中文题名: |
沙漠砂混凝土柱偏心受压力学性能研究
|
姓名: |
李敏
|
学号: |
20212010010
|
保密级别: |
公开
|
论文语种: |
chi
|
学科代码: |
081402
|
学科名称: |
工学 - 土木工程 - 结构工程
|
学生类型: |
硕士
|
学位: |
工程硕士
|
学位类型: |
学术学位
|
学位年度: |
2024
|
学校: |
石河子大学
|
院系: |
水利建筑工程学院
|
专业: |
土木工程
|
研究方向: |
结构工程
|
第一导师姓名: |
李志强
|
第一导师单位: |
石河子大学
|
完成日期: |
2024-07-01
|
答辩日期: |
2024-07-08
|
外文题名: |
Study on mechanical properties of desert sand concrete column under eccentric compression
|
中文关键词: |
沙漠砂混凝土柱 ; 偏心受压 ; 力学性能 ; 极限承载力 ; 有限元分析
|
外文关键词: |
desert sand concrete column ; eccentric compression ; mechanical property ; ultimate bearing capacity ; finite element analysis
|
中文摘要: |
︿
经济技术的繁荣发展和人民生活水平的提高扩大了基础设施的建设规模,导致对混凝土的需求激增,同时也引发了天然河砂资源短缺等问题。在西北地区采用储量丰富的沙漠砂用于混凝土的制备不仅可以解决上述资源匮乏的问题,还能够节约大量的运输成本并有效缩短项目工期。目前对沙漠砂混凝土(DSC)偏心受压柱力学性能的研究较少,因此本文以DSC偏心受压柱为研究对象,通过试验研究、数值模拟及理论分析相结合的方法,对偏心受压下DSC柱的力学性能进行了系统的研究。主要工作及结论如下:
(1)设计制作了9根DSC偏心受压柱,通过变化沙漠砂替代率、偏心距和配筋率进行偏心荷载下的拟静力加载试验,研究了DSC偏压柱的破坏形态和力学性能,分析了各参数对其偏压性能的影响。试验结果表明,沙漠砂混凝土偏压柱的破坏过程与普通混凝土柱类似,都经历弹性阶段、弹塑性阶段和极限状态,破坏形态分为大、小偏心破坏。随着沙漠砂替代率的增加,DSC偏心受压柱的承载力呈先减小后增加再减小的趋势。沙漠砂替代率为40%、60%的偏压柱的峰值荷载值较普通混凝土柱提高了16.11%、6.99%。随着纵筋配筋率的增大和偏心距的减小,DSC偏压柱的峰值荷载呈增长趋势。
(2)基于试验数据,利用有限元软件ABAQUS建立DSC偏压构件的有限元模型,模拟得到的破坏形态、荷载-挠度曲线和峰值荷载与试验结果吻合较好。在此基础上分析了箍筋间距、高宽比、长细比等参数对其力学性能的影响。参数化分析结果表明:箍筋间距和高宽比对DSC偏心柱的影响不大,试件的承载力随着箍筋间距的减小、高宽比的增大而增大。长细比对DSC偏心受压柱的性能影响显著,试件的承载力会随着长细比的提高而减小。
(3)根据试验数据和有限元分析结果,依据现有中国规范(GB50010-2010)和美国规范(ACI-14)中关于柱的偏心受压计算方法对DSC柱进行了计算分析。结果表明:采用中国规范计算DSC偏心受压柱的承载力是可行的,但是较为保守。通过对试验数据回归分析,引入影响偏压柱试件承载力的相关系数k,α ,在中国规范计算公式的基础上进行了修正。试验值与修正后的公式计算值的比值为1.075,标准偏差为0.122,变异系数为0.113,拟合公式计算值与试验值吻合较好。
﹀
|
外文摘要: |
︿
The prosperity of economy and technology and the growth in the living standard expanded the scale of infrastructure construction, and it also brings serious problems such as huge consumption of concrete materials and shortage of natural river sand.The use of abundant desert sand in the northwest region for the preparation of concrete can not only solve the problem of resource scarcity mentioned above, but also save a lot of transportation costs and effectively shorten the project duration. At present, there is limited research on the mechanical properties of desert sand concrete(DSC) eccentric compression columns. Therefore, this thesis takes DSC eccentric compression columns as the research object, and systematically studies the mechanical properties of DSC columns under eccentric compression through a combination of experimental research, numerical simulation, and theoretical analysis. The main work and conclusions are as follows:
(1) We designed and fabricated nine eccentrically loaded DSC columns, conducting quasi-static loading tests under eccentric load by varying the desert sand replacement rate, eccentricity, and reinforcement ratio. The study aimed to investigate the failure modes and mechanical properties of the DSC columns and analyze the impact of various parameters on their performance. In the experiment, DSC columns exhibited a similar failure process to ordinary concrete columns, both have undergone the elastic stage, elastoplastic stage, and ultimate state, with failure modes classified into large and small eccentric failures. As the desert sand replacement rate increases, the bearing capacity of the DSC columns initially decreases, then increases, and finally decreases again. The peak load values of the columns with 40% and 60% desert sand replacement rates increased by 16.11% and 6.99%, respectively. The peak load of DSC columns exhibits an upward trend with an increase in longitudinal reinforcement ratio and a decrease in eccentricity.
