- 无标题文档
查看论文信息

中文题名:

 棉花(Gossypium hirsutum L.)体细胞胚胎发生的生理及分子机制研究    

姓名:

 程文翰    

学号:

 2013207009    

保密级别:

 公开    

论文语种:

 chi    

学生类型:

 博士    

学校:

 石河子大学    

院系:

 农学院    

研究方向:

 荒漠绿洲区作物高产优质性状的遗传育种    

第一导师姓名:

 孙杰    

完成日期:

 2016-06-13    

外文题名:

 Research on physiological and molecular mechanisms of somatic embryogenesis in cotton (Gossypium hirsutum L.)    

中文关键词:

 陆地棉 ; 体细胞胚胎发生 ; 转录组 ; 蛋白组 ; 多胺     

外文关键词:

 Upland cotton (Gossypium hirsutum L.) ; Somatic embryogenesis (SE) ; Transcriptome ; Proteome ; Polyamines     

中文摘要:

目的:体细胞胚胎发生(Somatic embryogenesis)是棉花(Gossypium hirsutum L.)通过农
杆菌介导的遗传转化最关键的步骤之一,通常包括非愈伤组织的诱导、胚性愈伤组织的
分化、胚状体的形成以及胚状体发育成苗等过程。棉花体细胞胚胎发生存在的缺点是基
因型依赖、培养周期长、不正常胚产生效率高,严重制约了棉花基因功能的验证和转基
因育种工作。研究棉花体细胞胚胎发生的生理及分子机制可以为棉花组织培养及转基因
育种工作提供重要的理论依据和技术支撑。
方法:(1)本研究使用de novo转录组测序和iTRAQ蛋白组测序的方法,测定了新疆陆
地棉品种新陆早33号体细胞胚胎发生过程中非胚性愈伤组织、胚性愈伤组织以及胚状体
中的差异表达基因和蛋白,并对差异表达基因和蛋白进行了鉴定及表达模式分析。(2)对
差异表达基因和蛋白的相关通路进行了注释和分类,进一步明确了参与调控棉花体细胞
胚胎发生的通路。(3)利用qRT-PCR、内源含量测定以及外源添加等实验,明确相关基因、
蛋白及通路与棉花体细胞胚胎发生的关系。(4)用HPLC法,提取分离鉴定了棉花内源多
胺的种类,建立棉花组织多胺提取测定的技术体系。(5)通过分析多胺代谢途径相关生理
生化指标、基因表达、ELISA法测定相关酶活性、生理互补实验等,揭示多胺调控棉花
体细胞胚胎发生的可能机制。
结果与结论:(1)De novo转录组测序一共获得了101,670个unigene,在胚性愈伤组织
向胚状体转化过程中差异表达的基因多于非胚性愈伤组织向胚性愈伤组织转化过程中
的差异表达基因。大量的差异表达基因参与了植物激素合成及信号转导、胁迫响应反应、
ROS平衡以及多胺代谢等途径。用qRT-PCR验证了相关差异基因的真实性和准确性。内
源IAA和KT含量变化规律与其合成途径相关基因的表达模式一致。外源IAA和KT能够促
进胚性愈伤组织向胚状体的转化,不同浓度IBA的添加会对非胚性愈伤组织、胚性愈伤
组织的诱导效率有影响,外源添加多胺和过氧化氢也能在很大程度上促进胚状体的形成。
适当的胁迫条件对胚性愈伤组织的增殖以及胚状体形成都有促进作用。此外,赤霉素、
脱落酸、乙烯、油菜素内酯、水杨酸、茉莉酸及脂肪酸途径相关基因也呈现出差异表达
的规律。转录组动力学分析表明不同植物激素间的平衡调控,多胺代谢和胁迫响应过程
协同调控了棉花体细胞胚胎发生。
(2)iTRAQ蛋白组测序发现,三组样品中一共得到了5892个差异表达蛋白,这些蛋白
主要参与了催化活性、结合活性、转运活性以及结构分子活性,其中93.4%的差异蛋白
在分子功能水平参与了结构分子活性。差异表达蛋白统计分析发现,与非胚性愈伤组织
相比,胚性愈伤组织中分别有572个上调表达蛋白和452个下调表达蛋白;与胚性愈伤组
织相比,胚状体中分别有211个上调表达蛋白和647个下调表达蛋白。KEGG分析显示遗
传信息的转运、植物激素合成及信号转导、糖酵解过程、脂肪酸合成和代谢以及半乳糖
代谢等通路参与了棉花体细胞胚胎发生。通过qRT-PCR分析相关差异基因在三个时期的
表达情况进一步确定了蛋白组测序的真实性和准确性。对转录组和蛋白组的测序数据进
行关联分析发现,所测得基因序列和蛋白序列的关联系数为0.27,差异表达基因与差异
表达蛋白的关联系数高于0.6。
(3)建立了棉花组织多胺提取分离及测定的高效液相色谱法,可将腐胺、亚精胺、精
胺在 15 分钟完全分离并定量测定,线性关系良好(r>0.99),回收率高(96.8%~103.1%)。
测定棉花体细胞胚胎发生各时期内源多胺的含量,结果显示在胚性愈伤组织以及体细胞
胚形成初期,三种类型多胺含量显著提高,腐胺的含量在胚状体中有下降趋势,而亚精
胺和精胺的含量在胚状体中没有变化。多胺合成相关基因的表达量分析发现,棉花精氨
酸合成酶 GhADC 在体细胞胚胎发生过程中的表达与多胺含量(尤其是腐胺含量)的变化
规律非常一致。此外,多胺代谢产物 H2O2 的含量在胚性愈伤组织时期也有显著的提高,
与多胺氧化酶 GhPAO1 和 GhPAO4 的表达规律一致。ELISA 酶活测定发现,多胺氧化酶
PAO 在胚性愈伤组织中表现出较高的活性,抑制 PAO 活性则表现出体细胞胚胎形成受
阻。多胺及其代谢产物 H2O2 都能够促进胚性愈伤组织的生长及胚状体的形成,同时也
能够降低多胺合成抑制剂 D-arginine 及多胺氧化酶抑制剂 1, 8-DO 的抑制效果。多胺代
谢途径另一个重要的信号分子 NO 的含量在体细胞胚胎发生过程中变化不明显,且对体
细胞胚胎发生没有显著作用。综合上面的结果,我们得出结论:多胺可能通过多胺氧化
酶调节其代谢产物过氧化氢来调控棉花体细胞胚胎发生。
 

