢键等多种相互作用。

另外,将两部分目标化合物的活性进行了对比。对比两部分11-位取代基相同,2-、3-位取代基也相同的化合物,发现3-位取代基化合物活性整体高于2-位取代基化合物,其中化合物T9db对五种肿瘤细胞均表现出良好的抑制活性(IC50值均低于10 μM),具有作为抗癌先导药物的潜力,丰富了β-咔啉衍生物数据库。

外文摘要:

β-carboline is a natural alkaloid found in animals, plants, and microorganisms, exhibiting a wide range of biological and pharmacological activities such as antibacterial, anticancer, antiviral, antimalarial, anticonvulsant, anti-thrombotic, and central nervous system inhibitory activities. Imidazo[1,2-a]pyridine compounds serve as an important intermediates in organic chemistry, widely distributed in natural products and organometallics, possessing biological activities including anticancer, antiparasitic, antimicrobial, antifungal, anti-inflammatory, and sedative properties, and are currently utilized in various marketed drugs.

Based on the principle of pharmacophore grafting, this study modifies the β-carboline skeleton by introducing a fused imidazole structure at the 1,2-positions of the β-carboline ring, synthesizing a series of novel β-carboline derivatives. Among them, compounds with high anticancer activity are screened, aiming to make breakthroughs in cancer drug development.

In the first part, starting from L-tryptophan and formaldehyde, a series of reactions including Pictet-Spengler reaction, oxidation, amino substitution, and N9-alkylation were carried out to generate the intermediate compound 9-substituted-1-amino-β-carboline. Subsequently, this intermediate compound was reacted with various bromoketones to synthesize a total of 40 2,11-disubstituted β-carboline fused imidazole derivatives.

In the second part, utilizing the previously synthesized crucial intermediate compound, 9-substituted-1-amino-β-carboline, as a starting material, it undergoes reactions with various aldehydes, leading to the synthesis of 29 3,11-disubstituted β-carboline fused imidazole derivatives.

The two parts combined synthesized a total of 69 compounds. The structures of these compounds were characterized via 1H NMR, 13C NMR, HRMS, and X-ray single crystal diffraction. Furthermore, the anti-tumor activities of these compounds were evaluated in vitro using the MTT assay against five types of tumor cells: lung cancer (A549), gastric cancer (BGC-823), murine colon cancer (CT-26), liver cancer (Bel-7402), and breast cancer (MCF-7). The results indicate that most compounds exhibit certain activities against tumor cells, with some compounds showing inhibitory activity against one or more types of tumor cells surpassing that of the positive control, cisplatin.

Preliminary structure-activity relationship (SAR) analysis indicates that in the compounds synthesized in the first part, introducing 4-fluorophenyl, 4-trifluoromethylphenyl, or 4-methoxyphenyl at the C2 position of the target compound skeleton, or introducing benzyl or 4-fluorobenzyl at the C11 position, can enhance the anti-tumor activity of the compounds. When the C2 position is substituted with an aryl group, the activity is higher compared to alkyl substitution. In the compounds synthesized in the second part, introducing 4-fluorophenyl or 4-methoxyphenyl at the C3 position of the compound skeleton, or introducing benzyl or 4-fluorobenzyl at the C11 position, leads to an increase in the anti-tumor activity of the compounds. The relationship between the anti-tumor activity of the compounds and the substituents at the C11 position is as follows: 4-fluorobenzyl > benzy l> phenethyl > methyl > hydrogen. Additionally, molecular docking simulations of synthesized compounds were performed using OpenEye software, followed by visual analysis with PyMOL and Discovery Studio (DS) software. The results indicate that the target compounds can form relatively stable binding with the target protein, engaging in various interactions such as hydrogen bonding with the protein.

Furthermore, the activities of the target compounds from both parts were compared. By comparing compounds with identical 11-position substituents and identical 2- and 3-position substituents, it was observed that compounds with 3-position substituents exhibited overall higher activity than those with 2-position substituents. Specifically, compound T9db demonstrated potent inhibitory activity against five types of tumor cells (IC50 values all below 10 μM), indicating its potential as a lead anti-cancer agent and enriching the database of β-carboline derivatives.

参考文献:

[1]Ferreira M-J U. Alkaloids in Future Drug Discovery [J]. Molecules, 2022, 27: 1347-1350.