(2) Based on experimental data, a finite element model of DSC eccentric compression components was established using the finite element software ABAQUS. The simulated failure mode, load deflection curve, and peak load were in good agreement with the experimental results. On this basis, the influence of parameters such as hoop spacing, aspect ratio, and slenderness ratio on its mechanical properties was analyzed. The parameterized analysis results indicate that the spacing between hoops and the aspect ratio have little effect on the eccentric columns of DSC. The bearing capacity of the specimens increases with the decrease of spacing between hoops and the increase of aspect ratio. The aspect ratio has a significant impact on the performance of DSC eccentric compression columns, and the bearing capacity of the specimens will decrease with the increase of aspect ratio.
(3) Based on the experimental data and finite element analysis results, calculations and analyses of the DSC columns were performed according to the existing Chinese code (GB50010-2010) and the American code (ACI-14) for eccentrically loaded columns. The results show that calculating the load capacity of DSC columns under eccentric compression using Chinese code is feasible, but relatively conservative. Through regression analysis of the experimental data, relevant coefficients k and α, which influence the bearing capacity of eccentrically loaded column specimens, were introduced, and modifications were made to the Chinese code calculation formula. The test results to the corrected formula yield a ratio of 1.075, with a standard deviation of 0.122 and a coefficient of variation at 0.113. The values calculated using the fitting formula closely align with the test results.
﹀
|
参考文献: |
︿
[1]杨德胜. 新时代绿色高性能混凝土发展的必要性研究[J]. 混凝土, 2019, (11): 145-148. [2]Xiao J Z, Qiang C B, Nanni A, et al. Use of sea-sand and seawater in concrete construction: Current status and future opportunities[J]. Construction and Building Materials, 2017, 155:1101-1111. [3]盛安连, 沙漠地区公路设计[M]. 北京: 人民交通出版社, 1996. [4]张华东, 李志强, 马瑞, 等. 沙漠砂混凝土研究现状与进展[J]. 混凝土, 2021, (09): 153-155+160. [5]马瑞, 李志强, 张华东, 等. 沙漠砂混凝土耐久性研究现状及展望[J]. 混凝土, 2021, (09): 156-160. [6]李志强, 杨森, 王国庆, 等. 古尔班通古特沙漠砂混凝土配合比试验研究[J]. 混凝土, 2016, (09): 92-96+99. [7]李志强, 杨森, 王国庆, 等. 沙漠砂混凝土梁抗弯性能研究[J]. 应用力学学报, 2019, 36(04): 931-938+1002-1003. [8]李志强, 杨森, 曾晓云, 等. 沙漠砂混凝土梁抗剪性能研究[J]. 应用力学学报, 2020, 37(05): 2134-2140+2329. [9]李志强, 马瑞, 甘丹. 沙漠砂混凝土框架柱抗震性能试验研究[J]. 振动与冲击, 2021, 40(24): 221-229. [10]李志强, 张华东, 甘丹. 沙漠砂混凝土框架节点抗震性能试验研究[J]. 振动工程学报, 2023, 36 (03): 757-766. [11]张幸, 姚正轩, 曾晓云, 等. 沙漠砂混凝土框架梁柱边节点抗震性能有限元分析[J]. 混凝土, 2021, (11): 44-48. [12]马瑞. 沙漠砂混凝土短柱轴压力学性能试验研究[D]. 石河子大学, 2023. [13]张国学, 宋建夏, 杨维武, 等. 沙漠砂对水泥砂浆和混凝土性能的影响[J]. 