外文摘要:

Object: Plant regeneration via somatic embryogenesis (SE) is the key step for genetic
improvement of cotton (Gossypium hirsutum L.) through genetic engineering mediated by
Agrobacteria, and SE is also treated as a model for understanding of molecular events occurring
during plant embryo development. Somatic embryogenesis was usually considered including
twice cell reprograms involved in cellular dedifferentiation and redifferentiation. However, SE
in cotton is often hampered by recalcitrance, long culture time, and high frequency of abnormal
embryos. Low efficiency of regeneration is another major issue that limits the utilization of
Agrobacterium-mediated transformation through SE in cotton. The molecular mechanisms
underlying SE in cotton is still unclear.
Method: RNA-Sequencing and isobaric tags for relative and absolute quantitation(iTRAQ)
based comparative proteome was used to analyze the differentially expressed genes and proteins
during somatic embryogenesis of cotton cultivar Xinluzao 33 from non-embryogenic callus
(NEC), embryogenic callus (EC) and somatic embryos (SEs). The genes differentially
expressed (DEGs) and differentially expressed proteins (DEPs) amongst NEC, EC and SEs
were identified, annotated and classified in GO, COG, NR, SWISS and KEGG. qRT-PCR
confirmed the sequencing data. Endogenous levels of plant hormones, polyamines, ROS, H2O2
and NO were determinated, the effect of certain chemicals and pathways were investigated.
Complementary physiological experiments and ELISA assay were conducted for confirming
the mechanisms of polyamines on cotton somatic embryogenesis.
Results:(1)A total of 101, 670 unigenes were de novo assembled. More DEGs were found
between SEs and EC than between EC and NEC. A significant number of DEGs were related
to hormone homeostasis, stress and ROS responses, and metabolism of polyamines.
Quantitative real-time PCR analysis further confirmed the authenticity and accuracy of the
transcriptome expression results. To confirm the expression dynamics of selected DEGs
involved in various pathways, experiments were set up to investigate the effects of hormones
(Indole-3-acetic acid, IAA; Kinetin, KT), polyamines, H2O2 and stresses on SE. Our results
showed that exogenous application of IAA and KT positively regulated the development of EC
and SEs, and that PAs and H2O2 promoted the conversion of EC into SEs. Furthermore, we
found that low and moderate stress is beneficial for proliferation of EC. Together, our global
analysis of transcriptomic dynamics reveals that hormone homeostasis, polyamines, and stress
response synergistically regulating SE in cotton.
(2)In the proteome profile, 5892 proteins were identified and almost of them classified
into catalytic activity, binding activity, transporter activity and structural molecular activity
covered 93.4% in molecular function level. Distribution analysis of differentially expressed
proteins (DEPs) suggested 572 and 211 proteins were up-regulated, 452 and 647 proteins were
down-regulated during EC and SE differentiation respectively. KEGG (Kyoto Encyclopedia of
Genes and Genomes) analysis indicated genetics information transmission, plant hormone
transduction, glycolysis, fatty acid biosynthesis and metabolism, galactose metabolism were
involved in somatic embryogenesis. Quantitative real-time PCR analysis further confirmed the
authenticity and accuracy of the proteomic expression results. Proteome profile analysis
facilitated identification of interesting genes and provided insights into the molecular
mechanisms underlying somatic embryogenesis in Gossypium hirsutum L.
(3)HPLC method for determination of cotton cultures polyamine was established through
relevant and recovery analysis. Putrescine (Put), spermidine (Spd) and spermine (Spm)
significantly increased from the EC stage to the early phase of embryo differentiation. The
levels of Put then decreased until the somatic embryo stage whereas Spd and Spm remained
nearly the same. The expression profiles of GhADC genes were consistent with changes in Put
during cotton SE. The H2O2 concentrations began to increase significantly at the EC stage,
during which time both GhPAO1 and GhPAO4 expressions were highest and PAO activity was
significantly increased. Exogenous Put, Spd, Spm and H2O2 not only enhanced embryogenic
callus growth and embryo formation, but also alleviated the effects of D-arginine and 1, 8-
diamino-octane, which are inhibitors of polyamine synthesis and PAO activity. Overall, the
results suggest that both PAs and their metabolic product H2O2 are essential for the conversion
of EC into somatic embryos in cotton.

参考文献:

[1] Medina RA, García-Sastre A (2011) Influenza A viruses: new research developments.Nat Rev Microbiol 9(8):590-603. doi: 10.1038/nrmicro2613

[2] Tong S, Zhu X, Li Y, Shi M, Zhang J, Bourgeois M, Yang H, Chen X, Recuenco S, Gomez J,Chen LM, Johnson A, Tao Y, Dreyfus C, Yu W, McBride R, Carney PJ, Gilbert AT, Chang J,

Guo Z, Davis CT, Paulson JC, Stevens J, Rupprecht CE, Holmes EC, Wilson IA, Donis RO(2013) New world bats harbor diverse influenza A viruses. PLoS Pathog 9(10):e1003657.