[2]Liu C Y, Yang S S, Wang K L, et al. Alkaloids from Traditional Chinese Medicine against hepatocellular carcinoma [J]. Biomedicine & Pharmacotherapy, 2019, 120: 109543-109547.

[3]Lichman B R. The scaffold-forming steps of plant alkaloid biosynthesis [J]. Natural Product Reports, 2021, 38: 103-129.

[4]Debnath B, Singh W S, Das M, et al. Role of plant alkaloids on human health: A review of biological activities [J]. Materials Today Chemistry, 2018, 9: 56-72.

[5]Liu Y, Cui Y, Lu L Y, et al. Natural indole‐containing alkaloids and their antibacterial activities [J]. Archiv der Pharmazie, 2020, 353: 120-129.

[6]Olofinsan K, Abrahamse H, George B P. Therapeutic Role of Alkaloids and Alkaloid Derivatives in Cancer Management[J]. Molecules, 2023, 28: 5578-5586.

[7]Nair J J, van Staden J. Antiplasmodial Lycorane Alkaloid Principles of the Plant Family Amaryllidaceae[J]. Planta Medica, 2019, 85: 637-647.

[8]Chakraborty M. Anti-asthma Activity of Naturally Occurring Carbazole Alkaloids and Their Derivatives[J]. International Journal For Multidisciplinary Research, 2023, 5: 1702-1710.

[9]Ullah Jan N, Ali A, Ahmad B, et al. Evaluation of antidiabetic potential of steroidal alkaloid of Sarcococca saligna[J]. Biomedicine & Pharmacotherapy, 2018, 100: 461-466.

[10] Aiello A, Fattorusso E, Magno S, et al. Brominaed β-carbolines from the marine hydroid linnaeus[J]. Tetrahedron, 1987, 43: 5929-5932.

[11] Suarez-Jimenez G-M, Burgos-Hernandez A, Ezquerra-Brauer J-M. Bioactive peptides and depsipeptides with anticancer potential: sources from marine animals[J]. Marine Drugs, 2012, 10: 963-986.

[12] Cheng L Y, Wang C G, Liu H Z, et al. A novel polypeptide extracted from Ciona savignyi induces apoptosis through a mitochondrial-mediated pathway in human colorectal carcinoma cells[J]. Clinical Colorectal Cancer, 2012, 11: 207-214.

[13] Cao R H, Peng W L, Wang Z H, et al. beta-Carboline alkaloids: biochemical and pharmacological functions[J]. Current Medicinal Chemistry, 2007, 14: 479-500.

[14] Akabli T, Lamchouri F, Senhaji S, et al. Molecular docking, ADME/Tox prediction, and in vitro study of the cell growth inhibitory activity of five β-carboline alkaloids[J]. Structural Chemistry, 2019, 30: 1495-1504.

[15] Singh D, Devi N, Kumar V, et al. Natural product inspired design and synthesis of β-carboline and γ-lactone based molecular hybrids†[J]. Organic & Biomolecular Chemistry, 2016, 14: 8154-8166.

[16] Ferraz C A A, de Oliveira Júnior R G, Picot L, et al. Pre-clinical investigations of β-carboline alkaloids as antidepressant agents: A systematic review[J]. Fitoterapia, 2019, 137: 196-200.

[17] Aricioglu F, Altunbas H. Harmane Induces Anxiolysis and Antidepressant-Like Effects in Rats[J]. Annals of the New York Academy of Sciences, 2003, 7: 199-212.

[18]Moloudizargari M, Mikaili P, Aghajanshakeri S, et al. Pharmacological and therapeutic effects of Peganum harmala and its main alkaloids[J]. Pharmacognosy Reviews, 2013, 7: 199-212.

[19] Frecska E, Bokor P, Winkelman M. The Therapeutic Potentials of Ayahuasca: Possible Effects against Various Diseases of Civilization[J]. Frontiers in Pharmacology, 2016, 7: 35-51.

[20]Herraiz T. Identification and occurrence of beta-carboline alkaloids in raisins and inhibition of monoamine oxidase (MAO)[J]. Journal of Agricultural and Food Chemistry, 2007, 55: 8534-8540.

