中文题名: |
基于人体运动链的功能性训练方案对初中生立定跳远的干预效果研究
|
姓名: |
李冀莹
|
学号: |
20212103013
|
保密级别: |
公开
|
论文语种: |
chi
|
学科代码: |
045112
|
学科名称: |
教育学 - 教育 - 学科教学(体育)
|
学生类型: |
硕士
|
学位: |
教育硕士
|
学位类型: |
专业学位
|
学位年度: |
2025
|
学校: |
石河子大学
|
院系: |
体育学院
|
专业: |
学科教学(体育)
|
研究方向: |
学校体育学
|
第一导师姓名: |
朱梅新
|
第一导师单位: |
石河子大学
|
完成日期: |
2025-03-01
|
答辩日期: |
2025-05-12
|
外文题名: |
Effect of Functional Training Program Based on Human Kinetic Chain on Standing Long Jump Performance in Middle School Students
|
中文关键词: |
人体运动链 ; 功能性训练 ; 初中生 ; 立定跳远
|
外文关键词: |
Human movement chain ; Functional training ; Junior high school students ; Standing long jump
|
中文摘要: |
︿
研究目的:本文从人体运动链模型理论融入功能训练的角度出发,旨在探究基于人体运动链的功能性训练理论在提升学生身体素质和立定跳远成绩方面的有效性。通过对立定跳远技术动作的分析,设计基于人体运动链的功能训练方案,并评估其干预效果。其目的在于验证该训练方案的合理性,为提升学生立定跳远成绩和体质健康水平提供理论依据和实践方案。
研究方法:采用文献资料法、专家访谈法、实验法和数理统计法对论文进行研究。通过为期12周、每周2次体育课, 每次课置入15分钟的立定跳远专项干预训练,对比不同训练方案对初中二年级学生立定跳远成绩和身体素质的影响。其中常规体育课对照组侧重于通过基础的、针对单项能力的动作来提升身体素质,而基于人体运动链的功能性训练方案强调身体各部分在运动中的协同作用,训练内容围绕着模拟和强化立定跳远中各环节的真实运动模式,注重动作的功能性和整体性,使训练更贴近实际的运动表现需求。使用Excel 2021进行数据汇总、OriginPro 2021进行绘图、Matlab R2016a对表面肌电原始数据和动力学数据进行编程分析计算、SPSS 24.0相关统计分析、Shapiro-Wilk法对数据进行正态分布检验。组间立定跳远成绩、FMS身体表现成绩、运动学、动力学以及表面肌电信号的指标测量结果均使用独立样本t检验进行统计分析,选取p<0.05为差异显著性检验标准。
研究结果:在干预前,功能组男女生的各项指标较对照组差异均无显著性差异;干预后,功能组男女生的立定跳远和FMS总成绩较对照组成绩更好,差异均具有显著性。在干预后,功能组男生、女生的RPT和TPT较对照组踝关节的肌肉力量水平更高,且到达峰值力矩的时间更短;在干预后,功能组男女生的髋关节和膝关节预备阶段最大屈曲角度相较于对照组屈曲角度更小;在干预后,功能组男生女生的重心变化高度相较于对照组更大;干预后功能组男女生的最大腾空高度和反应力量指数较对照组更高更大;干预后,功能组起跳阶段相关肌肉最大蹬伸角度时刻平均肌电值较对照组放电水平更高,差异均具有显著性,但值得注意的是功能组起跳阶段最大蹬伸角度时刻肌肉贡献率水平较对照组差异不具有显著性。
研究结论:(1)本研究基于人体运动链理论设计的功能性训练方案,通过系统的训练干预,显著提升了初中生的下肢力量、关节协调性、反应能力及运动控制能力,进而有效提高了其立定跳远成绩。(2)功能性训练方案涵盖基础动作训练、复合动作训练、爆发力训练和非稳定平面训练等多方面内容,具有科学性和系统性,对初中生立定跳远能力的提升具有明显的促进作用。(3)研究结果表明,功能性训练能够显著改善初中生的下肢爆发力、协调性和稳定性,这些能力的提升是立定跳远成绩提高的重要因素。(4)本研究为初中生立定跳远能力的提升提供了有效的训练方法和理论依据,具有一定的实践指导价值。
﹀
|
外文摘要: |
︿
Research Purpose: This study integrates the theory of the human movement chain model into functional training, aiming to explore the effectiveness of functional training based on the human movement chain in improving students' physical fitness and standing long jump performance. By analyzing the technical movements of the standing long jump, a functional training program based on the human movement chain is designed, and its intervention effects are evaluated. The research aims to verify the rationality of this training program, providing theoretical foundations and practical solutions for enhancing students' standing long jump performance and physical health.
