- 无标题文档
查看论文信息

中文题名:

 溃疡性结肠炎中PI3K/AKT信号对NHERF4调控SLC26A3表达的影响    

姓名:

 陈向金    

学号:

 20172014058    

学科代码:

 100201    

学科名称:

 内科学    

学生类型:

 硕士    

院系:

 医学院    

专业:

 内科学    

研究方向:

 炎症性肠病肠黏膜层屏障功能障碍    

第一导师姓名:

 徐丽红    

第一导师单位:

 石河子大学    

完成日期:

 2020-06-06    

外文题名:

 Effects of PI3K / AKT signaling on NHERF4 regulation of SLC26A3 expression in ulcerative colitis    

中文关键词:

 

PI3K/AKT信号通路 ; 钠氢转运体调节因子4 ; 溶质载体26A3    

外文关键词:

 

PI3K / AKT signaling pathway ; NHERF4 ; SLC26A3    

中文摘要:

目的:本研究利用细胞学实验,选择Caco2细胞,稳定转染NHERF4后,运用PI3K/AKT信号激动剂及抑制剂上调和下调PI3K/AKT信号通路,了解NHERF4表达和细胞内定位,观察分析NHERF4对PI3K/AKT-SLC26A3作用的影响,从而分析UC中NHERF4对SLC26A3表达的影响奠定细胞学实验基础。

方法:

1.利用慢病毒LV-NHERF4感染Caco-2细胞,经嘌呤霉素筛后,获得实验所需的稳定转染NHERF4的Caco-2细胞株。

2.利用未转染NHERF4的Caco-2细胞和转染NHERF4质粒的Caco-2细胞,分别给予不同浓度的IGF-1试剂,加药浓度依次为0.1ug/mL、0.2ug/mL、0.4ug/mL、1ug/mL、2ug/mL、3ug/mL,观察NHERF4和SLC26A3蛋白表达量,分析NHERF4对PI3K/AKT-SLC26A3作用的影响。

3.利用未转染NHERF4的Caco-2细胞和转染NHERF4质粒的Caco-2细胞,分别给予不同浓度的LY294002试剂,加药浓度依次为1uM、2uM、3uM、4uM、5uM、6uM。观察NHERF4和SLC26A3蛋白表达量,分析NHERF4对PI3K/AKT-SLC26A3作用的影响。

结果:

1.成功构建稳定转染NHERF4的Caco-2细胞株,空白组与转染组差异具有统计学意义。

2.在未转染NHERF4的Caco-2细胞中,当激活PI3K/AKT信号通路时(N:0.336±0.007,0.1:0.478±0.001,0.2:0.488±0.002,0.4:0.678±0.002,1:0.613±0.001,2:0.546± 0.001,3:0.455±0.004,P<0.05),未转染组中NHERF4并未表达,SLC26A3蛋白表达量随着IGF-1浓度的增加而增加,增加至0.4ug/mL时达高峰,当IGF-1浓度大于0.4ug/mL后,SLC26A3蛋白表达量呈降低趋势(N:0.427 ±0.011,0.1:0.613±0.003,0.2:0.676±0.001,0.4:0.976±0.001,1:0.827±0.001,2:0.729±0.002,3:0.497±0.001,P<0.05),转染NHERF4质粒的Caco-2细胞中SLC26A3蛋白表达量随着IGF-1浓度的增加而增加,增加至0.4ug/mL时达高峰,当IGF-1浓度大于0.4ug/mL后,SLC26A3蛋白表达量呈降低趋势(N:0.484±0.002,Z:0.678±0.009,0.1:0.794±0.003,0.2:0.798±0.003,0.4:0.937±0.006,1:0.770±0.002,2:0.786±0.002,3:0.511±0.007,P<0.05)。

3.在未转染NHERF4的Caco-2细胞中,当抑制PI3K/AKT信号通路时(N:0.758±0.001,1:0.988±0.007,2:0.808±0.004,3:0.684±0.002,4:0.497±0.005,5:0.490±0.009,6:0.465±0.003,P<0.05),NHERF4未表达,SLC26A3表达量随着LY294002浓度的增加而减少(N:0.605±0.001,1:0.787±0.005,2:0.958±0.002,3:0.698±0.001,4:0.756±0.002,5:0.629±0.007,6:0.598±0.003,P<0.05),转染NHERF4质粒的Caco-2细胞中NHERF4蛋白表达量未随着LY294002浓度的浓度改变而改变,SLC26A3蛋白表达量随着LY294002浓度的升高呈降低趋势(N:0.678±0.007,Z:0.565±0.002,1:0.673±0.007,2:0.690±0.007,3:0.612±0.014,4:0.563±0.003,5:0.509±0.001,6:0.510±0.005,P<0.05)。

结论:

