中文题名: |
艾比湖湿地主要建群植物菌根真菌多样性研究
|
姓名: |
张雪
|
学号: |
20182006123
|
保密级别: |
公开
|
论文语种: |
chi
|
学科代码: |
0710
|
学科名称: |
生物学
|
学生类型: |
硕士
|
学位类型: |
学术学位
|
学位年度: |
2021
|
学校: |
石河子大学
|
院系: |
生命科学学院
|
专业: |
生物学
|
研究方向: |
微生物
|
第一导师姓名: |
胡文革
|
第一导师单位: |
生命科学学院
|
完成日期: |
2021-06-01
|
答辩日期: |
2021-06-01
|
外文题名: |
Study on the diversity of mycorrhizal fungi of main constructive plants in Ebinur Lake Wetland
|
中文关键词: |
艾比湖湿地 ; 菌根真菌 ; 丛枝菌根真菌 ; 土壤环境因子
|
外文关键词: |
Ebinur Lake wetland ; Mycorrhizal fungi ; Arbuscular mycorrhizal fungi ; Soil environmental factors
|
中文摘要: |
︿
目的:研究艾比湖湿地12种建群植物(盐角草、芦苇、铃铛刺、准噶尔大戟、梭梭、花花柴、碱蓬、戟叶鹅绒藤、黑枸杞、白刺、胡杨和盐节木)根际土壤中未培养菌根真菌的多样性和群落结构及其与环境因子的相关性,并对艾比湖湿地可培养内生真菌进行分离鉴定,为今后内生真菌的应用研究工作奠定基础,也为艾比湖湿地物种多样性的维护和生态恢复提供理论支持。
方法:本文采集了艾比湖湿地12种植物的根际土壤及其根系,通过测定根际土壤的理化因子来了解艾比湖湿地的土壤环境状况,并通过盐酸-曲利苯蓝染色法对这些植物的根系进行染色,观察根系丛枝菌根真菌的侵染情况;利用湿筛倾析-蔗糖离心法对12种植物根际土壤中的丛枝菌根真菌孢子进行分离鉴定,通过Pearson相关性分析探究丛枝菌根真菌孢子密度和物种丰富度与土壤环境因子的关联;通过Illumina高通量测序技术分析12种植物根际土壤中菌根真菌的多样性和群落结构,利用Spearman探究土壤环境因子与菌根真菌多样性和群落结构的相关性;对采集的12种植物的根系通过根段直接培养法分离根系内生真菌,再结合菌落形态特征和rDNAITS序列分析对其进行鉴定。
结果:(1)艾比湖湿地土壤pH为7.88~8.92,平均为8.16,均为碱性土壤;含水量为1.03%~17.17%,平均含水量为4.52%,含水量较低;电导率为1.14ms/cm~12.41ms/cm,平均值为6.22ms/mL,含盐量较高;其余理化性质在不同植物之间存在显著差异。(2)从艾比湖湿地12种建群植物的根际土壤中共分离鉴定出AMF9属47种,戟叶鹅绒藤,黑枸杞和铃铛刺三种植物根际土壤AMF的物种丰富度和孢子密度最高;Pearson分析结果显示有效磷与AMF的孢子密度和物种丰富度呈极显著正相关。(3)艾比湖湿地12种建群植物中外生菌根真菌均属于担子菌门(Basidiomycota)和子囊菌门(Ascomycota),地孔菌属(Geopora)、盘菌属(Peziza)和红菇属(Russula)等作为优势属在十二种植物中出现的频率较高;梭梭外生菌根真菌多样性最高,芦苇的最低。(4)艾比湖湿地12种建群植物内生菌根真菌分属于子囊菌门(Ascomycota)、担子菌门(Basidiomycota)、被孢霉门(Mortierellomycota)、毛霉菌门(Mucoromycota)、隐真菌门(Rozellomycota)、壶菌门(Chytridiomycota)、球囊菌门(Glomeromycota)和Aphelidiomycota,其中子囊菌门(Ascomycota)为优势菌门,链格孢霉属(Alternaria)为不同植物共有的优势内生菌根真菌;盐节木内生菌根真菌多样性最高,白刺的最低。(5)Spearman分析表明,pH与外生菌根真菌多样性呈显著正相关,有机质与外生菌根真菌多样性呈极显著正相关;通过前选择筛选出影响外生菌根真菌群落的环境因子是pH、电导率、全钾和有效磷。(6)电导率与内生菌根真菌多样性呈极显著负相关,与TOP10Genus呈显著正相关,全氮与内生菌根真菌群落丰富度呈显著正相关,速效钾与内生菌根真菌呈极显著正相关;通过前选择筛选出影响内生菌根真菌群落结构的环境因子是电导率、全氮、全钾、速效钾、全磷和含水率。(7)对于艾比湖湿地建群植物根系内生真菌的分离鉴定实验,共分离鉴定出114株内生真菌,隶属于3门14属,占比最高的是镰刀菌属(Fusarium),其次是链格孢霉属(Alternaria);木霉属(Trichoderma)、Monosporascus、新凸轮孢菌属(Neocamarosporium )和蓝状菌属(Talaromyces)的占比最低。
结论:(1)艾比湖湿地土壤养分评价较低,属于盐碱土且含水量也低于正常湿地水平。
(2)从艾比湖湿地中共分离鉴定出9属47种AM真菌,戟叶鹅绒藤,黑枸杞和铃铛刺三种植物根际土壤AMF的物种丰富度和孢子密度最高,有效磷对AMF的物种丰富度和孢子密度的影响最大。(3)梭梭外生菌根真菌的多样性最高,盐节木内生菌根真菌的多样性最高,土壤环境因子对菌根真菌的多样性和群落结构的响应结果不一致。(4)从根系中分离的内生真菌隶属于3门14属,子囊菌门(Ascomycota)为优势菌门,镰刀菌属(Fusarium)为优势属。
﹀
|
外文摘要: |
︿
[Objective] Study the relationship between the diversity and community structure of uncultivated mycorrhizal fungi in the rhizosphere soil of twelve constructive plants (Salicornia europaea、Phragmites australis、Halimodendron halodendron、Euphorbia soongarica、Haloxylon ammodendron、Kareliniacaspia、Suaedaglauca、Cynanchum sibiricum、Lycium ruthenicum Murr、Nitraria tangutorum Bobr、Populus euphratica、Halocnemum strobilaceum )in Ebinur Lake wetland and soil environmental factors, in addition, the culturable endophytic fungi were isolated and identified in Ebinur Lake wetland, which laid a foundation for the application research of endophytic fungiin the future, and also provided theoretical support for the maintenance of species diversity and ecological restoration in Ebinur Lake wetland.
[Methods] In this paper, the rhizosphere soil and root systems of twelve plants in the Ebinur Lake wetland were collected, and we studied the soil environmental conditions of Ebinur Lake wetland by measuring the physical and chemical factors of the rhizosphere soil; The root systems of twelve plants were dyed by the hydrochloric acid-Triphenylene blue dyeing method to observe the infection status of the twelve plants, and then use a wet screen Decantation-sucrose centrifugation method to separate and identify AMF spores in 12 kinds of plant rhizosphere soils. Pearson