[3] Choi JG, Kim MC, Kang HM, Kim KI, Lee KJ, Park CK, Kwon JH, Kim JH, Lee YJ (2013)Protective efficacy of baculovirus-derived influenza virus-like particles bearing H5 HA alone

or in combination with M1 in chickens. Vet Microbiol 162:623-630.

[4] Skehel JJ, Wiley DC (2000) Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Ann Rev Biochem 69:531-569

[5] Skehel JJ, Wiley DC (2000) Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Ann Rev Biochem 69:531-569.

[6] Ping J, Li C, Deng G, Jiang Y, Tian G, Zhang S, Bu Z, Chen H (2008) Single-amino-acid mutation in the HA alters the recognition of H9N2 influenza virus by a monoclonal antibody.

Biochem Biophys Res Commun 371:168-171.

[7] Yen HL and Webster RG. Pandemic Influenza as a Current Threat, Influenza Virus-Like Particles as Pandemic Vaccines 1-24.

[8] Webby, R.J.; Webster, R.G.; Richt, J.A. Influenza viruses in animal wildlife populations. Curr.Top. Microbiol. Immunol. 2007, 315, 67-83, doi: 10.1007/978-3-540-70962-6_4.

[9] Fouchier RA, Munster V, Wallensten A, Bestebroer TM, Herfst S, Smith D, Rimmel- zwaanGF, Olsen B, Osterhaus AD (2005) Characterization of a novel influenza A virus

hemagglutinin subtype (H16) obtained from black-headed gulls. J Virol 79:2814-2822.

[10] Krauss S, Walker D, Pryor SP, Niles L, Chenghong L, Hinshaw VS, Webster RG (2004)Influenza A viruses of migrating wild aquatic birds in North America. Vector Borne. Zoonotic

Dis 4:177-189.

[11] Slemons RD, Shieldcastle MC, Heyman LD, Bednarik KE, Senne DA (1991) Type A influenza viruses in waterfowl in Ohio and implications for domestic turkeys. Avian Dis

35:165-173.

[12] Hanson BA, Stallknecht DE, Swayne DE, Lewis LA, Senne DA (2003) Avian influenza viruses in Minnesota ducks during 1998-2000. Avian Dis 47:867-871.

[13] Ito T, Okazaki K, Kawaoka Y, Takada A, Webster RG, Kida H (1995) Perpetuation of influenza A viruses in Alaskan waterfowl reservoirs. Arch Virol 140:1163-1172.

[14] De Marco MA, Foni GE, Campitelli L, Raffini E, Di TL, Delogu M, Guberti V, Barigazzi G,Donatelli I (2003) Circulation of influenza viruses in wild waterfowl wintering in Italy during

the 1993-99 period: evidence of virus shedding and seroconversion in wild ducks. Avian Dis47:861-866.

[15] Suss J, Schafer J, Sinnecker H, Webster RG (1994) Influenza virus subtypes in aquatic birds of eastern Germany. Arch Virol 135:101-114.

[16]Shengqing Y, Shinya K, Otsuki K, Ito H, Ito T (2002) Isolation of myxoviruses from migratory waterfowls in San-in district, western Japan in winters of 1997-2000. J Vet Med

Sci 64:1049-1052.

[17] Hinshaw V, Webster R, Turner B (1980) The perpetuation of orthomyxoviruses and paramyxoviruses in Canadian waterfowl. Can J Microbiol 26:622-629.

[18] Stallknecht DE, Shane SM, Zwank PJ, Senne DA, Kearney MT (1990) Avian influenza viruses from migratory and resident ducks of coastal Louisiana. Avian Dis 34:398-405.

[19] Sims LD, Domenech J, Benigno C, Kahn S, Kamata A, Lubroth J, Martin V, Roeder P (2005) Origin and evolution of highly pathogenic H5N1 avian influenza in Asia. Vet Rec

157:159-164.

[20] World Health Organization Global Influenza Program Surveillance Network (2005) Evolution of H5N1 avian influenza viruses in Asia. Emerg Infect Dis 11:1515-1521.

[21] http://www.who.int/csr/disease/avian_influenza/en/

[22] Ellis TM, Bousfield RB, Bissett LA, Dyrting KC, Luk GS, Tsim ST, Sturm-Ramirez K,Webster RG, Guan Y, Malik Peiris JS (2004) Investigation of outbreaks of highly pathogenic

H5N1 avian influenza in waterfowl and wild birds in Hong Kong in late (2002) Avian Pathol 33:492-505

[23] Sturm-Ramirez KM, Ellis T, Bousfield B, Bissett L, Dyrting K, Rehg JE, Poon L, Guan Y,Peiris M, Webster RG (2004) Reemerging H5N1 influenza viruses in Hong Kong in 2002

are highly pathogenic to ducks. J Virol 78:4892-4901.

[24] Mutinelli F, Capua I, Terregino C, Cattoli G (2003) Clinical, gross, and microscopic find- ings in different avian species naturally infected during the H7N1 low-and high-pathogenicity avian influenza epidemics in Italy during 1999 and 2000. Avian Dis 47:844-848.

[25] Chen H, Smith GJ, Zhang SY, Qin K, Wang J, Li KS, Webster RG, Peiris JS, Guan Y (2005) Avian flu: H5N1 virus outbreak in migratory waterfowl. Nature 436:191-192.

[26] Sturm-Ramirez KM, Ellis T, Bousfield B, Bissett L, Dyrting K, Rehg JE, Poon L, Guan Y,Peiris M, Webster RG (2004) Reemerging H5N1 influenza viruses in Hong Kong in 2002

are highly pathogenic to ducks. J Virol 78:4892-4901.

[27] Olsen CW, Karasin A, Erickson G (2003) Characterization of a swine-like reassortant H1N2 influenza virus isolated from a wild duck in the United States. Virus Res 93:115-121.