1.PI3K/AKT信号通路可能对Caco-2细胞中NHERF4的表达不产生影响。

2.本研究可提示在溃疡性结肠炎患者肠黏膜中持续过度激活的PI3K/AKT信号可能是患者肠黏膜中SLC26A3蛋白表达减少的机制之一。

外文摘要:

Object:This study used cytology experiments to select Caco2 cells and stably transfect NHERF4. PI3K / AKT signaling agonists and inhibitors were used to up-regulate and down-regulate PI3K / AKT signaling pathways to understand NHERF4 expression and intracellular localization. The effect of PI3K / AKT-SLC26A3, so as to analyze the effect of NHERF4 on the expression of SLC26A3 in UC and lay the foundation for cytology experiments.

Methods:

1. Caco-2 cells were infected with lentivirus LV-NHERF4. After puromycin sieving, Caco-2 cell lines stably transfected with NHERF4 were obtained.

2. Caco-2 cells that were not transfected with NHERF4 and Caco-2 cells that were transfected with NHERF4 plasmid were administered with different concentrations of IGF-1 reagents, and the drug concentration was 0.1ug / mL, 0.2ug / mL, 0.4ug / mL in order. , 1ug / mL, 2ug / mL, 3ug / mL, observe the expression of NHERF4 and SLC26A3 protein, and analyze the effect of NHERF4 on the effect of PI3K / AKT-SLC26A3.

3. Caco-2 cells that were not transfected with NHERF4 and Caco-2 cells that were transfected with NHERF4 plasmid were administered with different concentrations of LY294002 reagent, respectively, and the drug concentration was 1uM, 2uM, 3uM, 4uM, 5uM, 6uM. The expression of NHERF4 and SLC26A3 protein was observed, and the effect of NHERF4 on the effect of PI3K / AKT-SLC26A3 was analyzed.

results:

1. Caco-2 cell line stably transfected with NHERF4 was successfully constructed. The difference between the blank group and the transfection group was statistically significant.

2. In Caco-2 cells not transfected with NHERF4, when the PI3K / AKT signaling pathway is activated (N: 0.336 ± 0.007, 0.1: 0.478 ± 0.001, 0.2: 0.488 ± 0.002, 0.4: 0.678 ± 0.002, 1: 0.613 ± 0.001 , 2: 0.546 ± 0.001, 3: 0.455 ± 0.004, P <0.05), NHERF4 was not expressed in the non-transfected group, and the expression of SLC26A3 protein increased with the increase of IGF-1 concentration, increasing to 0.4ug / mL At the peak, when the concentration of IGF-1 was greater than 0.4ug / mL, the expression of SLC26A3 protein decreased (N: 0.427 ± 0.011, 0.1: 0.613 ± 0.003, 0.2: 0.676 ± 0.001, 0.4: 0.976 ± 0.001, 1: 0.827 ± 0.001, 2: 0.729 ± 0.002, 3: 0.497 ± 0.001, P <0.05). The expression of SLC26A3 protein in Caco-2 cells transfected with NHERF4 plasmid increased with the increase of IGF-1 concentration, increasing to 0.4ug / It reached a peak at mL. When the concentration of IGF-1 was greater than 0.4ug / mL, the expression of SLC26A3 protein showed a downward trend (N: 0.484 ± 0.002, Z: 0.678 ± 0.009, 0.1: 0.794 ± 0.003, 0.2: 0.798 ± 0.003, 0.4 : 0.937 ± 0.006, 1: 0.770 ± 0.002, 2: 0.786 ± 0.002, 3: 0.511 ± 0.007, P <0.05).

3.In Caco-2 cells not transfected with NHERF4, when PI3K / AKT signaling pathway is inhibited(N: 0.758 ± 0.001, 1: 0.988 ± 0.007, 2: 0.808 ± 0.004, 3: 0.684 ± 0.002, 4: 0.497 ± 0.005 , 5: 0.490 ± 0.009, 6: 0.465 ± 0.003, P <0.05), NHERF4 is not expressed, and the expression of SLC26A3 decreases with the increase of LY294002 concentration (N: 0.605 ± 0.001, 1: 0.787 ± 0.005, 2: 0.958 ± 0.002, 3: 0.698 ± 0.001, 4: 0.756 ± 0.002, 5: 0.629 ± 0.007, 6: 0.598 ± 0.003, P <0.05). The expression of NHERF4 protein in Caco-2 cells transfected with NHERF4 plasmid did not follow the concentration of LY294002. The concentration of SLC26A3 protein decreased as the concentration of LY294002 increased (N: 0.678 ± 0.007, Z: 0.565 ± 0.002, 1: 0.673 ± 0.007, 2: 0.690 ± 0.00

Object:This study used cytology experiments to select Caco2 cells and stably transfect NHERF4. PI3K / AKT signaling agonists and inhibitors were used to up-regulate and down-regulate PI3K / AKT signaling pathways to understand NHERF4 expression and intracellular localization. The effect of PI3K / AKT-SLC26A3, so as to analyze the effect of NHERF4 on the expression of SLC26A3 in UC and lay the foundation for cytology experiments.

