- 无标题文档
查看论文信息

中文题名:

 可控性的利用α,β-不饱和环氧化合物合成二氢呋喃醇类化合物的研究    

姓名:

 余成玉    

学号:

 20202007014    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 070303    

学科名称:

 理学 - 化学 - 有机化学    

学生类型:

 硕士    

学位:

 理学硕士    

学位类型:

 学术学位    

学位年度:

 2023    

学校:

 石河子大学    

院系:

 化学化工学院    

专业:

 化学    

研究方向:

 有机化学    

第一导师姓名:

 岳国仁    

第一导师单位:

 石河子大学    

完成日期:

 2023-07-10    

答辩日期:

 2023-07-10    

外文题名:

 Controllable synthesis of dihydrofuranyl alcohols by Michael addition cyclization of α,β-unsaturated epoxides    

中文关键词:

 迈克尔加成 ; 多米诺反应 ; 串联环化 ; &beta ; -二羰基 ; 2 ; 3-二氢呋喃     

外文关键词:

 Michael addition ; domino reaction ; Series cyclization ; &beta ; -Dicarbonyl ; 2 ; 3-dihydrofuran     

中文摘要:

2,3-二氢呋喃及其衍生物是一类重要的有机化合物,其相关结构广泛分布于天然产物中,是有机合成中的重要中间体和许多药物的重要成分。以2,3-二氢呋喃结构进行改造的药物具有较高的生物活性,因此在医学和生物学等领域中起到至关重要的作用。迈克尔加成反应作为经典人名反应之一,常被用于药物合成以及科研领域中。本文通过对原料结构的设计,开发出由亲核试剂与原料的迈克尔加成反应引发的多米诺串联重排反应,并利用此反应成功合成93个2,3-二氢呋喃醇类化合物。

1. Michael加成诱导的串联合成二氢呋喃醇研究。利用反式的α,β-不饱和醛环氧化反应制备环氧乙烷醛,使用不同的磷叶立德试剂与环氧乙烷醛发生wittig反应得到原料α,β-不饱和环氧化合物。实验首先针对条件进行了优化,随后进行反应的普适性实验,并针对这类反应提出了可能的机理。结果表明,当DMF作为溶剂,碳酸钾作为碱,在55℃下反应3小时产率可达99.8%。原料对芳香烃与脂肪烃型底物、碳环与杂环底物、供电子与吸电子取代基、大位阻与小位阻取代基均有良好的适用性。β-酮酯类化合物在碳酸盐的作用下形成亲核阴离子,然后与原料发生加成反应,接着在水和碳酸氢根离子作用下发生质子转移,再经烯醇化转变形成的氧负离子与环氧基团反应,最终关环形成二氢呋喃的骨架结构。

2. α, β-不饱和环氧化合物合成二氢呋喃基乙酸酯研究。采用β-二酮类化合物作为试剂,与α,β-不饱和环氧化合物发生Michael加成反应,从而得到一个新的合成二氢呋喃结构的方法。实验对溶剂、温度、碱、催化剂进行筛选。研究发现,原料和试剂在DMSO、碳酸钾以及TBHAS催化下,于70℃反应2小时产率可达80%。随后进行了底物的拓展。大位阻与小位阻、对称与不对称型试剂均有良好的适用性。最后针对这类反应提出了可能的机理。β-二酮类化合物在碳酸盐的作用下形成亲核阴离子,在与原料发生迈克尔加成后,先经过羟醛缩合反应形成四元环中间体,接着通过逆羟醛缩合反应裂解β-二酮,然后质子转移,最后烯醇化转变形成的氧负离子与环氧基团反应,得到另一种二氢呋喃骨架结构的化合物。