[21] Huang H B, Yao Y L, He Z X, et al. Antimalarial β-Carboline and Indolactam Alkaloids from Marinactinospora thermotolerans, a Deep Sea Isolate[J]. Journal of Natural Products, 2011, 74: 2122-2127.

[22] Badre, Boulanger, Abou M, et al. Eudistomin U and isoeudistomin U, new alkaloids from the Caribbean ascidian Lissoclinum fragile[J]. Journal of Natural Products, 1994, 57: 528-533.

[23] Rüben K, Wurzlbauer A, Walte A, et al. Selectivity Profiling and Biological Activity of Novel β-Carbolines as Potent and Selective DYRK1 Kinase Inhibitors[J]. PLOS ONE, 2015, 10: 453-470.

[24] Aarons, D H, Rossi, et al. Cardiovascular actions of three harmala alkaloids: harmine, harmaline, and harmalol[J]. Journal of Pharmaceutical Sciences, 1977, 66: 1244-1248.

[25] Wakabayashi K, Yamamoto T, Tsuji K, et al. [Studies on active principles of tar. VI. Antifungal constituents in fish meal tar (author's transl)][J]. Yakugaku Zasshi, 1978, 98: 898-903.

[26] Pictet A, Spengler T. Über die Bildung von Isochinolin-derivaten durch Einwirkung von Methylal auf Phenyl-äthylamin, Phenyl-alanin und Tyrosin[J]. Berichte der deutschen chemischen Gesellschaft, 1911, 44: 2030-2036.

[27] Tatsui G. Synthesis of carboline derivatives [M]. Yakugaku zasshi journal of the Pharmaceutical Society of Japan, 1928, 22: 453-459.

[28] Kawate T, Yamada H, Soe T, et al. Enantioselective asymmetric Pictet-Spengler reaction catalyzed by diisopinocampheylchloroborane[J]. Tetrahedron: Asymmetry, 1996, 7: 1249-1252.

[29] Zhang Y, Hsung R P, Zhang X, et al. Bronsted acid-catalyzed highly stereoselective arene-ynamide cyclizations. A novel keteniminium Pictet-Spengler cyclization in total syntheses of (+/-)-desbromoarborescidines A and C[J]. Organic Letters, 2005, 7: 1047-1050.

[30] Limbach M, Dalai S, Janssen A, et al. Addition of Indole to Methyl 2-Chloro-2-cyclopropylideneacetate en Route to Spirocyclopropanated Analogues of Demethoxyfumitremorgine C and Tadalafil[J]. European Journal of Organic Chemistry, 2005, 3: 610-617.

[31] Riesco-Domínguez A, van der Zwaluw N, Blanco-Ania D, et al. An Enantio- and Diastereoselective Mannich/Pictet-Spengler Sequence To Form Spiro[piperidine-pyridoindoles] and Application to Library Synthesis[J]. European Journal of Organic Chemistry, 2017, 3: 662-670.

[32] Retini M, Bartoccini F, Zappia G, et al. Novel, Chiral, and Enantiopure C2‐Symmetric Thioureas Promote Asymmetric Protio‐Pictet‐Spengler Reactions by Anion‐Binding Catalysis[J]. European Journal of Organic Chemistry, 2021, 5: 825-829.

[33] Bischler A, Napieralski B. Zur Kenntniss einer neuen Isochinolinsynthese[J]. Berichte der deutschen chemischen Gesellschaft, 1893, 26: 1903-1908.

[34] Singh T P, Singh O M. One pot synthesis of 1-substituted tetrahydro- β -carbolines by Bischler–Napieralski cyclization[J]. Journal of Chemical Sciences, 2016, 128: 565-572.

[35]Pu J Y, Chen B, Wu W H, et al. Design and Synthesis of Fluorescent 1,3-Diaryl-β-carbolines and 1,3-Diaryl-3,4-dihydro-β-carbolines[J]. ACS Omega, 2021, 6: 12238-12249.

[36] Roesch K R, Zhang H, Larock R C. Synthesis of isoquinolines and pyridines by the palladium-catalyzed iminoannulation of internal alkynes[J]. The Journal of Organic Chemistry, 2001, 66: 8042-8051.