Research Methods: The study employs literature review, expert interviews, experimental methods, and mathematical statistics. A 12-week intervention was conducted, with two physical education classes per week, each incorporating 15 minutes of specialized standing long jump training. The effects of different training programs on the standing long jump performance and physical fitness of second-year junior high school students were compared. The traditional training program focused on improving physical fitness through basic, single-ability exercises, while the functional training program based on the human movement chain emphasized the synergistic interaction of body parts during movement. The training content simulated and reinforced the actual movement patterns of the standing long jump, focusing on the functionality and integrity of movements to align training with real-world performance demands. Data were compiled using Excel 2021, plotted using OriginPro 2021, and analyzed using Matlab R2016a for surface electromyography (sEMG) and kinetic data. SPSS 24.0 was used for statistical analysis, and the Shapiro-Wilk test was applied to assess data normality. Independent sample t-tests were used to analyze the standing long jump performance, Functional Movement Screen (FMS) scores, kinematics, kinetics, and sEMG indicators, with a significance level set at p < 0.05.
Research results: Before the intervention, there were no significant differences in the various indicators between the functional group and the control group for both male and female students. After the intervention, the standing long jump and FMS total scores of the male and female students in the functional group were better than those of the control group, and the differences were significant. After the intervention, the RPT and TPT of the male and female students in the functional group had higher muscle strength levels in the ankle joint than the control group, and the time to reach peak torque was shorter. After the intervention, the maximum flexion angles of the hip and knee joints in the preparatory stage of the male and female students in the functional group were smaller than those of the control group. After the intervention, the height of the center of gravity change of the male and female students in the functional group was greater than that of the control group. After the intervention, the maximum flight height and reactive strength index of the male and female students in the functional group were higher and greater than those of the control group. After the intervention, the average electromyography values of the related muscles at the moment of maximum extension angle during the take-off stage of the male and female students in the functional group were higher than those of the control group, and the differences were significant. However, it is worth noting that the muscle contribution rate levels at the moment of maximum extension angle during the take-off stage of the functional group were not significantly different from those of the control group.
Research Conclusions: 1. The functional training program designed based on the human movement chain theory significantly improved lower limb strength, joint coordination, reactive ability, and motor control in junior high school students, thereby effectively enhancing their standing long jump performance.
2. The functional training program, which includes basic movement training, compound movement training, explosive power training, and unstable surface training, is scientifically and systematically designed. It significantly promotes the improvement of standing long jump ability in junior high school students.
3. The results indicate that functional training significantly enhances lower limb explosive power, coordination, and stability in junior high school students, which are critical factors in improving standing long jump performance.
4. This study provides effective training methods and theoretical foundations for improving standing long jump ability in junior high school students, offering practical guidance for physical education.