3. α,β-不饱和环氧化合物四元环反应机理研究。对β-二酮与α,β-不饱和环氧化合物反应进行了更深层次的研究。试剂与原料发生迈克尔加成后得到的中间体会有两种反应途径:一种发生分子内Aldol反应形成四元环中间体,通过分子内逆Aldol反应实现C-C键断裂,碳酸钾与水协助质子交换,在经烯醇化转变,关环并发生酯交换得到二氢呋喃骨架结构的化合物;另一种在碳酸钾与水协助质子交换,烯醇化并关环反应得到二氢呋喃衍生物,二氢呋喃衍生物发生分子内酯交换反应生成二氢呋喃骨架结构的化合物。

外文摘要:

2, 3-dihydrofuran and its derivatives are a class of important organic compounds, and their related structures are widely distributed in natural products, and are important intermediates in organic synthesis and important components of many drugs. Drugs modified with 2, 3-dihydrofuran structure have high biological activity, so they play a crucial role in medicine and biology. Michael addition reaction, as one of the classical personal reactions, is often used in drug synthesis and scientific research. In this thesis, through the design of the structure of the raw material, we developed a domino tandem rearrangement reaction triggered by the Michael addition reaction of the nucleophile and the raw material, and successfully synthesized 93 2, 3-dihydrofuran alcohols by this reaction.

1. Michael addition induced tandem synthesis of dihydrofuranol. Utilizing trans α,β- Preparation of epoxy acetaldehyde by epoxidation of unsaturated aldehydes, using different phosphorus ylid reagents to undergo Wittig reaction with epoxy acetaldehyde to obtain raw materials α,β- Unsaturated Epoxide. The experiment first optimized the conditions, followed by a universal experiment on the reaction, and proposed possible mechanisms for such reactions. The results showed that the optimal yield was achieved when DMF was used as the solvent and potassium carbonate was used as the base, and the reaction was carried out at 55 ℃ for 3 hours. The raw materials have good applicability to Aromatic hydrocarbon and aliphatic hydrocarbon type substrates, carbon ring and heterocyclic substrates, electron donor and electron acceptor substituents, large and small steric hindrance substituents. β- Ketone ester compounds form nucleophilic anions under the action of carbonates, and then undergo Addition reaction with raw materials, followed by proton transfer under the action of water and bicarbonate ions, and then the oxygen anion formed by alkenation transformation reacts with epoxy groups, finally forming the framework structure of dihydrofuran through ring closing.

2. Synthesis of dihydrofuranyl acetate from α, β-unsaturated epoxides. A new method to synthesize the structure of dihydrofuran was obtained by using β-diketones as reagents and α, β-unsaturated epoxides in Michael addition reaction. The solvent, temperature, alkali and catalyst were screened in the experiment. It was found that the yield of raw materials and reagents under the catalysis of DMSO, potassium carbonate and TBHAS at 70℃ for 2 hours could reach 80%. Then the expansion of the substrate was carried out. Large and small hindrance, symmetric and asymmetric reagents have good applicability. Finally, the possible mechanism of this kind of reaction is proposed. β-diketone compounds form nucleophilic anion under the action of carbonate, and after Michael addition with raw materials, they first undergo aldol condensation reaction to form a quaternary ring intermediate, and then split β-diketone through reverse aldol condensation reaction, and then proton transfer, and finally enolize the oxygen anion to react with epoxy groups to obtain another compound with a dihydrofuran framework structure.

3.Mechanism of α-β-unsaturated epoxides quaternary ring reaction. The reaction of β-dione with α, β-unsaturated epoxides has been further studied. There are two reaction pathways in the intermediates obtained by Michael addition of reagents and raw materials: one is formed by intramolecular Aldol reaction to form quaternary ring intermediates, C-C bond is broken by intramolecular reverse Aldol reaction, and potassium carbonate and water assist in proton exchange, which is transformed by enolation, cyclization and transesternization to obtain dihydrofuran skeleton structure compounds; In the other, potassium carbonate and water assist proton exchange, enolization and cyclization reaction to obtain dihydrofuran derivatives, dihydrofuran derivatives undergo olactone exchange reaction to produce dihydrofuran skeleton structure compounds.