宁夏大学学报(自然科学版), 2003, 24(1): 63-63. [14]AI-Harthy A S, Abdel H M, Taha R, et al. The properties of concrete made with fine dune sand[J]. Construction and Building Materials, 2006, 21(8): 1803-1808. [15]陈美美, 宋建夏, 赵文博, 等. 掺粉煤灰、腾格里沙漠砂混凝土力学性能的研究[J]. 宁夏工程技术, 2011, 10(1): 61-63. [16]Khay S E E, Neji J, Loulizi A. Compacted dune sand concrete for pavement applications[J].Proceedings of the Institution of Civil Engineers-Construction Materials, 2011, 164(2): 87-93. [17]Alhozaimy A, Jaafar M S, Al-Negheimish A, et al. Properties of high strength concrete using white and dune sands under normal and autoclaved curing[J]. Construction and Building Materials, 2012, 27(1):218-222. [18] Luo F J, He L, Pan Z, et al. Effect of very fine particles on workability and strength of concrete made with dune sand[J]. Construction and Building Materials, 2013, 47: 131-137. [19]Benabed B, Azzouz L, Kadri E H, et al. Effect of fine aggregate replacement with desert dune sand on fresh properties and strength of self-compacting mortars[J]. Journal of Adhesion Science and Technology, 2014, 28(21): 2182-2195. [20]杨维武, 陈云龙, 马菊荣, 等. 沙漠砂替代率对高强混凝土抗压强度影响研究[J]. 科学技术与工程, 2014,14(19): 289-292. [21]Wang W H, Han L H, Li W, et al. Behavior of concrete-filled steel tubular stub columns and beams using dune sand as part of fine aggregate[J]. Construction and building materials, 2014, 51(1): 352-363. [22]Hadjoudja M, Khenfer M M, Mesbah H A, et al. Statistical models to optimize fiber-reinforced dune sand concrete[J]. Arabian journal for science and engineering, 2014, 39(4): 2721-2731. [23] 马菊荣, 刘海峰, 杨维武. 毛乌素沙漠砂混凝土力学性能研究[J]. 科学技术与工程, 2015, 15(04): 267-272. [24]刘艳华, 王铁良, 白义奎, 等. 沙漠砂混合砂浆性能正交性试验[J]. 沈阳农业大学学报, 2015,46(03): 373-378. [25]董存,沙吾列提·拜开依,伊力亚尔·阿不都热西提,等.天然沙漠砂钢筋混凝土梁受弯性能的试验研究[J]. 建筑结构, 2017,47(24):98-104. [26]吕剑波, 刘宁, 刘海峰. 高温后沙漠砂混凝土抗压强度研究[J]. 混凝土, 2017, (07): 129-133. [27]刘宁,刘海峰,杨浩,等.高温对沙漠砂混凝土抗压强度的影响[J].广西大学学报(自然科学版),2018,43(04):1581-1587. [28]张佳明, 袁康, 邹蕊月, 等. 沙漠砂陶粒混凝土配合比试验研究[J]. 硅酸盐通报, 2018, 37(8): 7. [29]Ren Q X, Zhou K, Hou C, et al. Dune sand concrete-filled steel tubular (CFST) stub columns under axial compression: Experiments[J]. Thin-Walled Structures, 2018, 124: 291-302. [30]Hadjoudja M, Mesbah H A, Bederina M, et al. Modeling of dimensional variations of a dune sand concrete reinforced by addition of steel fibers[J]. Journal of Adhesion Science and Technology, 2019, 33(21): 1-22. [31]Jiang J Y, Feng T T, Chu H Y, et al. Quasi-static and dynamic mechanical properties of eco-friendly ultra-high-performance concrete containing aeolian sand[J]. Cement and Concrete Composites, 2019, 97: 369-378. [32]马映昌,刘海峰,张明虎. 低温作用下沙漠砂替代率和粉煤灰掺量对混凝土抗压强度影响[J]. 工业建筑, 2020, 50(05):81-87+80. [33]Liu H F, Chen X L, Che J L, et al. Mechanical performances of concrete produced with desert sand after elevated temperature[J]. International Journal of Concrete Structures and Materials, 2020, 14(1): 1803-1808. [34]张明虎, 刘海峰, 马映昌, 等. 