﹀
|
参考文献: |
︿
[1]《运动生物力学》编写组.运动生物力学.第2版[M].北京:北京体育大学出版社,2020. [2]国新办举行《关于深化教育教学改革全面提高义务教育质量的意见》发布会[J].人民教育,2019(Z3):12-18. [3]阮慷,陈武元.我国民办高等教育发展成就、问题与展望——《国家中长期教育改革和发展规划纲要(2010-2020年)》实施效果分析[J].中国高等教育评论,2022(01):141-157. [4]刘展.人体动作模式和运动链的理念在运动损伤防护和康复中的应用[J].成都体育学院学报,2016,42(06):1-11. [5]刘雨多.功能性训练对中学体育生速度素质影响的实验研究[J].当代体育科技,2020,10(06):23-24. [6]李卫,阙怡琳,石煜,冯海涛.体能训练前沿理念与实践创新——第二届中国国际体能大会综述[J].北京体育大学学报,2021,44(03):114-128. [7]刘爱杰,李少丹.我国运动训练方法创新的思考[J].中国体育教练员,2007(03):4-7. [8]王泽众,张优,刘小冬,祁海霞.功能性训练提高预选卫生士官伤员搬运能力[J].解放军医院管理杂志,2017,24(01):69-70. [9]廉恩勇,石玉琴.计算机技术在运动生物力学中的应用与现状[J].四川体育科学, 2004(3):3.DOI:10.3969/j.issn.1007-6891.2004.03.093. [10]马莲,唐炎,胡小清,等.身体活动对幼儿认知发展和学业表现影响的系统综述[J].中国体育科技,2022,58(12):18-27. [11]李嘉祺.功能性训练提高青少年足球运动员下肢本体感觉和力量的实验研究[J].体育科技文献通报,2021,29(12):113-115+129. [12]廖锦群.体育中考提分背景下四川省体育中考的现实困境与突破路径研究[J].运动精品,2021,40(08):15-16. [13]赵磊.对功能性训练基本架构的科学探析[J].教育现代化,2018,5(37):188-189. [14]宋校能,徐辉,吴贻刚.优秀女子橄榄球运动员肩扑搂下肢运动模型及其肌力对撞击力量的影响[J].上海体育学院学报,2023,47(02):76-87. [15]冯喆,肖毅,曹梓威,等.基于动态时间规整算法的青少年乒乓球运动员击球动作合理性评价——以反手拉上旋弧圈球为例[J].上海体育学院学报,2020,44(06):76-84. [16]李畔.足球高踢技术动作下肢环节链的生物力学特征分析[J].西南师范大学学报:自然科学版, 2018, 43(8):63-69. [17]鲁君兰,蔡斌,范帅.慢性踝关节不稳患者的髋关节功能研究进展[J].中国康复, 2019, 34(6):328-332. [18]邵静雯,张弛,孙丹,等.等速闭链训练与等速开链训练对脑卒中后运动障碍患者下肢肌力、平衡功能与步行能力影响研究[J].临床军医杂志,2022,50(03):267-269+273. [19]王银晖.人体运动链理论溯源及对功能性训练的启示[J].成都体育学院学报,2017,43(02):60-66. [20]娄彦涛,郝卫亚,李艳辉,等.我国自由式滑雪空中技巧优秀运动员主要关节等速肌力特征[J].中国运动医学杂志,2022,41(06):430-441. [21]张援,宋爱晶,邓京捷,等.优秀跳水运动员腰背及下肢力量素质比较研究[J].当代体育科技,2021,11(36):1-9. [22]彭梦思,王一祖,刘胜锋,等.水中运动治疗慢性腰痛的研究进展[J].中国康复医学杂志,2024,39(05):738-746. [23]张曌,郑婷婷,王钰姝,等.运动干预对成人胸椎后凸畸形患者影响的Meta分析[J].中国循证医学杂志,2023,23(05):534-538. [24]刘瑞东,刘建秀,李庆.功能性与传统力量训练的训练效果比较研究——基于下肢运动生物力学、FMS和运动能力测试[J].武汉体育学院学报,2018,52(05):79-87. [25]刘震,孙丽雯.功能性体能训练对大学生身体素质影响的实证研究[J].廊坊师范学院学报(自然科学版),2020,20(02):95-99. [26]朱忠华.初中生功能性体能训练在课堂教学中的应用研究[J].田径,2021(08):36-37. [27]单信,海丁萌.纵跳高度腾空时间计算法的理论探讨与实验评价[J]. 中国临床康复,2004(24):5103-5105. [28]臧宇,许贻林,殷飞,等.落地高度对高水平短跑运动员跳深动作下肢生物力学和反应性力量的影响[J]. 体育与科学,2019,40(06):101-110. [29]徐建武,刘道满,赵凡,等.功能动作测试(FMS)在优秀运动员损伤风险评估中的应用研究[J].中国运动医学杂志,2014,33(09):855-859. [30]董彬彬,安光亮,李翔.应试导向下山西省青少年立定跳远项目开展现状研究[J].吕梁教育学院学报,2021,38(02):147-150. [31]李智.核心力量训练对提高初三学生体育中考成绩的实践研究[J].当代体育科技,2019,9(13):71+73. [32]李小平.初中体育立定跳远课堂教学创新探究实践初探[J].青少年体育,2019(05):60-61. [33]高云.也谈初中体育立定跳远的教学与训练[J].田径,2021(10):55-56. [34]张仙萍.初中体育立定跳远的教学与训练研究[J].运动,2015(03):129-130. [35]汪巧琴.室内身体功能性训练课案例[J].运动,2016(10):73-75. [36]李洁明,王慧.对功能性训练基本架构的科学探析[J].体育研究与教育,2016,31(04):94-98. [37]尹军.校园身体运动功能训练的内容和方法体系概述[J].体育教学,2019,39(01):48-49. [38]马小兵.浅谈对功能性训练的认知[J].武术研究,2019,4(01):153-156. [39]伍勰,魏文仪.跳远起跳技术的动力学模拟[J].西安体育学院学报, 2005, 22(3):75-77. [40]安民.功能性体能训练在竞技体育项目中的有效应用对策[J].智库时代,2019(50):276-277. [41]高玉凤,袁芳,杨淑仪,隋欣可,方雯艺.功能性训练在排球体能训练中的应用研究[J].当代体育科技,2021,11(25):38-40. [42]李祝青.功能性训练对提高网球运动员核心力量的作用研究[J].安徽师范大学学报(自然科学版),2021,44(02):187-191. [43]王华,王成龙.功能性训练干预下拉丁舞运动表现、专项动作及FMS分值特征的研究[J].吉林体育学院学报,2021,37(03):60-68. [44]石磊.跳水运动员功能性训练[J].中国体育教师员,2021,29(02):26-28. [45]吴汉文.初中体育课堂立定跳远教学与训练[J].田径,2019(10):15-16. [46]谢国良.浅谈初中体育立定跳远的教学与训练[J].