correlation analysis was used to explore the relationship between AMF spore density and species richness and soil environmental factors; We analyze the diversity and community structure of mycorrhizal fungi in 12 plant rhizosphere soils through Illumina high-throughput sequencing technology and Spearman was used to explore the correlation between soil environmental factors and mycorrhizal fungi diversity and community structure; Endophytic fungi were isolated from the roots of the 12 plants collected by direct root culture method, and then identified by the combination of colony morphology and rDNA ITS sequence analysis.
[Result] (1) The pH of Ebinhu wetland soil ranged from 7.88 to 8.92, with an average of 8.16, all of which were alkaline soils. The water content is 1.03% ~ 17.17%, the average water content is 4.52%, the water content is low; The electrical conductivity is 1.14ms/mL ~ 12.41ms/mL, the average value is 6.22 ms/mL, and the salt content is high. Other physical and chemical properties were significantly different among different plants. (2) A total of 47 species of AMF were isolated and identified from the rhizosphere soil of 12 species of constructive plants in Ebinur Lake wetland. The Halimodendron halodendron、Euphorbia soongarica and Nitraria tangutorum Bobr of AMF in rhizosphere soil are the highest in spore richness and spore density. Pearson analysis shows that available phosphorus has a very significant positive correlation with the species richness and spore density of AMF, and the correlation between other environmental factors and species richness and spore density does not reach a significant level. (3) The 12 species of ectomycorrhizal fungi in the Ebinur Lake wetland belong to the Basidiomycota and Ascomycota;Geopora, Peziza and Russula as the dominant genera appear more frequently in the twelve plants. The diversity of ectomycorrhizal fungi of Haloxylon ammodendron is the highest, and that of Phragmites australis communis is the lowest; (4) The 12 species of endophytic mycorrhizal fungi belong to the Ascomycota, Basidiomycota, Mortierellomycota, Mucoromycota, Rozellomycota,Chytridiomycota, Glomeromycota and Aphelidiomycota, among which Ascomycota is the dominant phyla, and Alternaria is the dominant endomycorrhizal fungus shared by different plants .The diversity of endophytic mycorrhizal fungi is the highest in Halocnemum strobilaceum and the lowest in Nitraria tangutorum Bobr. (5) Spearman analysis showed that pH was significantly positively correlated with the diversity of ectomycorrhizal fungi, and organic matter was extremely significantly positively correlated with the diversity of ectomycorrhizal fungi; the environmental factors affecting the ectomycorrhizal fungi community were selected as pH, total potassium, electrical conductivity and available phosphorus. (6) Electrical conductivity has a very significant negative correlation with endophytic fungi diversity, and a significant positive correlation with TOP10 Genus. Total nitrogen has a significant positive correlation with endophytic fungal community richness, and available potassium is extremely significant positive correlation with endomycorrhizal fungi; the environmental factors that affect the community structure of endophytic mycorrhizal fungi were selected as electrical conductivity, total nitrogen, total potassium, available potassium, total phosphorus and moisture content. (7) We isolated and identified 114 endophytic fungi from the roots of 12 constructive plants in the Ebinur Lake wetland, belonging to 3 phyla and 14 genera. The highest proportion was Fusarium, followed by Alternaria, Trichoderma, Monosporascus and Neocamarosporium the proportion of thalaromyces was the lowest.