[37] Namjoshi O A, Gryboski A, Fonseca G O, et al. Development of a Two-Step Route to 3-PBC and βCCt, Two Agents Active against Alcohol Self-Administration in Rodent and Primate Models[J]. The Journal of Organic Chemistry, 2011, 76: 4721-4727.

[38] Mulcahy S P, Varelas J G. Three-step synthesis of an annulated β-carboline via palladium catalysis[J]. Tetrahedron Letters, 2013, 54: 6599-6601.

[39] Hung T Q, Hieu D T, Van Tinh D, et al. Efficient access to β- and γ-carbolines from a common starting material by sequential site-selective Pd-catalyzed C–C, C–N coupling reactions[J]. Tetrahedron, 2019, 75: 569-577.

[40]Suzuki H, Tsukakoshi Y, Tachikawa T, et al. A new synthesis of 4-oxygenated β-carboline derivatives by Fischer indolization[J]. Tetrahedron Letters, 2005, 46: 3831-3834.

[41] Nissen F, Richard V, Alayrac C, et al. Synthesis of beta- and gamma-carbolines via ruthenium and rhodium catalysed [2+2+2] cycloadditions of yne-ynamides with methylcyanoformate[J]. Chemical Communications, 2011, 47: 6656-6658.

[42] Tron G, La Spisa F, Meneghetti F, et al. Synthesis of Heteroarylogous 1H-Indole-3-carboxamidines via a Three-Component Interrupted Ugi Reaction[J]. Synthesis, 2014, 47: 489-496.

[43] Dhiman S, Mishra U K, Ramasastry S S V. One‐Pot Trimetallic Relay Catalysis: A Unified Approach for the Synthesis of β‐Carbolines and Other [c]‐Fused Pyridines[J]. Angewandte Chemie International Edition, 2016, 55: 7737-7741.

[44] Nagaraju V, Purnachander D, Goutham K, et al. Synthesis of Tetracyclic Tetrahydro‐β‐carbolines by Acid‐Promoted One‐Pot Sequential Formation of C−C and C−N Bonds[J]. Asian Journal of Organic Chemistry, 2016, 5: 1378-1387.

[45] Zhou B, Zhang Y Q, Liu X, et al. Gold-catalyzed intermolecular reaction of ynamides with 3-indolyl azides via an unexpected 1,2-alkyl migration[J]. Science Bulletin, 2017, 62: 1201-1206.

[46] Cao R H, Chen H, Peng W, et al. Design, synthesis and in vitro and in vivo antitumor activities of novel beta-carboline derivatives[J]. European Journal of Medicinal Chemistry, 2005, 40: 991-1001.

[47] Inman W D, Bray W M, Gassner N C, et al. A beta-carboline alkaloid from the Papua New Guinea marine sponge hyrtios reticulatus[J]. Journal of Natural Products, 2010, 73: 255-257.

[48] Chen Z Y, Cao R H, Yu L, et al. Synthesis, cytotoxic activities and DNA binding properties of β-carboline derivatives[J]. European Journal of Medicinal Chemistry, 2010, 45: 4740-4745.

[49] Li S K, Yang B, Zhang Q L, et al. Synthesis and Bioactivity of β-Carboline Derivatives[J]. Natural Product Communications, 2010, 5: 1591-1596.

[50] Barbosa V A, Baréa P, Mazia R S, et al. Synthesis and evaluation of novel hybrids β-carboline-4-thiazolidinones as potential antitumor and antiviral agents[J]. European Journal of Medicinal Chemistry, 2016, 124: 1093-1104.

[51]Samundeeswari S, Chougala B, Holiyachi M, et al. Design and synthesis of novel phenyl -1, 4-beta-carboline-hybrid molecules as potential anticancer agents[J]. European Journal of Medicinal Chemistry, 2017, 128: 123-139.

[52] Xu T T, Shi L Q, Zhang Y N, et al. Synthesis and biological evaluation of marine alkaloid-oriented β-carboline analogues[J]. European Journal of Medicinal Chemistry, 2019, 168: 293-300.

[53] Masashi T, Kenjiro I, Naoko K, et al. Chiral resolution of (±)-keramaphidin B and isolation of manzamine L, a new β-carboline alkaloid from a sponge Amphimedon sp[J]. Tetrahedron, 1996, 52: 2319-2324.