[28] Karasin AI, Olsen CW, Anderson GA (2000b) Genetic characterization of an H1N2 influenza virus isolated from a pig in Indiana. J Clin Microbiol 38:2453-2456.

[29] Matrosovich MN, Krauss S, Webster RG (2001) H9N2 influenza A viruses from poultry in Asia have human virus-like receptor specificity. Virology 281:156-162.

[30] Gou Y, Xie J, Wang M (2000) A strain of influenza A H9N2 virus repeatedly isolated from human population in China. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi

14:209-212.

[31] Lin YP, Shaw M, Gregory V, Cameron K, Lim W, Klimov A, Subbarao K, Guan Y, Krauss S,Shortridge K, Webster R, Cox N, Hay A (2000) Avian-to-human transmission of H9N2

subtype influenza A viruses: relationship between H9N2 and H5N1 human isolates.PNAS 97:9654-9658.

[32] Peiris JS, Guan Y, Markwell D, Ghose P, Webster RG, Shortridge KF (2001) Cocirculation of avian H9N2 and contemporary “ human” H3N2 influenza A viruses in pigs in southeastern

China: potential for genetic reassortment? J Virol 75:9679-9686.

[33] Shaw M, Cooper L, Xu X, Thompson W, Krauss S, Guan Y, Zhou N, Klimov A, Cox N,Webster R, Lim W, Shortridge K, Subbarao K (2002) Molecular changes associated with the

transmission of avian influenza a H5N1 and H9N2 viruses to humans. J Med Virol 66:107-114.

[34] Uyeki TM, Chong YH, Katz JM, Lim W, Ho YY, Wang SS, Tsang TH, Au WW, Chan SC,Rowe T, Hu-Primmer J, Bell JC, Thompson WW, Bridges CB, Cox NJ, Mak KH, Fukuda K

(2002) Lack of evidence for human-to-human transmission of avian influenza A (H9N2)viruses in Hong Kong, China (1999) Emerg Infect Dis 8:154-159.

[35] Peiris JS, Yu WC, Leung CW, Cheung CY, Ng WF, Nicholls JM, Ng TK, Chan KH, Lai ST,Lim WL, Yuen KY, Guan Y (2004) Re-emergence of fatal human influenza A subtype H5N1

disease. Lancet 363:617-619.

[36] Gambaryan AS, Tuzikov AB, Pazynina GV, Webster RG, Matrosovich MN, Bovin NV (2004)H5N1 chicken influenza viruses display a high binding affinity for Neu5Acalpha2-

3Galbeta1-4(6-HSO3)GlcNAc-containing receptors. Virology 326:310-316.

[37] Iwatsuki-Horimoto K, Kanazawa R, Sugii S, Kawaoka Y, Horimoto T (2004) The index influenza A virus subtype H5N1 isolated from a human in 1997 differs in its receptor- binding

properties from a virulent avian influenza virus. J Gen Virol 85:1001-1005.

[38] Scholtissek C (1990) Pigs as the “mixing vessel” for the creation of new pandemic influenza A viruses. Med Principles Pract 2:65-71.

[39. Brown IH (2000) The epidemiology and evolution of influenza viruses in pigs. Vet. Microbiol 74:29-46.

[40] Chambers TM, Hinshaw VS, Kawaoka Y, Easterday BC, Webster RG (1991) Influenza viral infection of swine in the United States 1988-1989 Arch Virol 116:261-265.

[41] Kida H, Ito T, Yasuda J, Shimizu Y, Itakura C, Shortridge KF, Kawaoka Y, Webster RG (1994) Potential for transmission of avian influenza viruses to pigs. J Gen Virol 75:2183- 2188.

[42] Gambaryan A, Yamnikova S, Lvov D, Tuzikov A, Chinarev A, Pazynina G, Webster R,Matrosovich M, Bovin N (2005) Receptor specificity of influenza viruses from birds and

mammals: new data on involvement of the inner fragments of the carbohydrate chain.Virology 334:276-283.

[43] Ito T, Couceiro JN, Kelm S, Baum LG, Krauss S, Castrucci MR, Donatelli I, Kida H, Paul-son JC, Webster RG, Kawaoka Y (1998) Molecular basis for the generation in pigs of influenza A

viruses with pandemic potential. J Virol 72:7367-7373.

[44]Murphy BR, Hinshaw VS, Sly DL, London WT, Hosier NT, Wood FT, Webster RG, Cha- nock RM (1982) Virulence of avian influenza A viruses for squirrel monkeys. Infect Immun

37:1119-1126.

[45] Couceiro JN, Paulson JC, Baum LG (1993) Influenza virus strains selectively recognize sialyloligosaccharides on human respiratory epithelium; the role of the host cell in selection

of hemagglutinin receptor specificity. Virus Res 29:155-165.

[46] Kida H, Ito T, Yasuda J, Shimizu Y, Itakura C, Shortridge KF, Kawaoka Y, Webster RG (1994) Potential for transmission of avian influenza viruses to pigs. J Gen Virol 75:2183-2188.

[47] Choi YK, Nguyen TD, Ozaki H, Webby RJ, Puthavathana P, Buranathal C, Chaisingh A,Auewarakul P, Hanh NT, Ma SK, Hui PY, Guan Y, Peiris JS, Webster RG (2005) Studies of

H5N1 Influenza virus infection of pigs by using viruses isolated in Vietnam and Thailand in 2004. J Virol 79:10821-10825.

[48] Karasin AI, Brown IH, Carman S, Olsen CW (2000a) Isolation and characterization of H4N6 avian influenza viruses from pigs with pneumonia in Canada. J Virol 74:9322-9327

[49] Gipson PS, Veatch JK, Matlack RS, Jones DP (1999) Health status of a recently discov-ered population of feral swine in Kansas. J Wildl Dis 35:624-627.