Methods:

1. Caco-2 cells were infected with lentivirus LV-NHERF

参考文献:

[1] 李江甜, 苏娟萍. 溃疡性结肠炎的诊治与最新进展 ,2019.

[2] 中国炎症性肠病协作组, 王玉芳, 欧阳钦. 3100例溃疡性结肠炎住院病例回顾分析. 中华消化杂志, 2006,(06):368-372.

[3] Priyamvada S, Gomes R, Gill RK, et al. Mechanisms Underlying Dysregulation of Electrolyte Absorption in Inflammatory Bowel Disease-Associated Diarrhea. Inflamm Bowel Dis, 2015,21(12):2926-35.

[4] 刘笃佳, 王媛媛, 马旭. 溃疡性结肠炎的流行病学研究进展. 中国烧伤创疡杂志, 2017,(03):214-217.

[5] Ungaro R, Mehandru S, Allen PB, Peyrin-Biroulet L, Colombel JF. Ulcerative colitis. Lancet. 2017. 389(10080): 1756-1770.

[6] Ghishan FK, Kiela PR. Epithelial transport in inflammatory bowel diseases. Inflamm Bowel Dis, 2014,20(6):1099-109.

[7] Wojtal KA, Eloranta JJ, Hruz P, et al. Changes in mRNA expression levels of solute carrier transporters in inflammatory bowel disease patients. Drug Metab Dispos, 2009,37(9):1871-7.

[8] Farkas K, Yeruva S, Rakonczay Z, et al. New therapeutic targets in ulcerative colitis: the importance of ion transporters in the human colon. Inflamm Bowel Dis, 2011,17(4):884-98.

[9] Wedenoja S, Höglund P, Holmberg C. Review article: the clinical management of congenital chloride diarrhoea. Aliment Pharmacol Ther, 2010,31(4):477-485

[10] Iizuka M, Sasaki K, Hirai Y, et al. Morphogenic protein epimorphin protects intestinal epithelial cells from oxidative stress by the activation of EGF receptor and MEK/ERK, PI3 kinase/Akt signals. Am J Physiol Gastrointest Liver Physiol, 2007,292(1):G39-52.

[11] Gustin JA, Ozes ON, Akca H, et al. Cell type-specific expression of the IkappaB kinases determines the significance of phosphatidylinositol 3-kinase/Akt signaling to NF-kappa B activation. J Biol Chem, 2004,279(3):1615-20.

[12] Wei J, Feng J. Signaling pathways associated with inflammatory bowel disease. Recent Pat Inflamm Allergy Drug Discov, 2010,4(2):105-17.

[13] Lissner S, Nold L, Hsieh CJ, et al. Activity and PI3-kinase dependent trafficking of the intestinal anion exchanger downregulated in adenoma depend on its PDZ interaction and on lipid rafts. Am J Physiol Gastrointest Liver Physiol, 2010,299(4):G907-20.

[14] Singla A, Kumar A, Priyamvada S, et al. LPA stimulates intestinal DRA gene transcription via LPA2 receptor, PI3K/AKT, and c-Fos-dependent pathway. Am J Physiol Gastrointest Liver Physiol, 2012,302(6):G618-27.

[15] Singla A, Dwivedi A, Saksena S, et al. Mechanisms of lysophosphatidic acid (LPA) mediated stimulation of intestinal apical Cl-/OH- exchange. Am J Physiol Gastrointest Liver Physiol, 2010,298(2):G182-9.

[16] Sugiura T, Shimizu T, Kijima A, et al. PDZ adaptors: their regulation of epithelial transporters and involvement in human diseases. J Pharm Sci, 2011,100(9):3620-35.

[17] Lee JH, Nam JH, Park J, et al. Regulation of SLC26A3 activity by NHERF4 PDZ-mediated interaction. Cell Signal, 2012,24(9):1821-30.

[18] 杨奉天, 王艳, 黄俊凯, 等. SLC26A3与NHERF4在溃疡性结肠炎小鼠肠道组织中的动态表达研究. 安徽医科大学学报, 2019,54(01):79-84

[19] Seidler U, Singh

[1] 李江甜, 苏娟萍. 溃疡性结肠炎的诊治与最新进展 ,2019.

[2] 中国炎症性肠病协作组, 王玉芳, 欧阳钦. 3100例溃疡性结肠炎住院病例回顾分析. 中华消化杂志, 2006,(06):368-372.