田径,2020(09):27-28. [47]刘训凯.中考体育之立定跳远错误动作及解决方法[J].当代体育科技,2018,8(20):208-209. [48]裴永刚.核心力量训练在中考体育成绩中的影响与实践[J].当代体育科技,2020,10(09):55+57. [49]徐嘉馨,周平.中考改革背景下学校体育发展效应与思考[J].运动精品,2020,39(01):9-10. [50]李艳荣.核心力量训练对提高中考体育成绩的实践研究[J].当代体育科技,2020,10(18):41+44. [51]高培宣.提高中考立定跳远成绩的有效策略研究[J].田径,2020(01):4-5. [52]孔德志,陈玉娟.不同起跳角度立定跳远对腿部肌群的肌电效应影响研究[J].怀化学院学报,2022,41(05):81-85. [53]王岚,郑旗.约束主导训练法对高校女子下肢力量训练效果的实证研究[J].体育科技文献通报,2022,30(12):167-170. [54]经旦锋.功能性训练在短跑训练中的应用[J].田径,2021(12):51-52. [55]张雪婷,冯晓苏.功能性训练干预体育中考实心球、立定跳远效果的实验研究[J].体育科技文献通报,2021,29(09):92-93+99. [56]王东需,邵承颖,姜华琛,李扬,姚泽龙.功能性训练对古典式摔跤运动员下肢肌力的影响[J].山东体育科技,2021,43(03):43-47. [57]章志为.功能性训练对中学生身体素质影响效果的提高研究[J].田径,2019(08):41+44. [58]孙莉莉.美国功能动作测试(FMS)概述[J].体育科研,2011,32(05):29-32. [59]周勇,曹钰.初中生立定跳远腿部技术训练研究[J].青少年体育,2022(05):59-61. [60]王健.sEMG信号分析及其应用研究进展[J].体育科学,2000(04):56-60. [61]方向丽,王立焕,杨昆普,等.河北省体操课程优化对策研究[J].体育文化导刊,2016,(07):143-147+168. [62]廖方萍,彭彪,杨世军,等.表象训练在立定跳远中的应用效果评估[J].福建体育科技,2018,37(02):38-41. [63]江广和,傅佳. 《“十四五”体育发展规划》内容特征、历史经验及启示[C]//中国体育科学学会.第十三届全国体育科学大会论文摘要集——专题报告(体育社会科学分会).[出版者不详],2023:2. [64]代新语,闫纪红,滕育松.单腿功能训练对羽毛球运动员下肢力量及平衡能力影响的研究[C]//第十一届全国体育科学大会论文摘要汇编.2019. [65]王连晋.功能性训练对中学生身体素质影响效果的实验研究[D].成都体育学院,2015. [66]宋菲. 身体功能性训练对初中生速度与力量素质影响的实验研究[D].河北师范大学,2018. [67]李昭洁. 优秀男子举重运动员抓举技术特征分析[D].成都体育学院,2015. [68]王佳. 核心力量训练对男大学生下肢快速力量影响效果研究[D].哈尔滨体育学院,2016. [69]陈亮. 4种深蹲模式下肢生物力学特征的计算机仿真研究[D].南京体育学院,2022. [70]黄锦鉴. 立定跳远表面肌电特征分析[D].广州大学,2020. [71]杨剑磊. 身体功能性训练对初中生身体素质和运动技能影响的研究[D].广州体育学院,2022. [72]杨斌. 功能性训练对沈阳市第一二六中学体育中考项目成绩的影响研究[D].沈阳师范大学,2022. [73]朱玉莲. 功能性训练对提高体育中考实心球、立定跳远成绩的实验研究[D].广西师范大学,2019. [74]邱旭. 功能性训练对水平四学生核心稳定性的影响研究[D].杭州师范大学,2023. [75]李建威. 功能性训练在青少年击剑训练中的应用研究[D].西南大学,2022. [76]封旭华. 女排运动员功能性动作筛查(FMS)及康复体能训练对防治运动损伤和改善运动表现的实验研究[D].上海体育学院,2016. [77]教育部.《国家中长期教育改革和发展规划刚要(2010-2020年)》[EB/OL].国家中长期教育改革和发展规划纲要工作小组办公室,[2010-07-29].http://www.moe.gov.cn/jyb_xwfb/s6052/moe_838/201008/t20100802_93704.html. [78]国务院.国务院关于印发《全民健身计划(2021-2025年)》的通知[EB/OL].国务院,[2021-08-03].https://www.gov.cn/gongbao/content/2021/content_5631816.html. [79]教育部.教育部关于印发《国家学生体质健康标准(2014年修订)》的通知[EB/OL].教育部,[2014-7-7]. http://www.moe.gov.cn/s78/A17/twys_left/moe_938/moe_792/s3273/201407/t20140708_171692.html. [80]Bartlett R. Introduction to sports biomechanics: Analysing human movement patterns[M]. Routledge, 2014. [81]Angeles J, Bai S. Kinematics of mechanical systems: fundamentals, analysis and synthesis[M]. Springer Nature, 2022. [82]Clark M A, Lucett S, Corn R J. NASM essentials of personal fitness training[M]. Lippincott Williams & Wilkins, 2008. [83]Anderson L, Glover D R. Building character, community, and a growth mindset in physical education: Activities that promote learning and emotional and social development[M]. Human Kinetics, 2017. [84]Hofmann C A. Comparisons of countermovement jump and isokinetic performance in youth athletes: maturation and early sport specialization considerations[M]. University of Salford (United Kingdom), 2022. [85]Radcliffe J C. Functional training for athletes at all levels: workouts for agility, speed