[54] Schupp P, Poehner T, Edrada R, et al. Eudistomins W and X, two new beta-carbolines from the micronesian tunicate Eudistoma sp[J]. Journal of Natural Products, 2003, 66: 272-275.

[55] Hou Z, Zhu L F, Yu X C, et al. Design, Synthesis, and Structure–Activity Relationship of New 2-Aryl-3,4-dihydro-β-carbolin-2-ium Salts as Antifungal Agents[J]. Journal of Agricultural and Food Chemistry, 2016, 64: 2847-2854.

[56] Liu P, Li H X, Luan R L, et al. Identification of β-carboline and canthinone alkaloids as anti-inflammatory agents but with different inhibitory profile on the expression of iNOS and COX-2 in lipopolysaccharide-activated RAW 264.7 macrophages[J]. Journal of Natural Medicines, 2018, 73: 124-130.

[57] Bar F M A, Sameti M, Foudah A I, et al. In vitro and in silico inhibition of COX-2 and 5-LOX by beta-carboline alkaloids from the seeds of Peganum harmala L[J]. South African Journal of Botany, 2022, 147: 926-936.

[58] Dai P Y, Chen S M, Wang M Q, et al. β-Carboline alkaloids from Picrasma quassioides and their 3D-QSAR study on anti-inflammation in LPS-induced RAW 264.7 cells[J]. Fitoterapia, 2023, 166: 437-445.

[59] Ancolio C, Azas N, Mahiou V, et al. Antimalarial activity of extracts and alkaloids isolated from six plants used in traditional medicine in Mali and Sao Tome[J]. Phytotherapy Research, 2002, 16: 646-649.

[60] Miller J F, Turner E M, Sherrill R G, et al. Substituted tetrahydro-β-carbolines as potential agents for the treatment of human papillomavirus infection[J]. Bioorganic & Medicinal Chemistry Letters, 2009, 20: 256-259.

[61] Ryoo S-R, Jeong H K, Radnaabazar C, et al. DYRK1A-mediated hyperphosphorylation of Tau. A functional link between Down syndrome and Alzheimer disease[J]. Journal of Biological Chemistry, 2007, 282: 34850-34857.

[62] Frost D, Meechoovet B, Wang T, et al. β-carboline compounds, including harmine, inhibit DYRK1A and tau phosphorylation at multiple Alzheimer's disease-related sites[J]. PLOS ONE, 2011, 6: 19264-19272.

[63] Alomar M L, Rasse-Suriani F A O, Ganuza A, et al. In vitro evaluation of β-carboline alkaloids as potential anti-Toxoplasma agents[J]. BMC Research Notes, 2013, 6: 193-198.

[64] Dakic V, Maciel R d M, Drummond H, et al. Harmine stimulates proliferation of human neural progenitors[J]. PeerJ, 2016, 4: 2727-2739.

[65] Jin L, Di X, Li L, et al. New β-carboline derivatives as potential α-glucosidase inhibitor: Synthesis and biological activity evaluation[J]. Journal of Molecular Structure, 2023, 1283: 135279-135290.

[66] Mizushige K, Ueda T, Yukiiri K, et al. Olprinone: a phosphodiesterase III inhibitor with positive inotropic and vasodilator effects[J]. Cardiovascular Drug Reviews, 2002, 20: 163-174.

[67] Katritzky A R, Xu Y J, Tu H. Regiospecific synthesis of 3-substituted imidazo[1,2-a]pyridines, imidazo[1,2-a]pyrimidines, and imidazo[1,2-c]pyrimidine[J]. The Journal of Organic Chemistry, 2003, 68: 4935-4937.

[68] Maruyama Y, Anami K, Terasawa M, et al. Anti-inflammatory activity of an imidazopyridine derivative (miroprofen)[J]. Arzneimittel-Forschung, 1981, 31: 1111-1118.

[69] Hsu N, Jha S K, Coleman T, et al. Paradoxical effects of the hypnotic Zolpidem in the neonatal ferret[J]. Behavioural Brain Research, 2009, 201: 233-236.

[70] Langer S Z, Arbilla S, Benavides J, et al. Zolpidem and alpidem: two imidazopyridines with selectivity for omega 1- and omega 3-receptor subtypes[J]. Advances in biochemical psychopharmacology, 1990, 46: 61-72.