[Conclusion] (1) The soil nutrient evaluation of Ebinur Lake wetland is low, which belongs to saline-alkali soil, and its water content is lower than the normal wetland level. (2) The species richness and spore density of AMF in the rhizosphere soil of Halimodendron halodendron, Cynanchum sibiricum、Lycium ruthenicum Murr were the highest ,and available phosphorus had the greatest effect on the species richness and spore density of AMF. (3) The diversity of ectomycorrhizal fungi of Haloxylon ammodendron is the highest, and the diversity of endophytic fungi of Halocnemum strobilaceum is the highest. The response of soil environmental factors to the diversity of mycorrhizal fungi and community structure is inconsistent. (4) The endophytic fungi isolated from roots belong to 3 phyla and 14 genera, Ascomycota is the dominant genus, and Fusarium is the dominant genus.
﹀
|
参考文献: |
︿
参考文献
[1] 李禄康. 湿地与湿地公约[J]. 世界林业研究. 2001(01): 1-7.
[2] 韦优愿. 构建中国湿地生态用水保障制度的思考[D]. 广西师范大学, 2013.
[3] 贺帅兵,胡文革,靳希桐,周婷婷,钟镇涛,王月娥. 艾比湖湿地芦苇根际土壤氨氧化古菌的多样性和群落结构[J]. 微生物学报. 2019, 59(08): 1576-1585.
[4] 王勇辉,焦黎. 艾比湖湿地土壤有机碳及储量空间分布特征[J]. 生态学报. 2016, 36(18): 5893-5901.
[5] 傅德平,何,袁月,吕光辉. 艾比湖湿地植物群落特征与土壤环境关系研究[J]. 江西农业学报. 2008(05): 106-109.
[6] 兰鸿珠,胡文革,杨扬,何园,高岩. 艾比湖湿地盐节木土壤固氮微生物群落结构和丰度的环境异质性特点[J]. 微生物学通报. 2019, 46(07): 1597-1610.
[7] 靳希桐,胡文革,贺帅兵,周婷婷,王月娥,钟镇涛. 不同时期艾比湖湿地盐角草群落土壤固氮微生物的多样性分析[J]. 微生物学报. 2019, 59(08): 1600-1611.
[8] 莫超,胡文革,郭飏,王翠华,武菲. 新疆艾比湖湿地博乐河入湖口古菌多样性分析[J]. 生物技术通报. 2016, 32(09): 131-139.
[9] 张小萌,李艳红,李磊. 艾比湖湿地梭梭与土壤因子关系的分析[J]. 湖北农业科学. 2016, 55(06): 1406-1409.
[10] 朱海强. 艾比湖湿地不同植物群落下土壤酶活性变化特征[D]. 新疆师范大学, 2018.
[11] 张利兰. 自然湿地水体中微生物多样性的研究[D]. 河南师范大学, 2011.
[12] 杨秀丽. 大兴安岭兴安落叶松森林生态系统菌根及其真菌多样性研究[D]. 内蒙古农业大学, 2010.
[13] van Dijk H F, de Louw M H, Roelofs J G, Verburgh J J. Impact of artificial, ammonium-enriched rainwater on soils and young coniferous trees in a greenhouse. Part II--Effects on the trees[J]. Environ Pollut. 1990, 63(1): 41-59.
[14] Allen M F, Swenson W, Querejeta J I, Egerton-Warburton L M, Treseder K K. Ecology of mycorrhizae: a conceptual framework for complex interactions among plants and fungi[J]. Annu Rev Phytopathol. 2003, 41: 271-303.
[15] 李晓林,冯固. 丛枝菌根生态生理[M]. 北京: 华文出版社, 2001: 2-6.
[16] 潘景芝. 常见药用植物内生菌根真菌抑菌活性及分子生物学的初步研究[D]. 吉林农业大学, 2007.
[17] 刘振华. 杜鹃花菌根真菌分离鉴定及多样性分析[D]. 中国林业科学研究院, 2010.
[18] 朱教君,徐慧,许美玲,康宏樟. 外生菌根菌与森林树木的相互关系[J]. 生态学杂志. 2003(06): 70-76.
[19] 杜海燕. 天山雪岭云杉接种菌根真菌后对氮磷添加的响应[D]. 新疆大学, 2019.