[3] Priyamvada S, Gomes R, Gill RK, et al. Mechanisms Underlying Dysregulation of Electrolyte Absorption in Inflammatory Bowel Disease-Associated Diarrhea. Inflamm Bowel Dis, 2015,21(12):2926-35.

[4] 刘笃佳, 王媛媛, 马旭. 溃疡性结肠炎的流行病学研究进展. 中国烧伤创疡杂志, 2017,(03):214-217.

[5] Ungaro R, Mehandru S, Allen PB, Peyrin-Biroulet L, Colombel JF. Ulcerative colitis. Lancet. 2017. 389(10080): 1756-1770.

[6] Ghishan FK, Kiela PR. Epithelial transport in inflammatory bowel diseases. Inflamm Bowel Dis, 2014,20(6):1099-109.

[7] Wojtal KA, Eloranta JJ, Hruz P, et al. Changes in mRNA expression levels of solute carrier transporters in inflammatory bowel disease patients. Drug Metab Dispos, 2009,37(9):1871-7.

[8] Farkas K, Yeruva S, Rakonczay Z, et al. New therapeutic targets in ulcerative colitis: the importance of ion transporters in the human colon. Inflamm Bowel Dis, 2011,17(4):884-98.

[9] Wedenoja S, Höglund P, Holmberg C. Review article: the clinical management of congenital chloride diarrhoea. Aliment Pharmacol Ther, 2010,31(4):477-485

[10] Iizuka M, Sasaki K, Hirai Y, et al. Morphogenic protein epimorphin protects intestinal epithelial cells from oxidative stress by the activation of EGF receptor and MEK/ERK, PI3 kinase/Akt signals. Am J Physiol Gastrointest Liver Physiol, 2007,292(1):G39-52.

[11] Gustin JA, Ozes ON, Akca H, et al. Cell type-specific expression of the IkappaB kinases determines the significance of phosphatidylinositol 3-kinase/Akt signaling to NF-kappa B activation. J Biol Chem, 2004,279(3):1615-20.

[12] Wei J, Feng J. Signaling pathways associated with inflammatory bowel disease. Recent Pat Inflamm Allergy Drug Discov, 2010,4(2):105-17.

[13] Lissner S, Nold L, Hsieh CJ, et al. Activity and PI3-kinase dependent trafficking of the intestinal anion exchanger downregulated in adenoma depend on its PDZ interaction and on lipid rafts. Am J Physiol Gastrointest Liver Physiol, 2010,299(4):G907-20.

[14] Singla A, Kumar A, Priyamvada S, et al. LPA stimulates intestinal DRA gene transcription via LPA2 receptor, PI3K/AKT, and c-Fos-dependent pathway. Am J Physiol Gastrointest Liver Physiol, 2012,302(6):G618-27.

[15] Singla A, Dwivedi A, Saksena S, et al. Mechanisms of lysophosphatidic acid (LPA) mediated stimulation of intestinal apical Cl-/OH- exchange. Am J Physiol Gastrointest Liver Physiol, 2010,298(2):G182-9.

[16] Sugiura T, Shimizu T, Kijima A, et al. PDZ adaptors: their regulation of epithelial transporters and involvement in human diseases. J Pharm Sci, 2011,100(9):3620-35.

[17] Lee JH, Nam JH, Park J, et al. Regulation of SLC26A3 activity by NHERF4 PDZ-mediated interaction. Cell Signal, 2012,24(9):1821-30.

[18] 杨奉天, 王艳, 黄俊凯, 等. SLC26A3与NHERF4在溃疡性结肠炎小鼠肠道组织中的动态表达研究. 安徽医科大学学报, 2019,54(01):79-84

[19] Seidler U, Singh AK, Cinar A, et al. The role of the NHERF family of PDZ scaffolding proteins in the regulation of salt and water transport. Ann N Y Acad Sci, 2009,1165:249-260

[20] Scott RO, Thelin WR, Milgram SL. A novel PDZ protein regulates the activity of guanylyl cyclase C, the heat-stable enterotoxin receptor. J Biol Chem, 2002,277(25):22934-22941

[21] Kayal M, Shah S. Ulcerative Colitis: Current and Emerging Treatment Strategies. J Clin Med. 2019. 9(1).

[22] Shirazi T, Longman RJ, Corfield AP, Probert CS. Mucins and inflammatory bowel disease. 1997. 76(898): 79-82.

[23] Tytgat KM, Büller HA, Opdam FJ, Kim YS, Einerhand AW, Dekker J. Biosynthesis of human colonic mucin: Muc2 is the prominent secretory mucin. Gastroenterology. 1994. 107(5): 1352-63.