参考文献:

1.T. G. Kilroy, T. P. O'Sullivan and P. J. Guiry, European Journal of Organic Chemis-try, 2005,4929-4949.

2.吴国湘, 莫启武, 杨承鸿, 精细与专用化学品, 2001, 9, 2.

3.Robert, B., Von, Dreele, George, R., Pettit, Richard, H. and Ode, Journal of the American Chemical Society, 1975, 97, 6236–6240.

4.R. Khan, F. M. Ghazali, N. A. Mahyudin and N. I. P. Samsudin, Agriculture, 2021, 11, 198.

5.V. Sobolev, R. Arias, K. Goodman, T. Walk, V. Orner, P. Faustinelli and A. Massa, Journal of Agricultural and Food Chemistry, 2018, 66, 118-126.

6.F. Wu, Y. Chen, B. Cheng, Y. Li and H. Zhai, Asian Journal of Organic Chemistry, 2013, 2, 561-564.

7.Xiao-Rui, Liang, Feng-Ping, Miao, Yin-Ping, Song, Zhan-Yong, Guo, Nai-Yun and Ji, Natural Product Research, 2016 ,30, 1605-1610.

8.J. J. Dong, J. Bao, X. Y. Zhang, X. Y. Xu, X. H. Nong and S. H. Qi, Tetrahedron Let-ters, 2014, 55, 2749-2753.

9.M. Gregson, W. D. Ollis, B. T. Redman, I. O. Sutherland and H. H. Dietrichs, Chem-ical Communications (London), 1968, DOI: 10.1039/C19680001394, 1394-1395.

10.F. Bertolini and M. Pineschi, Organic Preparations and Procedures International, 2009, 41, 385-418.

11.M. Bae, A. Lewis, S. Liu, Y. Arcot, Y.-T. Lin, J. S. Bernal, L. Cisneros-Zevallos and M. Akbulut, Journal of Agricultural and Food Chemistry, 2022, 70, 7900-7910.

12.J. Kumar and B. S. Parmar, Journal of Agricultural and Food Chemistry, 1999, 47, 1735-1739.

13.S. Kanokmedhakul, K. Kanokmedhakul, T. Prajuabsuk, S. Panichajakul, P. Panyamee, S. Prabpai and P. Kongsaeree, Journal of Natural Products, 2005, 68, 1047-1050.

14.N. Harada and H. Uda, Journal of the American Chemical Society, 1978, 100, 8022-8024.

15.G. N. Krishna Kumari, J. Balachandran, S. Aravind and M. R. Ganesh, Journal of Ag-ricultural and Food Chemistry, 2003, 51, 1555-1559.

16.J. D. Pettigrew and P. D. Wilson, Organic Letters, 2006, 2006, 0865-0865.

17.F. Garzino, A. Méou and P. Brun, European Journal of Organic Chemistry, 2003, 2003, 1410–1414.

18.B. M. Fraga, Natural Product Reports 1992, 9, 557-580..

19.Merritt, A., T., Ley, S. and V., Natural Product Reports, 1992, 9, 243-287.

20.R. Morphy and Z. Rankovic, Journal of Medicinal Chemistry, 2005, 48, 6523-6543.

21.M. M. Faul and B. E. Huff, Chemical Reviews, 2000, 100, 2407-2474.

22.E. Authority, M. Arena, D. Auteri, S. Barmaz, G. Bellisai, A. Brancato, D. Brocca, L. Bura, H. Byers and A. Chiusolo, EFSA Journal, 2017.

23.A. G. Habeeb, P. P. Rao and E. E. Knaus, Journal of Medicinal Chemistry, 2001, 44, 3039-3042.

24.D. M. Hodgson and S. Man, Chemistry – A European Journal, 2011, 17, 9731-9737.