[20] Liu C H, Zou W X, Lu H, Tan R X. Antifungal activity of Artemisia annua endophyte cultures against phytopathogenic fungi[J]. J Biotechnol. 2001, 88(3): 277-282.
[21] Averill C, Bhatnagar J M, Dietze M C, Pearse W D, Kivlin S N. Global imprint of mycorrhizal fungi on whole-plant nutrient economics[J]. Proc Natl Acad Sci U S A. 2019, 116(46): 23163-23168.
[22] Harley J L. The Significance of Mycorrhiza[J]. Mycological Research. 1989, 92(2): 129-139.
[23] 何新华,段英华,陈应龙,徐明岗. 中国菌根研究60年:过去、现在和将来[J]. 中国科学:生命科学. 2012, 42(06): 431-454.
[24] 郭良栋. 中国微生物物种多样性研究进展[J]. 生物多样性. 2012, 20(05): 572-580.
[25] 刘润进. 菌根真菌是唱响生物共生交响曲的主角——菌根真菌专辑序言[J]. 菌物学报. 2017, 36(07): 791-799.
[26] 孟繁荣. 林木菌根学[M]. 哈尔滨: 东北林业大学出版社, 1996.
[27] Smith S E, Read D J. Uptake, translocation and transfer of nutrients in mycorrhizal symbioses[J]. Mycorrhizal Symbiosis (Second Edition). 2002: 379-408.
[28] 赵鹏,王天骄,侯效阳,刘姣妹,柴新义. 木本植物内生真菌多样性的研究进展[J]. 安徽农学通报. 2020, 26(13): 102-105.
[29] 唐明,黄艳辉,盛敏,张峰峰,肖文发. 内蒙古盐碱土中AM真菌的多样性与分布[J]. 土壤学报. 2007(06): 1104-1110.
[30] Jun Y, Zike X, Xueli H, Chunmao L, Yosef S. Shifts in composition and diversity of arbuscular mycorrhizal fungi and glomalin contents during revegetation of desertified semiarid grassland[J]. Applied Soil Ecology. 2017, 115.
[31] 李敏. 贵州主要马尾松群落中ECM真菌多样性研究[D]. 贵州大学, 2016.
[32] 杜海燕,常顺利,宋成程,张毓涛. 天山雪岭云杉森林菌根真菌多样性及其影响因子[J]. 干旱区研究. 2019, 36(05): 1194-1201.
[33] 刘亚,王盼,周钰鸿,陈江芳,陈子林. 浙江大盘山映山红菌根真菌的分离和鉴定[J]. 北方园艺. 2019(09): 77-82.
[34] Jiang Y, Wang W, Xie Q, Liu N, Liu L, Wang D, Zhang X, Yang C, Chen X, Tang D, Wang E. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi[J]. Science. 2017, 356(6343): 1172-1175.
[35] Bidartondo M I, Redecker D, Hijri I, Wiemken A, Bruns T D, Dominguez L, Sersic A, Leake J R, Read D J. Epiparasitic plants specialized on arbuscular mycorrhizal fungi[J]. Nature. 2002, 419(6905): 389-392.
[36] 刘春卯,贺学礼,徐浩博,张淑容,牛凯. 蒙古沙冬青AM真菌物种多样性研究[Z]. 中国江西南昌: 20131.
[37] 麻云霞. 浑善达克沙地榆AM真菌资源和生态分布研究[D]. 内蒙古农业大学, 2018.
[38] 刘润进,焦惠,李岩,李敏,朱新产. 丛枝菌根真菌物种多样性研究进展[J]. 应用生态学报. 2009, 20(09): 2301-2307.
[39] Bai C M, He X L, Tang H L, Shan B Q, Zhao L L. Spatial distribution of arbuscular mycorrhizal fungi, glomalin and soil enzymes under the canopy of Astragalus adsurgens Pall. in the Mu Us sandland, China[J]. Soil Biology & Biochemistry. 2009, 41(5): 941-947.
[40] He X L, Mouratov S, Steinberger Y. Temporal and spatial dynamics of vesicular-arbuscular mycorrhizal fungi under the canopy of Zygophyllum dumosum Boiss. in the Negev Desert[J]. Journal of Arid Environments. 2002, 52(3): 379-387.
[41] 王启. 内蒙古中温型草原AM真菌多样性及其分布影响因子研究[D]. 内蒙古大学, 2014.
[42] He X L, Li Y P, Zhao L L. Dynamics of arbuscular mycorrhizal fungi and glomalin in the rhizosphere of Artemisia ordosica Krasch. in Mu Us sandland, China[J]. Soil Biology & Biochemistry. 2010, 42(8): 1313-1319.
[43] Chen Y L, Zhang X, Ye J S, Han H Y, Wan S Q, Chen B D. Six-year fertilization modifies the biodiversity of arbuscular mycorrhizal fungi in a temperate steppe in Inner Mongolia[J]. Soil Biology & Biochemistry. 2014, 69: 371-381.