[24] Sluis MVD, De Koning BAE, De Bruijn ACJM, et al. Muc2-Deficient Mice Spontaneously Develop Colitis, Indicating That MUC2 Is Critical for Colonic Protection. 131(1): 117-129.

[25] van der Post S, Jabbar KS, Birchenough G, et al. Structural weakening of the colonic mucus barrier is an early event in ulcerative colitis pathogenesis. Gut. 2019. 68(12): 2142-2151.

[26] Xiao F, Yu Q, Li J, et al. Slc26a3 deficiency is associated with loss of colonic HCO3 (-) secretion, absence of a firm mucus layer and barrier impairment in mice. Acta physiologica (Oxford, England). 2014. 211(1): 161-75.

[27] Fong P. CFTR-SLC26 transporter interactions in epithelia. Biophys Rev, 2012,4(2):107-116.

[28] Whittamore JM, Freel RW, Hatch M. Sulfate secretion and chloride absorption are mediated by the anion exchanger DRA (Slc26a3) in the mouse cecum. Am J Physiol Gastrointest Liver Physiol, 2013,305(2):G172-84.

[29] Schweinfest CW, Spyropoulos DD, Henderson KW, et al. slc26a3 (dra)-deficient mice display chloride-losing diarrhea, enhanced colonic proliferation, and distinct up-regulation of ion transporters in the colon. J Biol Chem, 2006,281(49):37962-71.

[30] Thelin WR, Hodson CA, Milgram SL. Beyond the brush border: NHERF4 blazes new NHERF turf. Journal of Physiology (Oxford). 567(1): 13-19.

[31] Hegedüs T, Sessler T, Scott R, et al. C-terminal phosphorylation of MRP2 modulates its interaction with PDZ proteins. Biochemical & Biophysical Research Communications. 302(3): 0-461.

[32] van de Graaf SF, Hoenderop JG, van der Kemp AW, Gisler SM, Bindels RJ. Interaction of the epithelial Ca2+ channels TRPV5 and TRPV6 with the intestine- and kidney-enriched PDZ protein NHERF4. Pflugers Arch. 2006. 452(4): 407-17.

[33] Lanaspa MA, Giral H, Breusegem SY, et al. Interaction of MAP17 with NHERF3/4 induces translocation of the renal Na/Pi IIa transporter to the trans-Golgi. 2007. 292(1): F230.

[1] Steffens S, Mach F. Inflammation and atherosclerosis. Herz. 2004. 29(8): 741-8.

[2] Yamada T, Deitch E, Specian RD, Perry MA, Sartor RB, Grisham MB. Mechanisms of acute and chronic intestinal inflammation induced by indomethacin. Inflammation. 1993. 17(6): 641-62.

[3] Ghigo A, Damilano F, Braccini L, Hirsch E. PI3K inhibition in inflammation: Toward tailored therapies for specific diseases. Bioessays. 2010. 32(3): 185-96.

[4] Barberis L, Hirsch E. Targeting phosphoinositide 3-kinase gamma to fight inflammation and more. Thromb Haemost. 2008. 99(2): 279-85.

[5] Fruman DA, And REM, , et al. PHOSPHOINOSITIDE KINASES - Annual Review of Biochemistry, 67(1):481 .

[6] 朱金墙, 宋宛珊, 马妍, 等. PI3K/Akt信号通路与血管性痴呆的关系及中药干预作用研究进展. 中国实验方剂学杂志, 2016,22(09):223-229.

[7] De Santis MC, Gulluni F, Campa CC, et al. Targeting PI3K signaling in cancer: Challenges and advances. Biochim Biophys Acta Rev Cancer, 2019,1871(2):361-366

[8] Dobbin ZC, Landen CN. The importance of the PI3K/AKT/MTOR pathway in the progression of ovarian cancer. Int J Mol Sci, 2013,14(4):8213-27.

[9] Song G, Ouyang G, Bao S. The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med, 2005,9(1):59-71.

[10] Hunter T . Signaling--2000 and beyond. Cell, 2000,100(1):113-127.

[11] Nicholson KM, Anderson NG. The protein kinase B/Akt signalling pathway in human malignancy. Cell Signal, 2002,14(5):381-395.

[12] Sandborn WJ, Feagan BG, Wolf DC, et al. Ozanimod Induction and Maintenance Treatment for Ulcerative Colitis. N Engl J Med, 2016,374(18):1754-1762

[13] Aung PP, Bowker B, Masterpol KS, et al. Disseminated Noninterstitial Granulomatous Dermatitis as a Cutaneous Manifestation of the Preleukemic State in a Patient With Myelodysplasia and Ulcerative Colitis—Apropos a Case and Review of the Literature. Am J Dermatopathol, 36(7):e117-117e120

[14] Casta?O-Milla C, Chaparro M, Gisbert JP. Systematic review with meta-analysis: the declining risk of colorectal cancer in ulcerative colitis. Aliment Pharmacol Ther, 39(7):645-659

[15] Xu X, Wang Y, Wei Z, et al. Madecassic acid, the contributor to the anti-colitis effect of madecassoside, enhances the shift of Th17 toward Treg cells via the PPARγ/AMPK/ACC1 pathway. Cell Death Dis, 8(3):e2723

[16] 陈璐, 周中银. 溃疡性结肠炎发病机制的研究进展. 疑难病杂志, 2016,15(06):650-654.