低应变率下沙漠砂混凝土动态力学性能及本构模型[J]. 应用力学学报, 2020, 37(05): 2160-2166+2331. [35]Liu Y J, Yang W W, Chen X L, et al. Effect of desert sand on the mechanical properties of desert sand concrete(DSC)after elevated temperature[J]. Advances in Civil Engineering, 2021(1): 1-17. [36]刘超, 林鑫, 刘化威, 等. 风积沙与再生复合微粉对超高性能混凝土力学性能的影响[J]. 复合材料学报, 2022, 39(11): 5415-5422. [37]秦拥军, 张逸飞, 李向阳, 等. 沙漠砂混凝土深梁裂缝试验[J]. 中国科技论文, 2022, 17(07): 759-763+769. [38]Li Z Q, Gan D, Cyclic behavior and strength evaluation of RC columns with dune sand[J]. Journal of Building Engineering, 2022, 47: 103801. [39]沙吾列提·拜开依, 阿力马斯·叶尔布拉提, 古丽迪·努尔特列克. 配筋钢管掺沙漠砂混凝土短柱力学性能研究[J/OL]. 工程力学: 1-9. [40]Lina H, Jian S L, Wei H. The Effect of Polypropylene Fiber and Glass Fiber on the Frost Resistance of Desert Sand Concrete[J].KSCE Journal of Civil Engineering,2023,28(1):342-353. [41]罗玲, 蔡颖, 张泽敏, 等. 玄武岩纤维高强沙漠砂梁抗剪性能试验研究[J]. 中国科技论文, 2023, 18(08): 813-819+866. [42]李明, 陆洲导, 王李果. 玻璃钢围覆加固钢筋混凝土偏心受压柱的试验研究[J]. 土木工程学报, 2000, 33(3): 37-41. [43]王庆利, 张永丹, 谢广鹏, 等. 圆截面CFRP-钢管混凝土柱的偏压试验[J]. 沈阳建筑大学学报(自然科学版), 2005, (05): 7-10. [44]陆洲导, 谢群, 姜安庆. 碳纤维布加固钢筋混凝土偏心受压柱试验研究[J]. 建筑结构, 2005 , (03): 36-38. [45]刘立新, 李洪彦, 张艳丽, 等. 500 MPa级钢筋混凝土偏心受压柱受力性能的试验研究[J]. 郑州大学学报(工学版), 2007, (02): 30-34. [46]郭光玲. 玻璃纤维布加固钢筋混凝土偏心受压柱的试验研究[J]. 兰州理工大学学报, 2008, (04): 123-126. [47]王全凤, 沈章春, 黄奕辉, 等. HRB500级高强钢筋混凝土柱偏压试验研究[J]. 工业建筑, 2009, 39 (07): 83-86. [48]龚永智, 张继文. CFRP筋增强混凝土偏心受压柱受力性能的试验研究[J]. 土木工程学报, 2009,42 (10): 46-52. [49]Montuori R, Piluso V. Reinforced concrete columns strengthened with angles and battens subjected to eccentric load[J]. Engineering Structures, 2009, 31(2): 539-550. [50]何益斌, 肖阿林, 郭健, 等. 钢骨-钢管自密实高强混凝土偏压柱力学性能试验研究[J]. 建筑结构学报, 2010,31(04): 102-109. [51]陈宗平, 李启良, 张向冈, 等. 钢管再生混凝土偏压柱受力性能及承载力计算[J]. 土木工程学报, 2012, 45(10): 72-80. [52]Tokgoz S, Dundar C. Tests of eccentrically loaded L-shaped section steel fibre high strength reinforced concrete and composite columns[J]. Engineering Structures, 2012, 38: 134-141. [53]卜良桃, 鲁晨, 朱健. 水泥钢纤维砂浆钢筋网加固矩形RC偏压柱试验研究[J]. 湖南大学学报(自然科学版), 2013, 40(03): 15-20. [54]薛亚东, 刘德军, 黄宏伟, 等. 纤维编织网增强混凝土侧面加固偏压短柱试验研究[J]. 工程力学, 2014, 31(03): 228-236. [55]Husem M, Pul S, Gorkem E S, et al. The behaviour of high-strength reinforced concrete columns under low eccentric loading[J]. European Journal of Environmental and Civil Engineering, 2016, 20(4): 486-502. [56]Xu C S, Liu J, Ding Z X, et al. Size effect tests of high-strength RC columns under eccentric loading[J]. Engineering Structures, 2016, 126(1): 78-91. [57]曾翔超, 余红发. 碱镁混凝土大偏心受压柱的试验研究[J]. 