[50] Saliki JT, Rodgers SJ, Eskew G (1998) Serosurvey of selected viral and bacterial diseases in wild swine from Oklahoma. J Wildl Dis 34:834-838.

[51] Vicente J, Leon-Vizcaino L, Gortazar C, Jose CM, Gonzalez M, Martin-Atance P (2002)Antibodies to selected viral and bacterial pathogens in European wild boars from south

cenral Spain. J Wildl Dis 38:649-652.

[52] Markowska-Daniel I, Pejsak Z (1999) Serological prevalence of influenza virus in pigs and wild boar in Poland. Medycyna Weterynaryjna 55:302-305.

[53] Geraci JR, St Aubin DJ, Barker IK, Webster RG, Hinshaw VS, Bean WJ, Ruhnke HL,Prescott JH, Early G, Baker AS, Madoff S, Schooley RT (1982) Mass mortality of harbor

seals: pneumonia associated with influenza A virus. Science 215:1129-1131.

[54]Stuen S, Have P, Osterhaus AD, Arnemo JM, Moustgaard A (1994) Serological investigation of virus infections in harp seals (Phoca groenlandica) and hooded seals (Cystophora cristata ). Vet Rec 134:502-503.

[55] Ohishi K, Kishida N, Ninomiya A, Kida H, Takada Y, Miyazaki N, Boltunov AN, Maruyama T (2004) Antibodies to human-related H3 influenza A virus in Baikal seals (Phoca sibirica )

and ringed seals (Phoca hispida ) in Russia. Microbiol Immunol 48:905-909.

[56] Nielsen O, Clavijo A, Boughen JA (2001) Serologic evidence of influenza A infection in marine mammals of arctic Canada. J Wildl Dis 37:820-825.

[57] Hinshaw VS, Bean WJ, Webster RG, Rehg JE, Fiorelli P, Early G, Geraci JR, St Aubin DJ (1984) Are seals frequently infected with avian influenza viruses? J Virol 51:863-865.

[58] Callan RJ, Early G, Kida H, Hinshaw VS (1995) The appearance of H3 influenza viruses in seals. J Gen Virol 76:199-203.

[59] Lvov DK, Zdanov VM, Sazonov AA, Braude NA, Vladimirtceva EA, Agafonova LV,Skljanskaja EI, Kaverin NV, Reznik VI, Pysina TV, Oserovic AM, Berzin AA, Mjas- nikova IA,

Podcernjaeva RY, Klimenko SM, Andrejev VP, Yakhno MA (1978) Comparison of influenza viruses isolated from man and from whales. Bull World Health Organ 56:923-930.

[60] Hinshaw VS, Bean WJ, Geraci J, Fiorelli P, Early G, Webster RG (1986) Characterization of two influenza A viruses from a pilot whale. J Virol 58:655-656.

[61] Nielsen O, Clavijo A, Boughen JA (2001) Serologic evidence of influenza A infection in marine mammals of arctic Canada. J Wildl Dis 37:820-825.

;62. Webster RG, Geraci J, Petursson G, Skirnisson K (1981a) Conjunctivitis in human beings caused by influenza A virus of seals. N Engl J Med 304:911.

[63] Smith W, Andrewes CH, Laidlaw PP (1933) A virus obtained from influenza patients. Lancet 2:66-68.

[64] Francis T, Salk JE, Pearson HE, Brown PN (1945a) Protective effect of vaccination against induced influenza A. J Clin Invest 24:536-546.

[65] Gundlefinger BF, Stille WT, Bell JA (1958) Effectiveness of influenza vaccines during an epidemic of Asian influenza. New Engl J Med 259:1005-1009.

[66] Jefferson T, Rivetti D, Rivetti A, Rudin M, Di Pietrantonj C, Demicheli V (2005) Efficacy and effectiveness of influenza vaccines in elderly people: a systematic review. Lancet

366:1165-1174.

[67] Demicheli V, Rivetti D, Deeks J, Jefferson T (2004) Vaccines for preventing influenza in healthy adults. Cochrane Database Syst Rev 1264-1269.

[68] Treanor J, Kotloff K, Betts R, Belshe R, Newman F, Iacuzio D, Wittes J, Bryant M (1999) Evaluation of trivalent, live, cold-adapted (CAIV-T) and inactivated (TIV) influenza vaccines

in prevention of virus infection and illness following challenge of adults with wild-type influenza A (H1N1), A (H3N2), and B viruses. Vaccine 18:899-906.

[69] Smith S, Demicheli V, Di Pietrantonj C, Harnden A, Jefferson T, Matheson N, Rivetti A (2006) Vaccines for preventing influenza in healthy children. Cochrane Database Syst Rev

4868-4879.

[70] Lipatov AS, Webby RJ, Govorkova EA, Krauss S, Webster RG (2005b) Efficacy of H5 influenza vaccines produced by reverse genetics in a lethal mouse model. J Infect Dis

191:1216-1220.

[71] Bresson JL, Perronne C, Launay O, Gerdil C, Saville M, Wood J et al (2006) Safety and immunogenicity of an inactivated split-virion influenza A/Vietnam/1194/2004 (H5N1) vaccine:

phase 1 randomised trial. Lancet 367:1657-1664.

[72] Bright RA, Ross TM, Subbarao K, Robinson HL, Katz JM (2003) Impact of glycosylation on the immunogenicity of a DNA-based influenza H5 HA vaccine. Virology 308:270-278.

[73] De Filette M, Ramne A, Birkett A, Lycke N, Lowenadler B, Min Jou W, Saelens X, Fiers W (2006) The universal influenza vaccine M2e-HBc administered intranasally in combination

with the adjuvant CTA1-DD provides complete protection. Vaccine 24:544-551.