[71] Zivkovic B, Morel E, Joly D, et al. Pharmacological and Behavioral Profile of Alpidem as an Anxiolytic[J]. Pharmacopsychiatry, 1990, 23: 108-113.

[72] Tanaka M, Mori H, Kawabata K, et al. Minodronic acid ameliorates vertebral bone strength by increasing bone mineral density in 9-month treatment of ovariectomized cynomolgus monkeys[J]. Bone, 2016, 88: 157-164.

[73] Jenkinson S, Thomson M, McCoy D, et al. Blockade of X4-tropic HIV-1 cellular entry by GSK812397, a potent noncompetitive CXCR4 receptor antagonist[J]. Antimicrobial Agents and Chemotherapy, 2009, 54: 817-824.

[74] Li Q, Zhou M X, Han L, et al. Synthesis and biological evaluation of imidazo [1, 2-a] pyridine derivatives as novel DPP-4 inhibitors[J]. Chemical Biology & Drug Design, 2015, 86: 849–856.

[75] Yadav J S, Subba Reddy B V, Gopal Rao Y, et al. Cu(OTf)2-catalyzed synthesis of imidazo[1,2-a]pyridines from α-diazoketones and 2-aminopyridines[J]. Tetrahedron Letters, 2007, 48: 7717-7720.

[76] Yan R L, Yan H, Ma C, et al. Cu(I)-Catalyzed Synthesis of Imidazo[1,2-a]pyridines from Aminopyridines and Nitroolefins Using Air as the Oxidant[J]. The Journal of Organic Chemistry, 2012, 77: 2024-2028.

[77] Cao H, Liu X H, Zhao L M, et al. One-Pot Regiospecific Synthesis of Imidazo[1,2-a]pyridines: A Novel, Metal-Free, Three-Component Reaction for the Formation of C–N, C–O, and C–S Bonds[J]. Organic Letters, 2013, 16: 146-149.

[78] Choi J, Lim J, Irudayanathan F M, et al. Copper‐Catalyzed Double Decarboxylative Coupling Reactions of Alkynyl Carboxylic Acid and Glyoxylic Acid: Synthesis of Propargyl Amines and Imidazopyridines[J]. Asian Journal of Organic Chemistry, 2016, 5: 770-777.

[79] Rao R N, Mm B, Maiti B, et al. Efficient Access to Imidazo[1,2-a]pyridines/pyrazines/pyrimidines via Catalyst-Free Annulation Reaction under Microwave Irradiation in Green Solvent[J]. ACS Applied Energy Materials, 2018, 20: 164-171.

[80] Chen W, Li Z. One-Pot Synthesis of 3-Methyl-2-arylimidazo[1,2-a]pyridines Using Calcium Carbide as an Alkyne Source[J]. The Journal of Organic Chemistry, 2021, 87: 76-84.

[81]Anghinoni J M, Ferreira S S, Piquini P C, et al. Visible Light and Triselenium Dicyanide (TSD): New Horizons in the Synthesis of Organic Selenocyanates[J]. Chemistry - A European Journal, 2023, 29: 1934-1944.

[82] Wang H G, Wang Y, Peng C L, et al. A Direct Intramolecular C−H Amination Reaction Cocatalyzed by Copper(II) and Iron(III) as Part of an Efficient Route for the Synthesis of Pyrido[1,2-a]benzimidazoles from N-Aryl-2-aminopyridines[J]. Journal of the American Chemical Society, 2010, 132: 13217-13219.

[83]Yu J P, Jin Y H, Zhang H, et al. Copper‐Catalyzed Aerobic Oxidative C?H Functionalization of Substituted Pyridines: Synthesis of Imidazopyridine Derivatives[J]. Chemistry - A European Journal, 2013, 19: 16804-16808.

[84] Huang H W, Ji X C, Tang X D, et al. Conversion of Pyridine to Imidazo[1,2-a]pyridines by Copper-Catalyzed Aerobic Dehydrogenative Cyclization with Oxime Esters[J]. Organic Letters, 2013, 15: 6254-6257.

[85] Kumar G S, Ragini S P, Kumar A S, et al. A copper-catalyzed multi-component reaction accessing fused imidazo-heterocycles via C–H functionalization†[J]. RSC Advances, 2015, 5: 51576-51580.