[17] Boivin MA, Roy PK, Bradley A, et al. Mechanism of Interferon-γ–Induced Increase in T84 Intestinal Epithelial Tight Junction. Journal of Interferon & Cytokine Research the Official Journal of the International Society for Interferon & Cytokine Research, 29(1):45-54

[18] Shirasaka T, Iizuka M, Yukawa M, et al. Altered expression of epimorphin in ulcerative colitis. Journal of Gastroenterology & Hepatology, 2003,18(5):570-577

[19] Iizuka M, Sasaki K, Hirai Y, et al. Morphogenic protein epimorphin protects intestinal epithelial cells from oxidative stress by the activation of EGF receptor and MEK/ERK, PI3 kinase/Akt signals,2007,

[20] Iizuka M, Sasaki K, Hirai Y, et al. Morphogenic protein epimorphin protects intestinal epithelial cells from oxidative stress by the activation of EGF receptor and MEK/ERK, PI3 kinase/Akt signals. Am J Physiol Gastrointest Liver Physiol, 2007,292(1):G39-52.

[21] Gustin JA, Ozes ON, Akca H, et al. Cell type-specific expression of the IkappaB kinases determines the significance of phosphatidylinositol 3-kinase/Akt signaling to NF-kappa B activation. J Biol Chem, 2004,279(3):1615-20.

[22] Wei J, Feng J. Signaling pathways associated with inflammatory bowel disease. Recent Pat Inflamm Allergy Drug Discov, 2010,4(2):105-17.

[23] 方培植, 黄会云, 张涛, 等. PI3K/Akt-mTOR信号通路介导溃疡性结肠炎相关癌变的实验研究. 胃肠病学和肝病学杂志, 2015,24(07):802-806.

[24] Xiao LH, Jin X, Xiao HZ, et al. PI3K/Akt signaling pathway is involved in the pathogenesis of ulcerative colitis. Inflamm Res, 2011,60(8):727-734.

[25] Rommel C, Camps M, H. PI3K delta and PI3K gamma: partners in crime in inflammation in rheumatoid arthritis and beyond. Nat Rev Immunol, 2007,7(3):191-201.

[26] Jiang W, Han YP, Hu M, Bao XQ, Yan Y, Chen G. A study on regulatory mechanism of miR-223 in ulcerative colitis through PI3K/Akt-mTOR signaling pathway. Eur Rev Med Pharmacol Sci. 2019. 23(11): 4865-4872.

[27] Management of Postoperative Recurrence of Crohn\"s Disease. Dig Dis. 31(2): 222-228.

[28] Blandizzi C, Gionchetti P, Armuzzi A, et al. The role of tumour necrosis factor in the pathogenesis of immune-mediated diseases. 2014. 27(1 Suppl): 1.

[29] de Boer NKh, Löwenberg M, Hoentjen F. Management of Crohn's disease in poor responders to adalimumab. Clin Exp Gastroenterol. 2014. 7: 83-92.

[30] Park S, Regmi SC, Park S, et al. Protective effect of 7-O-succinyl macrolactin A against intestinal inflammation is mediated through PI3-kinase/Akt/mTOR and NF-κB signaling pathways. Eur J Pharmacol. 735: 184-192.

[31] Wu XF, Xu R, Ouyang ZJ, et al. Beauvericin Ameliorates Experimental Colitis by Inhibiting Activated T Cells via Downregulation of the PI3K/Akt Signaling Pathway. 2013 .

[32] Husain N, Tokoro K, Popov JM, Naides SJ, Buchman AL. Neopterin Concentration as an Index of Disease Activity in Crohn's Disease and Ulcerative Colitis. J Clin Gastroenterol. 2012. 47(3): 246-51.

[33] Das A, Xi L, Kukreja RC. Protein Kinase G-dependent Cardioprotective Mechanism of Phosphodiesterase-5 Inhibition Involves Phosphorylation of ERK and GSK3β. 2008. 283(43): 29572-85.

[34] Neuroprotective effect of guanosine against glutamate-induced cell death in rat hippocampal slices is mediated by the phosphatidylinositol-3 kinase/Akt/ glycogen synthase kinase 3β pathway activation and inducible nitric oxide synthase inhibition. J Neurosci Res. 89(9): 1400-1408.