[74] EurekAlert (2007) Universal flu vaccine being tested on humans. http://www.eurekalert.org/pub_releases/2007-07/vfii-nuf071707.php

[75] Mozdzanowska K, Feng J, Eid M, Kragol G, Cudic M, Otvos L Jr, Gerhard W (2003) Induction of influenza type A virus-specific resistance by immunization of mice with a

synthetic multiple antigenic peptide vaccine that contains ectodomains of matrix protein 2.Vaccine 21:2616-2626.

[76] Hsieh YH, King CC, Chen CW, Ho MS, Hsu SB, Wu YC (2007) Impact of quarantine on the 2003 SARS outbreak: a retrospective modeling study. J Theor Biol 244:729-736.

[77] Fan J, Liang X, Horton MS, Perry HC, Citron MP, Heidecker GJ, Fu TM, Joyce J, Przysiecki CT, Keller PM, Garsky VM, Ionescu R, Rippeon Y, Shi L, Chastain MA, Condra JH, Davies

ME, Liao J, Emini EA, Shiver JW (2004) Preclinical study of influenza virus A M2 peptide conjugate vaccines in mice, ferrets, and rhesus monkeys. Vaccine 22:2993-3003.

[78] Aydar Y, Balogh P, Tew JG, Szakal AK (2004) Follicular dendritic cells in aging, a “ bottle-neck ” in the humoral immune response. Ageing Res Rev 3:15-29.

[79] Compans R W and Orenstein W A, Vaccines for Pandemic Influenza, Current Topics in Microbiology and Immunology 333, DOI 10.1007/978-3-540-92165-3_15

[80] Huleatt JW, Nakaar V, Desai P, Huang Y, Hewitt D, Jacobs A, Tang J, McDonald W, Song L,Evans RK, Umlauf S, Tussey L, Powell TJ (2008) Potent immunogenicity and efficacy of a

universal influenza vaccine candidate comprising a recombinant fusion protein linking influenza M2e to the TLR5 ligand flagellin. Vaccine 26:201-214.

[81] 7Suguitan AL Jr, McAuliffe J, Mills KL, Jin H, Duke G, Lu B, Luke CJ, Murphy B, Swayne DE,Kemble G, Subbarao K (2006) Live, attenuated influenza A H5N1 candidate vaccines

provide broad cross-protection in mice and ferrets. PLoS Med 3:e360

[82] Shi H, Liu XF, Zhang X, Chen S, Sun L, Lu J (2007) Generation of an attenuated H5N1 avian influenza virus vaccine with all eight genes from avian viruses. Vaccine

25:7379-7384.

[83] Stephenson I, Bugarini R, Nicholson KG, Podda A, Wood JM, Zambon MC, Katz JM (2005) Crossreactivity to highly pathogenic avian influenza H5N1 viruses after vaccination with

nonadjuvanted and MF59-adjuvanted influenza A/Duck/Singapore/97 (H5N3) vaccine: a potential priming strategy. J Infect Dis 191:1210-1215.

[84] Epstein SL, Tumpey TM, Misplon JA, Lo CY, Cooper LA, Subbarao K, Renshaw M,Sambhara S, Katz JM (2002) DNA vaccine expressing conserved influenza virus proteins

protective against H5N1 challenge infection in mice. Emerg Infect Dis 8:796-801.

[85]Epstein SL, Kong WP, Misplon JA, Lo CY, Tumpey TM, Xu L, Nabel GJ (2005) Protection against multiple influenza A subtypes by vaccination with highly conserved nucleoprotein.

Vaccine 23:5404-5410.

[86] Gao W, Soloff AC, Lu X, Montecalvo A, Nguyen DC, Matsuoka Y, Robbins PD, Swayne DE,Donis RO, Katz JM, Barratt-Boyes SM, Gambotto A (2006) Protection of mice and poultry

from lethal H5N1 avian influenza virus through adenovirus-based immunization. J Virol 80:1959-1964.

[87]. Qiao C, Yu K, Jiang Y, Li C, Tian G, Wang X, Chen H (2006) Development of a recombinant fowlpox virus vector-based vaccine of H5N1 subtype avian influenza. Dev Biol

124:127-132.

[88]. Munster VJ, de Wit E, van Riel D, Beyer WE, Rimmelzwaan GF, Osterhaus AD, Kuiken T,Fouchier RA (2007) The molecular basis of the pathogenicity of the Dutch highly pathogenic

human influenza A H7N7 viruses. J Infect Dis 196:258-265.

[89]. Lee CW, Lee YJ, Senne DA, Suarez DL (2006) Pathogenic potential of North American H7N2 avian influenza virus: a mutagenesis study using reverse genetics. Virology

353:388-395.

[90]. CrossRef de Wit E, Munster VJ, Spronken MI, Bestebroer TM, Baas C, Beyer WE,Rimmelzwaan GF, Osterhaus AD, Fouchier RA (2005) Protection of mice against lethal

infection with highly pathogenic H7N7 influenza A virus by using a recombinant low-pathogenicity vaccine strain. J Virol 79:12401-12407.

[91]. Pappas C, Matsuoka Y, Swayne DE, Donis RO (2007) Development and evaluation of an Influenza virus subtype H7N2 vaccine candidate for pandemic preparedness. Clin Vaccine

Immunol 14:1425-1432.

[92]. Senne DA (2007) Avian influenza in North and South America, 2002-2005. Avian Dis 51:167-173.

[93]. Jennings GT, Bachmann MF (2008) The coming of age of virus-like particle vaccines. Biol Chem 389(5):521-536.

[94]. Jansen KU, Conner ME, Estes MK (2010) Virus-like particles as vaccines and vaccine delivery systems. In: Levine MM, Dougan G, Good MF, Liu MA, Nabel GJ, Nataro JP et al

(eds) New generation vaccines, 4th edn. Informa Healthcare, New York, 298-305.