25.N. Panda and D. K. Nayak, Monatshefte fuer Chemie/Chemical Monthly, 2018, 149, 1-8.

26.R. S. Perali and S. Kalapati, Tetrahedron, 2012, 68, 3725-3728.

27.Y.-C. Zhang, B.-W. Zhang, R.-L. Geng and J. Song, Organic Letters, 2018, 20, 7907-7911.

28.B. S. Gore, C.-Y. Kuo, A. M. Garkhedkar, Y.-L. Chang and J.-J. Wang, Organic Let-ters, 2020, 22, 6160-6165.

29.N.-C. Hsueh, Y.-T. Hsiao and M.-Y. Chang, Tetrahedron, 2017, 73, 4398-4406.

30.M. Balha, B. Mondal and S. C. Pan, Organic & Biomolecular Chemistry, 2019, 17, 6557-6561.

31.P. Zhang, X. Guo, C. Liu, W. Li and P. Li, Organic Letters, 2019, 21, 152-155.

32.I. Geibel, M. Schmidtmann and J. Christoffers, Organic & Biomolecular Chemistry, 2017, 15, 7824-7829.

33.R. Chen, X. Fan, Z. Xu and Z. He, Tetrahedron Letters, 2017, 58, 3722-3726.

34.F. Feist, Berichte der deutschen chemischen Gesellschaft, 1902, 35, 1537-1544.

35.T. Chen, F. Gong, S. Nagaraju, J. Liu, S. Yang, X. Chen and X. Fang, Organic Letters, 2022, 24, 8837-8842.

36.Q. Yang, Y. Zhu and G. Deng, Tetrahedron, 2020, 76, 131519.

37.J. Liu, Q.-Y. Liu, X.-X. Fang, G.-Q. Liu and Y. Ling, Organic & Biomolecular Chemistry, 2018, 16, 7454-7460.

38.S. Behera, N. Bera and D. Sarkar, Tetrahedron, 2021, 95, 132367.

39.P. Li, Z. Chai, G. Zhao and S.-Z. Zhu, Synlett, 2008, 2008, 2547-2551.

40.S. Arimitsu and G. B. Hammond, The Journal of Organic Chemistry, 2007, 72, 8559-8561.

41.J.-D. Hamel and J.-F. Paquin, Journal of Fluorine Chemistry, 2018, 216, 11-23.

42.A. Guđmundsson, K. P. J. Gustafson, B. K. Mai, B. Yang, F. Himo and J.-E. Bäckvall, ACS Catalysis, 2018, 8, 12-16.

43.B. Yu, A. Perfetto, L. Allievi, S. Dhambri, M.-N. Rager, M. Selkti, I. Ciofini, M.-I. Lannou and G. Sorin, Chemistry – A European Journal, 2020, 26, 17455-17461.

44.G. F. Meijs and A. L. Beckwith, Journal of the American Chemical Society, 1986, 108, 5890-5893.

45.C. Zhong, T. Liao, O. Tuguldur and X. Shi, Organic Letters, 2010, 12, 2064-2067.

46.V. S. Tangeti, R. Varma K, G. V. Siva Prasad and K. V. V. V. Satyanarayana, Syn-thetic Communications, 2016, 46, 613-619.

47.J. Mattay, J. Runaink, R. Heckendorn and T. Winkler, Tetrahedron, 1987, 43, 5781-5789.

48.A. Gilbert, P. Heath, A. Kashoulis-Koupparis, G. C. Ellis-Davies and S. M. Firth, Journal of the Chemical Society, Perkin Transactions 1, 1988, 31-36.

49.V. Bizet, G. M. Borrajo-Calleja, C. Besnard and C. Mazet, ACS Catalysis, 2016, 6, 7183-7187.

50.H. Steinhagen and E. Corey, Angewandte chemie international edition, 1999, 38, 1928-1931.