[35] Imai Y, Yamagishi H, Ono Y, Ueda Y. Versatile inhibitory effects of the flavonoid-derived PI3K/Akt inhibitor, LY294002, on ATP-binding cassette transporters that characterize stem cells. Clinical & Translational Medicine. 1(1).

[36] Chanoit G, Lee S, Xi J, et al. Exogenous zinc protects cardiac cells from reperfusion injury by targeting mitochondrial permeability transition pore through inactivation of glycogen synthase kinase-3. Ajp Heart & Circulatory Physiology. 2008 .

[37] Jacot JL, David S. Potential Therapeutic Roles for Inhibition of the PI3K/Akt/mTOR Pathway in the Pathophysiology of Diabetic Retinopathy. J Ophthalmol. 2011: 1-19.

[38] Gross ER, Peart JN, Hsu AK, Auchampach JA, Gross GJ. Extending the cardioprotective window using a novel delta-opioid agonist fentanyl isothiocyanate via the PI3-kinase pathway. 2005. 288(6): H2744.

[39] N-cadherin is overexpressed in Crohn\"s stricture fibroblasts and promotes intestinal fibroblast migration. 17(8): 1665-1673.

[40] Kuehn HS, Swindle EJ, Kim MS, Beaven MA, Metcalfe DD, Gilfillan AM. The Phosphoinositide 3-Kinase-Dependent Activation of Btk Is Required for Optimal Eicosanoid Production and Generation of Reactive Oxygen Species in Antigen-Stimulated Mast Cells. 2008. 181(11): 7706.

[41] Lee SB, Cho ES, Yang HS, Kim H, Um H. Serum withdrawal kills U937 cells by inducing a positive mutual interaction between reactive oxygen species and phosphoinositide 3-kinase. 17(2): 197-204.

[42] Chiang DT, Anozie A, Fleming WR, Kiroff GK. Comparative study on acute pancreatitis management. ANZ J Surg. 2004. 74(4): 218-21.

[43] Xu P, Wang J, Yang ZW, Lou XL, Chen C. Regulatory roles of the PI3K/Akt signaling pathway in rats with severe acute pancreatitis. PLoS One. 2013. 8(11): e81767.

[44] Wang J, Zhang C, Xu P, et al. Phosphoinositide 3?kinase/protein kinase B regulates inflammation severity via signaling of Toll?like receptor 4 in severe acute pancreatitis. Mol Med Rep, 2018,17(6):7835-7844

[45] Xu F, Lin J, Cui W, et al. Scutellaria baicalensis Attenuates Airway Remodeling via PI3K/Akt/NF-κB Pathway in Cigarette Smoke Mediated-COPD Rats Model. 2018.

[46] Sapey E, Bafadhel M, Bolton CE, et al. Building toolkits for COPD exacerbations: lessons from the past and present. Thorax, 2019,undefined(undefined):undefined.

[47] Doukas J, Eide L, Stebbins K, et al. Aerosolized phosphoinositide 3-kinase gamma/delta inhibitor TG100-115 [3-[2,4-diamino-6-(3-hydroxyphenyl)pteridin-7-yl]phenol] as a therapeutic candidate for asthma and chronic obstructive pulmonary disease. J Pharmacol Exp Ther, 2009,328(3):758-65.

[48] Hirsch E, ., Katanaev VL, et al. Central role for G protein-coupled phosphoinositide 3-kinase gamma in inflammation. Science, 2000,287(5455):1049-1053.

[49] Sun X, Chen L, He Z. PI3K/Akt-Nrf2 and Anti-Inflammation Effect of Macrolides in Chronic Obstructive Pulmonary Disease. Curr Drug Metab, 2019,20(4):301-304

[50] Lee KS, , Lee HK, et al. Inhibition of phosphoinositide 3-kinase delta attenuates allergic airway inflammation and hyperresponsiveness in murine asthma model. FASEB J, 2006,20(3):455-465.

[51] Farghaly HSM, , Blagbrough IS, et al. Interleukin 13 increases contractility of murine tracheal smooth muscle by a phosphoinositide 3-kinase p110delta-dependent mechanism. Mol Pharmacol, 2008,73(5):1530-1537.

[52] Cheng C, Ho WE, Goh FY, et al. Anti-malarial drug artesunate attenuates experimental allergic asthma via inhibition of the phosphoinositide 3-kinase/Akt pathway. PLoS One, 2011,6(6):e20932

[53] Palframan RT, , Collins PD, et al. Mechanisms of acute eosinophil mobilization from the bone marrow stimulated by interleukin 5: the role of specific adhesion molecules and phosphatidylinositol 3-kinase. J Exp Med, 1998,188(9):1621-1632.