[95]. Haynes JR (2009) Infiuenza virus-like particle vaccines. Expert Rev Vaccines 8(4):435-445.

[96]. Datta SA, Rein A (2009) Preparation of recombinant HIV-1 gag protein and assembly of virus- like particles in vitro. Methods Mol Biol 485:197-208.

[97]. Markowitz LE, Dunne EF, Saraiya M, Lawson HW, Chesson H, Unger ER (2007) Quadrivalent human papillomavirus vaccine: Recommendations of the Advisory Committee

on Immunization Practices (ACIP). MMWR Recomm Rep 56(RR-2):1-24.

[98]. Galarza JM, Latham T, Cupo A (2005) Virus-like particle (VLP) vaccine conferred complete protection against a lethal influenza virus challenge. Viral Immunol 18(1):244-251;

[99]. Quan FS, Huang C, Compans RW, Kang SM (2007) Virus-like particle vaccine induces protective immunity against homologous and heterologous strains of influenza virus. J Virol

81(7):3514-3524.

[100].Sailaja G, Skountzou I, Quan FS, Compans RW, Kang SM (2007) Human immunodeficiency virus-like particles activate multiple types of immune cells. Virology

362(2):331-241.

[101].Skountzou I, Quan FS, Gangadhara S, Ye L, Vzorov A, Selvaraj P, Jacob J, Compans RW,Kang SM (2007) Incorporation of glycosylphosphatidylinositol-anchored granulocytemac

-rophage colony-stimulating factor or CD40 ligand enhances immunogenicity of chimeric simian immunodeficiency virus-like particles. J Virol 81(3):1083-1094.

[102].Ali A, Avalos RT, Ponimaskin E, Nayak DP (2000) Influenza virus assembly: effect of influenza virus glycoproteins on the membrane association of M1 protein. J Virol

74(18):8709-8719.

[103].Gomez-Puertas P, Albo C, Perez-Pastrana E, Vivo A, Portela A (2000) Influenza virus matrix protein is the major driving force in virus budding. J Virol 74(24):11538-11547.

[104].Latham T, Galarza JM (2001) Formation of wild-type and chimeric influenza virus-like particles following simultaneous expression of only four structural proteins. J Virol

75(13):6154-6165.

[105].Nayak DP, Hui EK, Barman S (2004) Assembly and budding of influenza virus. Virus Res 106(2):147-165.

[106].Roberts PC, Lamb RA, Compans RW (1998) The M1 and M2 proteins of influenza A virus are important determinants in filamentous particle formation. Virology 240(1): 127-137.

[107].Liu C, Eichelberger MC, Compans RW, Air GM (1995) Influenza type A virus neuraminidase does not play a role in viral entry, replication, assembly, or budding. J Virol

69(2):1099-1106

[108].Pattnaik AK, Brown DJ, Nayak DP (1986) Formation of influenza virus particles lacking hemag- glutinin on the viral envelope. J Virol 60(3):994-1001.

[109].Jin H, Leser GP, Zhang J, Lamb RA (1997) Influenza virus hemagglutinin and neuraminidase cytoplasmic tails control particle shape. EMBO J 16(6):1236-1247.

[110].Zhang J, Leser GP, Pekosz A, Lamb RA (2000) The cytoplasmic tails of the influenza virus spike glycoproteins are required for normal genome packaging. Virology 269(2):325-234.

[111].Chen BJ, Leser GP, Morita E, Lamb RA (2007) Influenza virus hemagglutinin and neuraminidase, but not the matrix protein, are required for assembly and budding of

plasmid-derived virus-like particles. J Virol 81(13):7111-7123.

[112].Buonaguro L, Devito C, Tornesello ML, Schroder U, Wahren B, Hinkula J, Buonaguro FM (2007) DNA-VLP prime-boost intranasal immunization induces cellular and humoral

anti-HIV-1 systemic and mucosal immunity with cross-clade neutralizing activity. Vaccine 25(32):5968-5977.

[113].Wang BZ, Liu W, Kang SM, Alam M, Huang C, Ye L, Sun Y, Li Y, Kothe DL, Pushko P,Dokland T, Haynes BF, Smith G, Hahn BH, Compans RW (2007) Incorporation of high levels

of chi- meric human immunodeficiency virus envelope glycoproteins into virus-like particles.J Virol 81(20):10869-10878.

[114].O`Neal CM, Clements JD, Estes MK, Conner ME (1998) Rotavirus 2/6 virus-like particles admin- istered intranasally with cholera toxin, Escherichia coli heatlabile toxin (LT),

LT-R192G induce protection from rotavirus challenge. J Virol 72(4): 3390-3393.

[115].Murata K, Lechmann M, Qiao M, Gunji T, Alter HJ, Liang TJ (2003) Immunization with hepatitis C virus-like particles protects mice from recombinant hepatitis C virus-vaccinia

infection. Proc Natl Acad Sci USA 100(11):6753-6758.

[116].Triyatni M, Saunier B, Maruvada P, Davis AR, Ulianich L, Heller T, Patel A, Kohn LD, Liang TJ (2002) Interaction of hepatitis C virus-like particles and cells: a model system for

studying viral binding and entry. J Virol 76(18):9335-9344.

[117].Ye L, Lin J, Sun Y, Bennouna S, Lo M, Wu Q, Bu Z, Pulendran B, Compans RW, Yang C (2006) Ebola virus-like particles produced in insect cells exhibit dendritic cell stimulating

activity and induce neutralizing antibodies. Virology 351(2):260-270.

[118].Fiers W, Neirynck S, Deroo T, Saelens X, Jou WM (2001) Soluble recombinant influenza vaccines. Philos Trans R Soc Lond B Biol Sci 356(1416):1961-1963.