[44] 李新川. 天山北坡不同草地类型AM真菌多样性及其影响因子分析[D]. 新疆农业大学, 2016.
[45] Abbot L K, Robson A D. Formation of external hyphae and soil by four speciesof vesicular-arbuscular mycorrhizal fungi[J]. New Phytoalexins. 1985(99): 245-255.
[46] 孔静. 丛枝菌根真菌对几种草本植物抗旱性的影响研究[D]. 中国矿业大学, 2015.
[47] Alguacil M M, Torres M P, Torrecillas E, Díaz G, Roldán A. Plant type differently promote the arbuscular mycorrhizal fungi biodiversity in the rhizosphere after revegetation of a degraded, semiarid land[J]. Soil Biology & Biochemistry. 2011, 43(1): 167-173.
[48] Hiiesalu I, P R M, Davison J, Gerhold P, Metsis M, Moora M, Pik M, Vasar M, Zobel M, Wilson S D. Species richness of arbuscular mycorrhizal fungi: associations with grassland plant richness and biomass.[J]. The New phytologist. 2014, 203(1).
[49] 熊丹. 黔中地区马尾松-杜鹃群落杜鹃菌根和根围真菌多样性[D]. 贵州大学, 2019.
[50] Kellogg L E, Bridgham S D. Phosphorus retention and movement across an ombrotrophic-minerotrophic peatland gradient[J]. Biogeochemistry. 2003, 63(3): 299-315.
[51] 熊丹. 黔中地区马尾松-杜鹃群落杜鹃菌根和根围真菌多样性[D]. 贵州大学, 2019.
[52] 贺纪正,袁超磊,沈菊培,张丽梅. 土壤宏基因组学研究方法与进展[J]. 土壤学报. 2012, 49(01): 155-164.
[53] Liang Z B, Drijber R A, Lee D J, Dwiekat I M, Harris S D, Wedin D A. A DGGE-cloning method to characterize arbuscular mycorrhizal community structure in soil[Z]. THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND: 2008: 40, 956-966.
[54] 王守现,刘宇,张英春,许峰,赵爽,王兰青,耿小丽,孟莉莉. 基于RAPD和ITS分子标记对血红铆钉菇菌株的鉴别研究[J]. 食用菌学报. 2013, 20(03): 10-14.
[55] 林双双,孙向伟,王晓娟,豆存艳,李媛媛,罗巧玉,孙莉,金樑. 我国菌根学研究进展及其应用展望[J]. 草业学报. 2013, 22(05): 310-325.
[56] 魏松坡,宋怡静,贾黎明,袁振. 太行山片麻岩区栓皮栎外生菌根真菌多样性[J]. 菌物学报. 2018, 37(04): 422-433.
[57] 冀瑞卿,高婷婷,李冠霖,徐洋,邢鹏杰,周吉江,谢孟乐,李佳奇,李玉. 东北红松纯林菌根外生菌根真菌群落与环境因子的相关性[J]. 菌物学报. 2020, 39(04): 743-754.
[58] 刘敏,王祖华,峥嵘. 基于高通量测序技术的柄扁桃根围AMF群落季节动态研究[J]. 西北农林科技大学学报(自然科学版). 2020, 48(06): 117-124.
[59] 楼骏,柳勇,李延. 高通量测序技术在土壤微生物多样性研究中的研究进展[J]. 中国农学通报. 2014, 30(15): 256-260.
[60] Lu R K. Analytical method of soil agricultural chemistry[M]. 北京: 中国农业科技出版社, 1999.
鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 1999.
[61] 高琼玲,王玉平,石俊雄,胡德才,王隆文,邓升才. 土壤养分状况及地力分级与评价研究[Z]. 中国桂林: 19971.
[62] 袁仁文,刘琳,张蕊,范淑英. 植物根际分泌物与土壤微生物互作关系的机制研究进展[J]. 中国农学通报. 2020, 36(02): 26-35.
[63] 贺帅兵. 艾比湖湿地建群植物根际氨氧化微生物的时空分布格局及嗜纤维素粘细菌的分离鉴定[D]. 石河子大学, 2019.
[64] 靳希桐. 艾比湖湿地建群植物根际固氮微生物的时空分布格局及嗜细菌粘细菌的分离鉴定[D]. 石河子大学, 2019.
[65] 王清奎,汪思龙,冯宗炜,黄宇. 土壤活性有机质及其与土壤质量的关系[J]. 生态学报. 2005(03): 513-519.
[66] 李冬林,韩丽,阮宏华,张纪林. 秦淮河河岸带土壤理化性质分析[J]. 南京林业大学学报(自然科学版). 2008(04): 17-22.
[67] 赵国慧,李哲哲,胡少军,程晓菲,弓弼. 雍城湖湿地土壤理化性质与微生物及植物群落的关系[J]. 西北林学院学报. 2020, 35(05): 240-248.
[68] 白军红,王庆改,余国营. 吉林省向海沼泽湿地土壤中氮素分布特征及生产效应研究[J]. 土壤通报. 2002(02): 113-116.