51.L. Lei, Y.-Y. Yao, L.-J. Jiang, X. Lu, C. Liang and D.-L. Mo, The Journal of Organic Chemistry, 2020, 85, 3059-3070.

52.C. Huo, F. Chen, Z. Quan, J. Dong and Y. Wang, Tetrahedron Letters, 2016, 57, 5127-5131.

53.M. Lau and P. Langer, Tetrahedron Letters, 2008, 49, 5618-5619.

54.L. Li, Y. Gao, L. Wang, M. Sun, J. Liu and P. Li, European Journal of Organic Chemistry, 2022, 2022, e202200373.

55.M. Wang, C. Liu and Y. Gu, Tetrahedron, 2016, 72, 6854-6865.

56.J. D. Pettigrew and P. D. Wilson, Organic Letters, 2006, 8, 1427-1429.

57.H.-J. Jiang, K. Liu, J. Wang, N. Li and J. Yu, Organic & Biomolecular Chemistry, 2017, 15, 9077-9080.

58.X. Zhu, M.-Y. Han, P. Li and L. Wang, Organic Chemistry Frontiers, 2017, 4, 1640-1646.

59.Z. Wang, G. Yue, X. Ji, H. Song, P. Yan, J. Zhao and X. Jia, The Journal of Organic Chemistry, 2021, 86, 14131-14143.

60.V. Cadierno, J. Gimeno and N. Nebra, Advanced Synthesis & Catalysis, 2007, 349, 382-394.

61.R. Sanz, D. Miguel, A. Martinez, J. M. Álvarez-Gutiérrez and F. Rodríguez, Organic Letters, 2007, 9, 727-730.

62.W.-h. Ji, Y.-m. Pan, S.-y. Zhao and Z.-p. Zhan, Synlett, 2008, 2008, 3046-3052.

63.G. Aridoss and K. K. Laali, Tetrahedron letters, 2011, 52, 6859-6864.

64.F. L. Zhu, Y. H. Wang, D. Y. Zhang, J. Xu and X. P. Hu, Angewandte Chemie Inter-national Edition, 2014, 53, 10223-10227.

65.L. Tang, Z. Yang, J. Jiao, Y. Cui, G. Zou, Q. Zhou, Y. Zhou, W. Rao and X. Ma, The Journal of Organic Chemistry, 2019, 84, 10449-10458.

66.C. Liu, M. Shen, B. Lai, A. Taheri and Y. Gu, ACS Combinatorial Science, 2014, 16, 652-660.

67.S. Guo, Q. Wang, Y. Jiang and J.-T. Yu, The Journal of Organic Chemistry, 2014, 79, 11285-11289.

68.W.-F. Zheng, Q.-J. Xu and Q. Kang, Organometallics, 2017, 36, 2323-2330.

69.Yang, Zhang, Jingliang, Jiao, Robert, A., Flowers and II, Journal of Organic Chemis-try, 2006, 71, 4516-4520..

70.C. R. Hauser, F. W. Swamer and B. I. Ringler, Journal of the American Chemical So-ciety, 1948, 70, 4023.

71.B. Podolesov, Journal of Organic Chemistry, 1984, 49, 2644-2646.

72.S. W. Ashford and K. C. Grega, The Journal of Organic Chemistry, 2001, 66, 1523-1524.

73.Y. Yuan, X. Ji and D. Zhao, European Journal of Organic Chemistry, 2010, 2010, 5274-5278.

74.Mahdi, M., Abu-Omar, James, H. and Espenson, Organometallics, 1996, 15, 3543–3549.

75.M. A. Calter and C. Zhu, Organic Letters, 2002, 4, 205-208.

76.M. A. Calter, R. M. Phillips and C. Flaschenriem, Journal of the American Chemical Society, 2005, 127, 14566-14567.

77.D. Sinha, A. Biswas and V. K. Singh, Organic Letters, 2015, 17, 3302-3305.

中图分类号:

 O62    

开放日期:

 2023-08-21    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式