and power[M]. Simon and Schuster, 2007. [86]Agostinis‐Sobrinho C A, Ramírez‐Vélez R, García‐Hermoso A, et al. Low‐grade inflammation and muscular fitness on insulin resistance in adolescents: Results from LabMed Physical Activity Study[J]. Pediatric diabetes, 2018, 19(3): 429-435. [87]Freedman D S, Burke G L, Harsha D W, et al. Relationship of changes in obesity to serum lipid and lipoprotein changes in childhood and adolescence[J]. JAMA, 1985, 254(4): 515-520. [88]Smith J J, Eather N, Weaver R G, et al. Behavioral correlates of muscular fitness in children and adolescents: a systematic review[J]. Sports Medicine, 2019, 49:887-904. [89]Fernandez-Santos J R, Ruiz J R, Cohen D D, et al. Reliability and validity of tests to assess lower-body muscular power in children[J]. The Journal of Strength & Conditioning Research, 2015, 29(8): 2277-2285. [90]Hackett D A, Davies T B, Ibel D, et al. Predictive ability of the medicine ball chest throw and vertical jump tests for determining muscular strength and power in adolescents[J]. Measurement in Physical Education and Exercise Science, 2018, 22(1): 79-87. [91]Frost D M, Cronin J, Newton R U. A biomechanical evaluation of resistance: fundamental concepts for training and sports performance[J]. Sports Medicine, 2010, 40: 303-326. [92]Grgic J, Schoenfeld B J, Davies T B, et al. Effect of resistance training frequency on gains in muscular strength: a systematic review and meta-analysis[J]. Sports Medicine, 2018, 48: 1207-1220. [93]Dinç N, Ergin E. The Effect of 8-Week Core Training on Balance, Agility and Explosive Force Performance[J]. Universal journal of educational research, 2019, 7(2): 550-555. [94]Wu W F W, Porter J M, Brown L E. Effect of attentional focus strategies on peak force and performance in the standing long jump[J]. The Journal of Strength & Conditioning Research, 2012, 26(5): 1226-1231. [95]Castro-Piñero J, Ortega F B, Artero E G, et al. Assessing muscular strength in youth: usefulness of standing long jump as a general index of muscular fitness[J]. The Journal of Strength & Conditioning Research, 2010, 24(7): 1810-1817. [96][1] Mueller A .An Overview of Formulae for the Higher-Order Kinematics of Lower-Pair Chains with Applications in Robotics and Mechanism Theory[J]..Mechanism and Machine Theory,2019, 142:35 [97]Karandikar N, Vargas O O O. Kinetic chains: a review of the concept and its clinical applications[J]. Pm&r, 2011, 3(8): 739-745. [98]Chaitidou V, Panoutsakopoulos V. Long jump performance is not related to inter-limb asymmetry in force application in isometric and vertical jump tests[J]. Biomechanics, 2023, 3(3): 389-400. [99]Iida Y, Kanehisa H, Inaba Y, et al. Role of the coordinated activities of trunk and lower limb muscles during the landing-to-jump movement[J]. European journal of applied physiology, 2012, 112: 2223-2232. [100]Porter J M, Ostrowski E J, Nolan R P, et al. Standing long-jump performance is enhanced when using an external focus of attention[J]. The Journal of Strength & Conditioning Research, 2010, 24(7): 1746-1750. [101]Balsalobre-Fernández C, Tejero-González C M, del Campo-Vecino J, et al. The concurrent validity and reliability of a low-cost, high-speed camera-based method for measuring the flight time of vertical jumps[J]. The Journal of Strength & Conditioning Research, 2014, 28(2): 528-533. [102]Stankov L, Crawford J D. Self-confidence and performance on tests of cognitive abilities[J]. Intelligence, 1997, 25(2): 93-109. [103]Shen D, Zhu N. Influence of the temperature and relative humidity on human heat acclimatization during training in extremely hot environments[J]. Building and Environment, 2015, 94: 1-11. [104]Hibbs A E, Thompson K G, French D, et al. Optimizing performance by improving core stability and core strength[J]. Sports medicine, 2008, 38: 995-1008. [105]Slaski M, Cartwright S. Emotional intelligence training and its implications for stress, health and performance[J]. Stress and health, 2003, 19(4): 233-239. [106]Wade M, Campbell A, Smith A, et al. Investigation of spinal posture signatures and ground reaction forces during landing in elite female gymnasts[J]. Journal of applied biomechanics, 2012, 28(6): 677-686. [107]Yang T, Duan Z. Design of personalized ideological and political education resource recommendation system in the online education platform in the network environment[J]. Journal of Environmental and Public Health, 2022, 2022:3845749. [108]Sargeant A J, Hoinville E, Young A. Maximum leg force and power output during short-term dynamic exercise[J]. Journal of applied physiology, 1981, 51(5): 1175-1182. [109]Ducharme S W, Wu W F W, Lim K, et al. Standing long jump performance with an external focus of attention is improved as a result of a more effective projection angle[J]. The Journal of Strength & Conditioning Research, 2016, 30(1): 276-281. [110]Pinoniemi B K, Tomkinson G R, Walch T J, et al. Temporal trends in the standing broad jump performance of United States children and adolescents[J]. Research Quarterly for Exercise and Sport, 2021, 92(1): 71-81. [111]Katsanis G, Chatzopoulos D, Barkoukis V, et al. Effect of a school-based resistance training program using a suspension training system on strength parameters in adolescents[J]. Journal of Physical Education and Sport, 2021, 21(5): 2607-2621. [112]Shi L, Lyons M, Duncan M, et al. Effects of variable resistance training within complex training on neuromuscular adaptations in collegiate basketball players[J]. Journal of human kinetics, 2022, 84(1): 174-183. [113]Boraczyński M, Boraczyński T, Gajewski J, et al. Effects of intensity modulated total-body circuit training combined with soccer training on physical fitness in prepubertal boys after a 6-month intervention[J]. Journal of Human Kinetics, 2021, 80(1): 207-222. [114]Fitton Davies K, Sacko R S, Lyons M A, et al. Association between Functional Movement Screen scores and athletic performance in adolescents: a systematic review[J]. Sports, 2022, 10(3):28. [115]Van Wouwe