[69] 陈宝三,黄春兰,张丽华. 土壤全氮测定中消化方法对分析结果的影响[J]. 热带作物研究. 1982(04): 19-21.
[70] 陈宝明,韦慧杰,陈伟彬,朱政财,原亚茹,张永隆,蓝志刚. 外来入侵植物对土壤氮转化主要过程及相关微生物的影响[J]. 植物生态学报. 2018, 42(11): 1071-1081.
[71] Binkley D, Hart S C. The Components of Nitrogen Availability Assessments in Forest Soils[J]. Soil Science Society of America Journal. 1987, 51: 57-112.
[72] Vitousek P M, White P S. Process Studies in Succession[C]. New York, NY: Springer, 1981. 267-276.
[73] 杨亚琴. 不同林龄油茶生理特性及其根区土壤性质研究[J]. 河南农业科学. 2015, 44(07): 61-66.
[74] 李志强. 山西庞泉沟落叶松林土壤理化性质分析[J]. 山西林业科技. 2020, 49(02): 22-25.
[75] 曹娟,闫文德,项文化,谌小勇,雷丕锋,向建林. 湖南会同不同年龄杉木人工林土壤磷素特征[J]. 生态学报. 2014, 34(22): 6519-6527.
[76] 兰鸿珠. 艾比湖湿地建群植物根际固氮微生物群落结构及生态位分化特征[D]. 石河子大学, 2018.
[77] 余世鹏,杨劲松,刘广明,杨晓英. 我国不同水热梯度带农田土壤速效钾含量的时空变异特征[J]. 灌溉排水学报. 2011, 30(02): 1-4.
[78] 邹丽敏,丁蕴铮,张广增,李辉. 硬覆盖对城市街路行道树土壤呼吸的影响[J]. 中国城市林业. 2004(01): 34-37.
[79] 陈贤源. 安吉道路土壤理化性质分析及对几种苗木生长影响的研究[D]. 上海交通大学, 2018.
[80] Wang B, Qiu Y L. Phylogenetic distribution and evolution of mycorrhizas in land plants[J]. Mycorrhiza. 2006, 16(5): 299-363.
[81] 金海如. 丛枝菌根真菌从土壤环境中吸收不同氮素并向寄主植物运转的机制[Z]. 中国上海: 20104.
[82] 田永伟. 内蒙古中部地区马铃薯根系及根际土中AMF群落的多样性研究[D]. 内蒙古农业大学, 2017.
[83] Schenk N C, Perez Y. Manual for identification of vesicular arbuscular mycorrhizal fungi, 2nd edn[M]. Florida: Synergistic Publications, 1988.
[84] 谢靖,唐明. 黄土高原紫穗槐丛枝菌根真菌与土壤因子和球囊霉素空间分布的关系[J]. 西北植物学报. 2012, 32(07): 1440-1447.
[85] Lee J, Park S H, Eom A H. Molecular identification of arbuscular mycorrhizal fungal spores collected in Korea[J]. Mycobiology. 2006, 34(1): 7-13.
[86] 杨春雪,陈飞,岳英男,阎秀峰. 松嫩盐碱草地26种植物根围丛枝菌根真菌多样性特征[J]. 草业科学. 2015, 32(12): 2008-2020.
[87] 张美庆王幼珊张弛黄磊. 我国北方VA菌根真菌某些属和种的生态分布[J]. 真菌学报. 1994(03): 166-172.
[88] Daniell T J, Husband R, Fitter A H, Young J P. Molecular diversity of arbuscular mycorrhizal fungi colonising arable crops[J]. FEMS Microbiol Ecol. 2001, 36(2-3): 203-209.
[89] 刘润进,焦惠,李岩,李敏,朱新产. 丛枝菌根真菌物种多样性研究进展[J]. 应用生态学报. 2009, 20(09): 2301-2307.
[90] 盖京苹,刘润进. 土壤因子对野生植物AM真菌的影响[J]. 应用生态学报. 2003(03): 470-472.
[91] 张海波. 土壤类型和植物种对丛枝菌根真菌群落的影响[D]. 广西师范大学, 2015.
[92] 张美庆,王幼珊,张弛,黄磊. 我国北方VA菌根真菌某些属和种的生态分布[J]. 真菌学报. 1994(03): 166-172.
[93] 蔡晓布,彭岳林,钱成,冯固. 土壤因子对西藏高原草地植物AM真菌的影响[J]. 水土保持学报. 2004(05): 6-9.
[94] Tawaraya K, Saito M, Morioka M, Wagatsuma T. Effect of phosphate application to arbuscular mycorrhizal onion on the development and succinate dehydrogenase activity of internal hyphae[J]. Soil Science & Plant Nutrition. 1994, 40(4): 667-673.
[95] Wearn J A, Gange A C. Above-ground herbivory causes rapid and sustained changes in mycorrhizal colonization of grasses[J]. Oecologia. 2007, 153(4): 959-971.