[86] Dahan-Farkas N, Langley C, Rousseau A L, et al. 6-Substituted imidazo[1,2-a]pyridines: Synthesis and biological activity against colon cancer cell lines HT-29 and Caco-2[J]. European Journal of Medicinal Chemistry, 2011, 46: 4573-4583.

[87] An W T, Wang W, Yu T, et al. Discovery of novel 2-phenyl-imidazo[1,2-a]pyridine analogues targeting tubulin polymerization as antiproliferative agents[J]. European Journal of Medicinal Chemistry, 2016, 112: 367-372.

[88] Sri Ramya P V, Angapelly S, Rani R S, et al. Hypervalent iodine(III) catalyzed rapid and efficient access to benzimidazoles, benzothiazoles and quinoxalines: Biological evaluation of some new benzimidazole-imidazo[1,2- a]pyridine conjugates[J]. Arabian Journal of Chemistry, 2020, 13: 120-133.

[89] Almeida G M, Rafique J, Saba S, et al. Novel selenylated imidazo[1,2-a]pyridines for breast cancer chemotherapy: Inhibition of cell proliferation by Akt-mediated regulation, DNA cleavage and apoptosis[J]. Biochemical and Biophysical Research Communications, 2018, 503: 1291-1297.

[90] Chitti S, Singireddi S, Santosh Kumar Reddy P, et al. Design, synthesis and biological evaluation of 2-(3,4-dimethoxyphenyl)-6 (1,2,3,6-tetrahydropyridin-4-yl)imidazo[1,2-a]pyridine analogues as antiproliferative agents[J]. Bioorganic & Medicinal Chemistry Letters, 2019, 29: 2551-2558.

[91] Elhakmaoui A, Gueiffier A, Milhavet J-C, et al. Synthesis and antiviral activity of 3-substituted imidazo[1,2-a]pyridines[J]. Bioorganic & Medicinal Chemistry Letters, 1994, 4: 1937-1940.

[92] Ismail M A, Arafa R K, Wenzler T, et al. Synthesis and antiprotozoal activity of novel bis-benzamidino imidazo[1,2-a]pyridines and 5,6,7,8-tetrahydro-imidazo[1,2-a]pyridines[J]. Bioorganic & Medicinal Chemistry, 2008, 16: 683-691.

[93] Lacerda R B, de Lima C K F, da Silva L L, et al. Discovery of novel analgesic and anti-inflammatory 3-arylamine-imidazo[1,2-a]pyridine symbiotic prototypes[J]. Bioorganic & Medicinal Chemistry, 2008, 17: 74-84.

[94]Bode M L, Gravestock D, Moleele S S, et al. Imidazo[1,2-a]pyridin-3-amines as potential HIV-1 non-nucleoside reverse transcriptase inhibitors[J]. Bioorganic & Medicinal Chemistry, 2011, 19: 4227-4237.

[95] El Kazzouli S, Griffon du Bellay A, Berteina-Raboin S, et al. Design and synthesis of 2-phenylimidazo[1,2-a]pyridines as a novel class of melatonin receptor ligands[J]. European Journal of Medicinal Chemistry, 2011, 46: 4252-4257.

[96] Althagafi I, Abdel-Latif E. Synthesis and Antibacterial Activity of New Imidazo[1,2-a]pyridines Festooned with Pyridine, Thiazole or Pyrazole Moiety[J]. Polycyclic Aromatic Compounds, 2021, 2: 4487-4500.

[97] Reixach N, Crooks E, Ostresh J M, et al. Inhibition of beta-amyloid-induced neurotoxicity by imidazopyridoindoles derived from a synthetic combinatorial library[J]. Journal of Structural Biology, 2000, 130: 247-258.

[98] Wang K B, Di Y T, Bao Y, et al. Peganumine A, a β-Carboline Dimer with a New Octacyclic Scaffold from Peganum harmala[J]. Organic Letters, 2014, 16: 4028-4031.

[99] Silvani A, Lesma G, Crippa S, et al. Multicomponent access to novel dihydroimidazo[1′,5′:1,2]pyrido[3,4-b]indol-2-ium salts and indoles by means of Ugi/Bischler–Napieralski/heterocyclization two step strategy[J]. Tetrahedron, 2014, 70: 3994-4001.