[54] Fanelli V, Puntorieri V, Assenzio B, et al. Pulmonary-derived phosphoinositide 3-kinase gamma (PI3Kγ) contributes to ventilator-induced lung injury and edema. Intensive Care Med, 2010,36(11):1935-1945.

[55] Xin W, Jing H, Chen ZZ, et al. A phosphoinositide 3-kinase-γ inhibitor, AS605240 prevents bleomycin-induced pulmonary fibrosis in rats. Biochemical & Biophysical Research Communications, 2010,397(2):311-317.

[56] 吴海竞, 陆前进. 系统性红斑狼疮发病机制的研究进展. 皮肤科学通报, 2018,35(03):249-257+235.

[57] Chatham WW, Kimberly RP, [Through direct signals to the nucleus mediated by the glucocorticoid receptor egiabaocfDbotgr, et al. Treatment of lupus with corticosteroids. Lupus, 2001,10(3):140-7.

[58] Barber DF, Bartolomé A, Hernandez C, et al. PI3Kγ inhibition blocks glomerulonephritis and extends lifespan in a mouse model of systemic lupus. Nat Med, 2005,11(9):933.

[59] Wang Y, Zhang L, Wei P, et al. Inhibition of PI3Kδ improves systemic lupus in mice. Inflammation, 2014,37(3):978-983.

[60] Abel SF, Rojas JM, , et al. Inhibition of PI3Kδ reduces kidney infiltration by macrophages and ameliorates systemic lupus in the mouse. J Immunol, 2014,193(2):544.

[61] Haselmayer P, Camps M, Muzerelle M, et al. Characterization of Novel PI3Kδ Inhibitors as Potential Therapeutics for SLE and Lupus Nephritis in Pre-Clinical Studies. Front Immunol, 2014,5(5):233.

[62] Maxwell MJ, Tsantikos E, Kong AM, et al. Attenuation of phosphoinositide 3-kinase δ signaling restrains autoimmune disease. J Autoimmun, 2012,38(4):381-391.

[63] Winkler D, Faia K, Dinitto J, et al. PI3K-δ and PI3K-γ Inhibition by IPI-145 Abrogates Immune Responses and Suppresses Activity in Autoimmune and Inflammatory Disease Models. Chem Biol, 2013,20(11):1364-1374.

[64] Mcinnes IB, Schett G. Pathogenetic insights from the treatment of rheumatoid arthritis. Lancet, 2017,389(10086):2328-2337.

[65] Camps M, Rückle T, Ji H, et al. Blockade of PI3Kgamma suppresses joint inflammation and damage in mouse models of rheumatoid arthritis. Nat Med, 2005,11(9):936-943.

[66] Randis T, Puri K, Zhou H, et al. Role of PI3Kdelta and PI3Kgamma in inflammatory arthritis and tissue localization of neutrophils. Eur J Immunol, 2008,38(5):1215-1224.

[67] Yusuke O, Tetsuya Y, Takahiro O, et al. Discovery of N-{5-[3-(3-hydroxypiperidin-1-yl)-1,2,4-oxadiazol-5-yl]-4-methyl-1,3-thiazol-2-yl}acetamide (TASP0415914) as an orally potent phosphoinositide 3-kinase γ inhibitor for the treatment of inflammatory diseases. Bioorg Med Chem, 2013,21(24):7578-7583.

[68] Camps M, Rückle T, Ji H, et al. Blockade of PI3Kgamma suppresses joint inflammation and damage in mouse models of rheumatoid arthritis. Nat Med, 2005,11(9):936-943.

[69] Berod L, Heinemann C, Heink S, et al. PI3Kγ deficiency delays the onset of experimental autoimmune encephalomyelitis and ameliorates its clinical outcome. Eur J Immunol, 2011,41(3):833-44.

[70] El-Behi M, Ciric B, Dai H, et al. The encephalitogenicity of T(H)17 cells is dependent on IL-1- and IL-23-induced production of the cytokine GM-CSF. Nat Immunol, 2011,12(6):568-75.

[71] Datler H, Vogel A, Kerndl M, et al. PI3K activity in dendritic cells exerts paradoxical effects during autoimmune inflammation. Mol Immunol, 2019,111:32-42

[72] Li H, Park D, Abdul-Muneer PM, et al. PI3Kγ inhibition alleviates symptoms and increases axon number in experimental autoimmune encephalomyelitis mice. Neuroscience, 2013,253:89-99.

[73] Haylock-Jacobs S, Comerford I, Bunting M, et al. PI3Kδ drives the pathogenesis of experimental autoimmune encephalomyelitis by inhibiting effector T cell apoptosis and promoting Th17 differentiation. J Autoimmun, 2011,36(3-4):278-287.

[74] Pa

开放日期:

 2020-06-06    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式