T, Hicks J, Delp S, Liu KC. A simulation framework to determine optimal strength training and musculoskeletal geometry for sprinting and distance running. PLoS Comput Biol. 2024 Feb 23;20(2):e1011410. [116]Escamilla-Nunez R, Michelini A, Andrysek J. Biofeedback systems for gait rehabilitation of individuals with lower-limb amputation: a systematic review[J]. Sensors, 2020, 20(6):1628. [117]Borghuis J, Hof A L, Lemmink K A P M. The importance of sensory-motor control in providing core stability: implications for measurement and training[J]. Sports medicine, 2008, 38: 893-916. [118]Tompsett C, Burkett B J, McKean M. Development of physical literacy and movement competency: A literature review[J]. Journal of fitness research, 2014, 3(2): 53-74. [119]Hans-JoachimWilke, SteffenWolf, Lutz E. Claes, Markus Arand, Alexander Wiesend.Stability Increase of the Lumbar Spine With Different Muscle Groups: A Biomechanical In Vitro Study[J].Spine, 1995 Jan 15;20(2):192-198. [120]Tibana R A, De Sousa N M F, Cunha G V, et al. Validity of session rating perceived exertion method for quantifying internal training load during high-intensity functional training[J]. Sports, 2018, 6(3): 68. [121]Baron J, Bieniec A, Swinarew A S, et al. Effect of 12-week functional training intervention on the speed of young footballers[J]. International journal of environmental research and public health, 2020, 17(1): 160. [122]McLaughlin E C, El-Kotob R, Chaput J P, et al. Balance and functional training and health in adults: an overview of systematic reviews[J]. Applied Physiology, Nutrition, and Metabolism, 2020, 45(10): S180-S196. [123] Vagner M , Cleather D , Kubov P ,et al.Effect of strength training programs on front push kick dynamics and kinematics[J].Archives of Budo, 2021, 17. [124]Tai H, Tai D. Application of Functional Training Methods in Wrestling Training[J]. Frontiers in Sport Research, 2021, 3(5): 60-65. [125]Martín-Escudero P, Cabanas A M, Dotor-Castilla M L, et al. Are activity wrist-worn devices accurate for determining heart rate during intense exercise?[J]. Bioengineering, 2023, 10(2): 254. [126]Bashir M, Soh K G, Samsudin S, et al. Effects of functional training on sprinting, jumping, and functional movement in athletes: A systematic review[J]. Frontiers in physiology, 2022, 13: 1045870. [127]Andreasen J, Molgaard C M, Christensen M, et al. Exercise therapy and custom-made insoles are effective in patients with excessive pronation and chronic foot pain-a randomized controlled trial[J]. Foot (Edinb), 2013;23(1):22-28. [128]Silva A, Sousa A S, Silva C, et al. Ankle antagonist coactivation in the double-support phase of walking: Stroke vs. healthy subjects[J]. Somatosens Mot Res, 2015, 32(3):153-157. [129]Kelly L A, Cresswell A G, Racinais S, et al. Intrinsic foot muscles have the capacity to control deformation of the longitudinal arch[J]. J R Soc Interface, 2014,11(93):20131188. [130]Bashir Marrium, Soh Kim Geok, Samsudin Shamsulariffin, Akbar Saddam, Luo Shengyao, Sunardi