[96] 李新川. 天山北坡不同草地类型AM真菌多样性及其影响因子分析[D]. 新疆农业大学, 2016.
[97] 王宇涛. 珠江河口红树林生境AMF群落多样性及其环境响应[D]. 中山大学, 2011.
[98] S. P M, R. R S. Manipulation of flooding and arbuscular mycorrhiza formation influences growth and nutrition of two semiaquatic grass species[J]. Functional Ecology. 2000, 14(6).
[99] Bonfante P, Genre A. Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis[J]. Nat Commun. 2010, 1: 48.
[100] Lehto T, Zwiazek J J. Ectomycorrhizas and water relations of trees: a review[J]. Mycorrhiza. 2011, 21(2): 71-90.
[101] 郭伟,耿珍珍,陈朝,李晴,杨颜熙,申思,金大明,王存国. 模拟氮沉降增加对长白山红松和水曲柳菌根真菌群落结构及多样性的影响[J]. 生态环境学报. 2018, 27(01): 10-17.
[102] 唐明,黄艳辉,盛敏,张峰峰,肖文发. 内蒙古盐碱土中AM真菌的多样性与分布[J]. 土壤学报. 2007(06): 1104-1110.
[103] 施晓峰,黄晶晶,史亚,丁志山,程东庆. 半夏丛枝菌根真菌多样性研究[J]. 陕西中医药大学学报. 2017, 40(03): 75-81.
[104] 江瑶,莫晓勇,邓海燕,刘丽婷. 巨桉人工林外生菌根真菌群落组成及多样性[J]. 西北林学院学报. 2020, 35(06): 153-159.
[105] 蒋玉玲. 辽宁省内九种兰科植物菌根真菌多样性研究[D]. 沈阳农业大学, 2018.
[106] 杨岳. 内蒙古八个树种根围土壤外生菌根真菌群落结构研究[D]. 内蒙古农业大学, 2018.
[107] 贾锐. 兴安杜鹃菌根及其真菌多样性研究[D]. 内蒙古农业大学, 2011.
[108] 龙东风. 油松外生菌根真菌群落多样性及其维持机制研究[D]. 西北农林科技大学, 2017.
[109] 谢一青,李志真,杨宗武. pH值、盐浓度及铝离子对菌根菌生长的影响[J]. 江西农业大学学报(自然科学). 2002(02): 204-207.
[110] 郭秀珍,毕国昌. 林木菌根及应用技术[M]. 北京: 中国林业出版社, 1989: 1-305.
[111] Boer W, Folman L B, Summerbell R C, Boddy L. Living in a fungal world: impact of fungi on soil bacterial niche development[J]. FEMS Microbiol Rev. 2005, 29(4): 795-811.
[112] Bullock J M, Shea K, Skarpaas O. Measuring plant dispersal: an introduction to field methods and experimental design[J]. Plant Ecology. 2006, 186(2): 217-234.
[113] 王洪凯,张天宇,张猛. 链格孢属真菌分类研究进展[J]. 山东农业大学学报(自然科学版). 2001(03): 406-410.
[114] 卢丹丹. 北桑寄生内生真菌的分离鉴定及Alternaria alternata次级代谢产物研究[D]. 山西医科大学, 2020.
[115] 许美玲,朱教君,孙军德,康宏樟,徐慧,张惠文. 树木外生菌根菌与环境因子关系研究进展[J]. 生态学杂志. 2004(05): 212-217.
[116] Rousk J, Baath E, Brookes P C, Lauber C L, Lozupone C, Caporaso J G, Knight R, Fierer N. Soil bacterial and fungal communities across a pH gradient in an arable soil[J]. ISME J. 2010, 4(10): 1340-1351.
[117] 马彦军,马瑞,马玉祥,李情辉. 黑果枸杞光合作用日变化规律研究[J]. 山地农业生物学报. 2016, 35(03): 66-71.
[118] Ghimire S R, Craven K D. Enhancement of switchgrass (Panicum virgatum L.) biomass production under drought conditions by the ectomycorrhizal fungus Sebacina vermifera[J]. Appl Environ Microbiol. 2011, 77(19): 7063-7067.
[119] 王浩,吴爱姣,刘保兴,刘润进,陈应龙. 菌根真菌多样性与植物多样性的相互作用研究进展[J]. 微生物学通报. 2020, 47(11): 3918-3932.
[120] Xu M, Zhu J, Sun J, Kang H, Xu H, Zhang H. A review on the relationships between forest Ectomycorrhizal fungi and environmental factors[J]. 生态学杂志. 2004, 23(5): 212-217.
许美玲,朱教君,孙军德,康宏樟,徐慧,张惠文. 树木外生菌根菌与环境因子关系研究进展[J]. 生态学杂志. 2004, 23(5): 212-217.
[121] Erik A L, Timothy J F, Thomas R H, Gary M L. BELOWGROUND ECTOMYCORRHIZAL FUNGAL COMMUNITY CHANGE OVER A NITROGEN DEPOSITION GRADIENT IN ALASKA[J]. Ecology. 2002, 83(1).