哈尔滨工程大学学报, 2017, 38(06): 852-858. [58]Sun L, Wei M H, Zhang N. Experimental study on the behavior of GFRP reinforced concrete columns under eccentric axial load[J]. Construction and Building Materials, 2017, 152: 214-225. [59]Cai J M, Pan J L, Lu C, et al. Mechanical behavior of ECC-encased CFST columns subjected to eccentric loading[J]. Engineering Structures, 2018, 144: 283-294. [60]卓卫东, 黄璐, 陈阵, 等. 500MPa级钢筋自密实混凝土偏压短柱受力性能试验及有限元模拟分析[J]. 工程力学, 2018, 35(09): 197-206. [61]王海龙, 凌佳燕, 孙晓燕, 等. 不锈钢筋混凝土柱小偏心受压性能[J]. 浙江大学学报(工学版), 2018, 52(10): 1919-1925. [62]Da B, Yu H F, Ma H Y, et al. Research on compression behavior of coral aggregate reinforced concrete columns under large eccentric compression loading[J]. Ocean Engineering, 2018, 155: 251-260. [63]Yuan F, Chen M C, Zhou F L, et al. Behaviors of steel-reinforced ECC columns under eccentric compression[J]. Construction and Building Materials, 2018, 185: 402-413. [64]戎贤, 杜虹茜, 张健新. HRB600E钢筋混凝土偏心受压柱受力性能试验研究[J]. 硅酸盐通报, 2019, 38(01): 60-64 [65]张建伟, 夏冬瑞, 乔崎云, 等. HRB600级钢筋高强混凝土柱偏心受压性能试验研究[J]. 建筑结构学报, 2019, 40(4): 7. [66]邓明科, 李睿喆, 张阳玺,等. 高延性混凝土偏心受压柱正截面受力性能试验研究[J].工程力学, 2019, 36(11): 62-71. [67]Yang Y, Chen Y, Zhang W S, et al. Behavior of partially precast steel reinforced concrete columns under eccentric loading[J]. Engineering Structures, 2019, 197: 109429. [68]A Salah-Eldin, HM Mohamed, B Benmokrane. Structural performance of high-strength-concrete columns reinforced with GFRP bars and ties subjected to eccentric loads[J]. Engineering Structures, 2019, 185: 286-300. [69]Jawdhari A, Adheem A H, Kadhim M. Parametric 3D finite element analysis of FRCM-confined RC columns under eccentric loading[J]. Engineering Structures, 2020, 212:110504. [70]Mohammed A. Sakr, Tamer M. El Korany, Bothaina Osama. Analysis of RC columns strengthened with ultra-high performance fiber reinforced concrete jackets under eccentric loading[J]. Engineering Structures, 2020, 220: 111016. [71]Lin G, Zeng J, Teng J, et al. Behavior of large-scale FRP-confined rectangular RC columns under eccentric compression[J]. Engineering Structures, 2020, 216:110759. [72]张建伟, 刘娟, 冯曹杰, 等. HRB600级钢筋钢纤维高强混凝土柱的受压性能[J]. 建筑结构, 2021, 51(04): 71-76+32. [73]王毅红, 田桥罗, 兰官奇, 等. 630MPa高强钢筋混凝土大偏压柱受力性能试验[J]. 吉林大学学报(工学版), 2022, 52(11): 2626-2635. [74]马辉, 陈云冲, 贾梦璐, 等. 方钢管型钢再生混凝土偏压柱力学性能非线性有限元分析[J]. 应用力学学报, 2021, 38(05): 2069-2078. [75]Cao Q, Jia J Q, Zhang L H, et al. Steel reinforced post-filling coarse aggregate concrete columns under eccentric compression[J]. Construction and Building Materials, 2021, 270: 121-420. [76]Chen R P, Ma Q L, Zhang Y, et al. Experimental study on the mechanical behaviour of eccentric compression short column strengthened by ultra-high-performance fibre-reinforced concrete[J]. Structures, 2021, 33: 508-522. [77]Gao K, Xie H, Li Z, et al. Study on eccentric behavior and serviceability performance of slender rectangular concrete columns reinforced with GFRP bars[J]. Composite Structures, 2021, 263: 113680. [78]Zhang Q T, Xiao J Z, Zhang K J, et al. Mechanical behavior of seawater sea-sand recycled concrete columns confined by engineered cementitious composite under eccentric compression[J]. Journal of Building Engineering, 2022, 45:103497. [79]杨志坚, 彭书存, 李帼昌, 等. 