Jaka.Effects of functional training on sprinting, jumping, and functional movement in athletes: A systematic review[J].Frontiers in Physiology, 2022, 13:1045870. [131]Tibana, Ramires and Sousa, Nuno and Cunha, Gabriel and Prestes, Jonato and Fett, Carlos and Gabbett, Tim and Voltarelli, Fabrício.Validity of Session Rating Perceived Exertion Method for Quantifying Internal Training Load during High-Intensity Functional Training[J].Sports, 2018, (6):12. [132]Baron, Jakub and Bieniec, and Swinarew, and Gabrys, Tomasz and Stanula, Arkadiusz.Effect of 12-Week Functional Training Intervention on the Speed of Young Footballers[J].International Journal of Environmental Research and Public Health, 2019, (17):160. [133]McLaughlin, Emily and El-Kotob, Rasha and Chaput, Jean-Philippe and Janssen, Ian and Kho, Michelle and Belcourt, Veronica and Ross, Robert and Ross-White, Amanda and Saunders, Travis and Sherrington, Catherine and Giangregorio, Lora.Balance and functional training and health in adults: an overview of systematic reviews[J].Applied Physiology Nutrition and Metabolism, 2020, (45):S180–S196. [134]Vagner Michal, Olah Vladan, Cleather J.Daniel, Stastny Petr.Evidence-Based Functional Training to Improve Front Push Kick Technique, Speed, and Net Force Production[J].Strength & Conditioning Journal, 2022(3):44. [135]Hongkun Tai,Dongxiang Tai.Application of Functional Training Methods in Wrestling Training[J].Frontiers in Sport Research, 2021:3.0(5.0). [136]Soriano M , Boullosa D , Amaro-Gahete F .Editorial: Functional fitness/high intensity functional training for health and performance[J].Frontiers in Physiology, 2022, 13. [137]Benítez-Flores S, Castro FAS, Lusa Cadore E, Astorino TA. Sprint Interval Training Attenuates Neuromuscular Function and Vagal Reactivity Compared With High-Intensity Functional Training in Real-World Circumstances. J Strength Cond Res. 2023 May 1;37(5):1070-1078. [138]Toshiharu Yokozawa, Daisuke Kumagawa, Hiroshi Arakawa, Yoichi Katsumata, Ryota Akagi, A Biomechanical Analysis of the Relationship between the Joint Powers during the Standing Long Jump and Maximum Isokinetic Strength of the Lower Limb Joints*, International Journal of Sport and Health Science, 2019, 17:13-24. [139]Adeel M, Lin B S, Chaudhary M A, et al. Effects of Strengthening Exercises on Human Kinetic Chains Based on a Systematic Review[J]. Journal of Functional Morphology and Kinesiology, 2024, 9(1): 22. [140]Martínez M, Ramírez-Vélez R, Correa Bautista J E. Normative Reference of Standing Long Jump for Colombian Schoolchildren Aged 9-17.9 Years: The FUPRECOL Study[D]. Universidad del Rosario, 2017: 2083-2090. [141]Rogers S. Movement competency in youth athletic development: exploring assessment and training delivery[D]. Southern Cross University, 2020:8,4 39. [142]Dawadi M K. Knee antagonist muscle activity during open and closed kinetic chain exercises among healthy individuals and gender differences[D]. NTNU, 2022.
﹀
|
中图分类号: |
G40
|
开放日期: |
2025-05-26
|