[122] Cairney J W G. Ectomycorrhizal fungi: the symbiotic route to the root for phosphorus in forest soils[J]. Plant & Soil. 2011, 344(1-2): 51-71.
[123] N. M P, B D, N M. Dynamics of ectomycorrhizal fungi in an Eucalyptus globulus plantation: effect of phosphorus fertilization[J]. Forest Ecology and Management. 2002, 158(1).
[124] LEHO T, MOHAMMAD B, M R T, ABDALA G D, TERRY W H, RASMUS K L, MELISSA H M, KAZUHIDE N, EDUARDO N, KABIR G P, SERGEI P L, MARTIN R, MATTHEW E S, URMAS K L. Towards global patterns in the diversity and community structure of ectomycorrhizal fungi[J]. Molecular Ecology. 2012, 21(17).
[125] Mi-shan G, Guo-dong D, Guang-lei G, Ying Z, Hong-yu C, Yue R. Community composition of ectomycorrhizal fungi associated with Pinus sylvestris var. mongolica plantations of various ages in the Horqin Sandy Land[J]. Ecological Indicators. 2020, 110.
[126] J. B, C. J F T B. Ectomycorrhizal sporocarp occurrence as affected by manipulation of litter and humus layers in Scots pine stands of different age[J]. Applied Soil Ecology. 1996, 4(1).
[127] Roger T K, Christopher F, Krittika P. General principles in the community ecology of ectomycorrhizal fungi[J]. Annals of Forest Science. 2011, 68(1).
[128] 石美玉. 盐碱地蒙古柳外生菌根真菌资源调查[D]. 东北林业大学, 2020.
[129] 罗鑫,张海燕,刘明元,邵彪. 稻田土壤微生物群落多样性研究进展[J]. 安徽农业科学. 2018, 46(21): 42-43.
[130] 王莹,陈烁,齐世静,吴秀菊,王丽娟. 鹿蹄草菌根真菌的分离与鉴定[J]. 贵州农业科学. 2017, 45(02): 112-116.
[131] 刘仁阳,欧静,李冠楠,刘玲,张伟丽. 梵净山雷山杜鹃根部真菌分离与鉴定[J]. 西北农业学报. 2014, 23(04): 178-185.
[132] 王芝娜,李杰,张银杰. 中国兰属植物菌根真菌的rDNA ITS分析[J]. 西北农林科技大学学报(自然科学版). 2013, 41(04): 191-196.
[133] Amann R I, Ludwig W, Schleifer K H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation[J]. Microbiol Rev. 1995, 59(1): 143-169.
[134] 陈娅娅. 鹅毛玉凤花菌根真菌研究[D]. 贵州大学, 2008.
[135] 朱丹,陈卫国,杜婵娟,付岗,黄兴振,付书婕,赵有林,蒋伟哲. 金线莲菌根真菌的分离和鉴定[J]. 环球中医药. 2013, 6(04): 241-244.
[136] 赵磊,刘伟,傅翔,单晓笛,张书祥,蒋光月,黄蓓. 促兔眼蓝莓生长菌根真菌的分离与鉴定[J]. 生物学杂志. 2017, 34(04): 116-120.
[137] 段春芳,李枝林,方飞,杨根华,陈思思,洪群艳. 云南几种兰花菌根真菌的分离鉴定[J]. 西南农业学报. 2010, 23(03): 756-759.
[138] 马平,李社增,H. C H,唐文华,陈新华. 利用棉花体内非致病镰刀菌防治棉花黄萎病[J]. 中国生物防治. 2001(02): 71-74.
[139] 颜桢灵,李国萍,骆海玉,陆保屹,梁春霞,邓业成,邓志勇. 血散薯内生真菌的分离鉴定及其抗菌活性研究[J]. 河南农业科学. 2019, 48(10): 84-92.
[140] Lucas M A, Gláucia M M, Douglas F, Edson R, Ludwig H P. Diversity of Clonostachys species assessed by molecular phylogenetics and MALDI-TOF mass spectrometry[J]. Fungal Biology. 2014, 118(12).
[141] 张俊. 粉红螺旋聚孢霉67-1产厚垣孢子相关基因的筛选与功能研究[D]. 中国农业科学院, 2017.
[142] 刘硕,郑金柱,张兆霞,郭会玲,何邦令,刘会香. 粉红螺旋聚孢霉对两种林果枝干病原菌的生防作用研究[J]. 山东农业大学学报(自然科学版). 2019, 50(01): 49-51.
[143] 王朝霞. 烟台地区葡萄根部内生真菌的多样性及促生效应的研究[D]. 鲁东大学, 2015.
[144] Harman G, Mastouri F. The role of Trichoderma in crop management systems[J]. Phytopathology. 2010, 100S(6): S165.
﹀
|
开放日期: |
2024-12-31
|