[100]Dighe S U, Khan S, Soni I, et al. Synthesis of β-Carboline-Based N-Heterocyclic Carbenes and Their Antiproliferative and Antimetastatic Activities against Human Breast Cancer Cells[J]. Journal of Medicinal Chemistry, 2015, 58: 3485-3499.

[101]Singh D, Kumar V, Devi N, et al. Metal–free Decarboxylative Amination: An Alternative Approach Towards Regioselective Synthesis of β‐Carboline N‐fused Imidazoles[J]. Advanced Synthesis & Catalysis, 2017, 359: 1213-1226.

[102]Xiang J C, Wang Z X, Cheng Y, et al. A C–H Oxidation/Two-Fold Cyclization Approach to Imidazopyridoindole Scaffold under Mild Oxidizing Conditions[J]. The Journal of Organic Chemistry, 2017, 82: 13671-13677.

[103]Satyam K, Murugesh V, Suresh S. The base-free van Leusen reaction of cyclic imines on water: synthesis of N-fused imidazo 6, 11-dihydro β-carboline derivatives[J]. Organic & Biomolecular Chemistry, 2019, 17: 5234-5238.

[104]Manpreet S, Vaishali V, Deepika D, et al. Transition-Metal-Free Cascade C–N Bond Formation: An Effective Strategy for the Synthesis of β-Carboline N-Fused Imidazolium Acetates and Estimation of their Light-Emitting Properties[J]. Synthesis, 2023, 55: 3329-3341.

[105]Zhu S Y, Chen X F, Chen W, et al. Multicomponent synthesis of novel β-carboline-fused imidazolium derivatives via the Mannich reaction: cytotoxicity, molecular docking, and mechanistic studies as angiogenesis inhibitors[J]. New Journal of Chemistry, 2022, 46: 4427-4435.

[106]Ma L, Chen X F, Zhu S Y, et al. New β-carboline derivatives containing imidazolium as potential VEGFR2 inhibitors: synthesis, X-ray structure, antiproliferative evaluations, and molecular modeling[J]. RSC Medicinal Chemistry, 2022, 13: 1064-1076.

[107]Chen X F, Guo L, Ma Q, et al. Design, Synthesis, and Biological Evaluation of Novel N-Acylhydrazone Bond Linked Heterobivalent β-Carbolines as Potential Anticancer Agents[J]. Molecules, 2019, 24, 2950-2968.

[108]Guo L, Chen X F, Chen W, et al. Molecular hybrid design, synthesis, in vitro and in vivo anticancer evaluation, and mechanism of action of N-acylhydrazone linked, heterobivalent β-carbolines[J]. Bioorganic Chemistry, 2020, 96: 103612-103623.

[109]Guo L, Chen W, Cao R H, et al. Synthesis and structure-activity relationships of asymmetric dimeric β-carboline derivatives as potential antitumor agents[J]. European Journal of Medicinal Chemistry, 2018, 147: 253-265.

[110]Fuse S, Ohuchi T, Asawa Y, et al. Development of 1-aryl-3-furanyl/thienyl-imidazopyridine templates for inhibitors against hypoxia inducible factor (HIF)-1 transcriptional activity[J]. Bioorganic & Medicinal Chemistry Letters, 2016, 26: 5887-5890.

[111]Xinjiang Huashidan Pharmaceutical Rsearch Co. , Ltd. EP 1634881 A1, 2006.

[112]Ikeda R, Kurosawa M, Okabayashi T, et al. 3-(3-Phenoxybenzyl)amino-β-carboline: A novel antitumor drug targeting α-tubulin [J]. Bioorganic & Medicinal Chemistry Letters, 2011, 21: 4784-4787.

[113]郭亮, 谢建伟, 范文玺, 等. 双-(1-杂环-β-咔啉)-3-烷氨基衍生物的合成与抗肿瘤活性(英文) [J]. 有机化学, 2017, 37: 1741-1747.

[114]Alasvand M, Assadollahi V, Ambra R, et al. Antiangiogenic Effect of Alkaloids [J]. Oxidative Medicine and Cellular Longevity, 2019, 94: 5908-5923.

中图分类号:

 O6    

开放日期:

 2024-05-20    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式