配筋空心方钢管高强混凝土偏压短柱有限元分析[J]. 沈阳建筑大学学报(自然科学版), 2022, 38(04): 655-663. [80]赵要康, 王新玲, 李可. 钢绞线网-ECC加固RC柱小偏心受压承载力研究[J]. 建筑结构学报, 2023, 44(10): 188-196. [81]Elsayed M, Althoey F, Tayeh B A, et al. Behavior of eccentrically loaded hybrid fiber-reinforced high strength concrete columns exposed to elevated temperature[J]. Journal of Materials Research and Technology, 2022,19: 1003-1020. [82]Chen Z P, Liao H Y, Zhou J, et al. Eccentric compression behavior of reinforced recycled aggregate concrete columns after exposure to elevated temperatures: Experimental and numerical study[J]. Structures, 2022, 43: 959-976. [83]M. Achyutha Kumar Reddy, V. Ranga Rao, Veerendrakumar C, et al. Optimization of reinforced bentocrete column parameters under eccentric compression[J]. Structures, 2022, 41: 1027-1060. [84]冯倍森, 秦拥军, 黄东, 等. 玄武岩纤维沙漠砂混凝土柱受压破坏研究[J]. 科学技术与工程, 2023, 23(34): 14760-14768. [85]Xiao L L, Hu H J, Peng S, et al. Compression behavior of GFRP reinforced hybrid fibre reinforced concrete short columns subjected to eccentric loading[J]. Construction and Building Materials, 2023, 393:131985. [86]Liu S, Wang X, Yahia M, et al. Experimental study on eccentric compression behavior of slender rectangular concrete columns reinforced with steel and BFRP bars[J]. Engineering Structures, 2023, 293: 116-626. [87]Cai B, Bai B Y, Duan W F, et al. Study on the Eccentric Compressive Performance of Steel Fibre Reinforced Coal Gangue Concrete Columns[J]. Buildings, 2023, 13(5): 1920. [88]Yaroslav B, Jacek S, Rostyslav V, et al. Strengthening RC eccentrically loaded columns by CFRP at different levels of initial load[J]. Engineering Structures,2023, 280:115694. [89]Zhang Y, Xiong X Y, He L Y, et al. Behavior of large-scale concrete columns reinforced with high-strength and high-toughness steel bars under axial and eccentric compression[J]. Journal of Building Engineering, 2023, 79:107766. [90]中华人民共和国标准. GB/T 50152-2012.混凝土结构试验方法标准[S]. 北京:中国建筑工业出版社,2014. [91]中华人民共和国标准. GB50010-2010.混凝土结构设计规范[S]. 北京:中国建筑工业出版社,2015. [92]李志强, 王国庆, 杨森, 等. 沙漠砂混凝土力学性能及应力-应变本构关系试验研究[J]. 应用力学学报, 2019, 36(05): 1131-1137+1261. [93]Birtel V, Mark, P. 2006. Parameterised finite element modelling of RC beam shear failure[C]. Proceedings of the 19th Annual International ABAQUS Users’ Conference. Boston,USA: ABAQUS Inc.,2006:95-108. [94]ACI 318-14. Building Code Requirements for Structural Concrete and Commentary[S]. American Concrete Institute (ACI), Detroit, 2014. [95]侯建国, 杨力, 叶亚鸿, 等. 新版混凝土结构设计规范二阶效应的设计规定简介[J]. 武汉大学学报(工学版), 2013, 46(S1): 56-68.
﹀
|
中图分类号: |
TU3
|
开放日期: |
2024-07-17
|