[119].Liu F X, Wu X D, Liu Z S (2013) Use of baculovirus expression system for generation of virus-like particles: Successes and challenges Protein Expression and Purification

90:104-116.

[120].Lanford RE, Luckow V, Kennedy RC, Dreesman GR, Notvall L, Summers MD (1989)Expression and characterization of hepatitis B virus surface antigen polypeptides in insect

cells with a baculovirus expression system. J Virol 63(4):1549-1557.

[121].Smith GE, Fraser MJ, Summers MD (1983) Molecular engineering of the Autographa californica nuclear polyhedrosis virus genome: deletion mutations within the eutralizi gene.

J Virol 46(2):584-593.

[122].Pushko P, Pearce MB, Ahmad A (2011) Influenza virus-like particle can accommodate multiple subtypes of hemagglutinin and protect from multiple influenza types and subtypes

[J]. Vaccine 29 5911- 5918.

[123].Latham T, Galarza JM (2001) Formation of wild-type and chimeric influenza virus-like particles following simultaneous expression of only four structural proteins. J Virol

75(13):6154-6165.

[124].Bright RA, Carter DM, Daniluk S, Toapanta FR, Ahmad A, Gavrilov V, Massare M, Pushko P,Mytle N, Rowe T, Smith G, Ross TM (2007) Influenza virus-like particles elicit broader

immune responses than whole virion inactivated influenza virus or recombinant hemagglutinin. Vaccine 25(19):3871-3878.

[125].Bright RA, Carter DM, Crevar CJ, Toapanta FR, Steckbeck JD, Cole KS, Kumar NM,Pushko P, Smith G, Tumpey TM, Ross TM (2008) Cross-clade protective immune

responses to influenza viruses with H5N1 HA and NA elicited by an influenza virus-like particle. PLoS One 3:e1501

[126].Pushko P, Tumpey TM, Bu F, Knell J, Robinson R, Smith G (2005) Influenza virus -like particles comprised of the HA, NA, M1 proteins of H9N2 influenza virus induce protective

immune responses in BALB/c mice. Vaccine 23(50):5751- 5759.

[127].Pushko P, Tumpey TM, Van Hoeven N, Belser JA, Robinson R, Nathan M, Smith G, Wright DC, Bright RA (2007) Evaluation of influenza virus-like particles and Nova- some adjuvant

as candidate vaccine for avian influenza. Vaccine 25(21):4283-4290.

[128].Roldao A, Vieira HL, Charpilienne A, Poncet D, Roy P, Carrondo MJ, Alves PM, Oliveira R (2007) Modeling rotavirus-like particles production in a baculovirus expression vector

system: Infection kinetics, baculovirus DNA replication, mRNA synthesis and protein production. J Biotechnol 128(4):875-894.

[129].Gomez-Puertas P, Mena I, Castillo M, Vivo A, Perez-Pastrana E, Portela A (1999) Efficient forma- tion of influenza virus-like particles: dependence on the expression levels of viral

proteins. J Gen Virol 80(Pt 7):1635-1645.

[130].Moron VG, Rueda P, Sedlik C, Leclerc C (2003) In vivo, dendritic cells can cross-present virus-like particles using an endosome-to-cytosol pathway. J Immunol 171(5):2242-2250.

[131].Szecsi J, Boson B, Johnsson P, Dupeyrot-Lacas P, Matrosovich M, Klenk HD, Klatzmann D,Volchkov V, Cosset FL (2006) Induction of eutralizing antibodies by virus-like particles

harbouring surface proteins from highly pathogenic H5N1 and H7N1 influenza viruses. VirolJ 3:70.

[132].Matassov D, Cupo A, Galarza JM (2007) A novel intranasal virus-like particle (VLP) vaccine designed to protect against the pandemic 1918 influenza A virus (H1N1). Viral Immunol

20(3):441-452.

[133].Wang BZ, Quan FS, Kang SM, Bozja J, Skountzou I, Compans RW (2008) Incorporation of membrane-anchored flagellin into influenza virus-like particles enhances the breadth of

immune responses. J Virol 82(23):11813-23.

[134].Mahmood K, Bright RA, Mytle N, Carter DM, Crevar CJ, Achenbach JE, Heaton PM,Tumpey TM, Ross TM (2008) H5N1 VLP vaccine induced protection in ferrets against lethal

challenge with highly pathogenic H5N1 influenza viruses. Vaccine 26(42):5393-5399.

[135].Lugovtsev VY, Vodeiko GM, Levandowski RA (2005) Mutational pattern of influenza B viruses adapted to high growth replication in embryonated eggs. Virus Res 109(2):149-157.

[136].Widjaja L, Ilyushina N, Webster RG, Webby RJ (2006) Molecular changes associated with adap- tation of human influenza A virus in embryonated chicken eggs. Virology

350(1):137-145.

[137].http:// www.novavax.com

[138].Smith G E,Summers M D,Fraser M (1983) Production of human belta inter -feron in insect cells infected with a baculovirus expression vector. Mol Cell Bio 13:183-192.

[139].韦永龙,李轶女,张志芳,等(2010) 杆状病毒表达系统及其应用进展[J]. 生物技术通报,10:1-8.

[140].吕鸿声 (1998) 昆虫病毒分子生物学[M].北京:中国农业科技出版社.

[141].Van Regenmortel MH,Fauquet C,Bishop D (2000) Virus taxonomy:cla- sssification and nomenclature of viruses:seventh report of the International Committee on Taxonomy of

Viruses.San Diego:AcademicPress

[142].曹建斌 , 范 晓 军 , 梁 爱 华 , 等 (2007) 杆 状 病 毒 及 其 应 用 [J]. 科 技 情 报 开 发 与 经济,18(17):131-132.

[143].Rohrmann GF (2013) Baculovirus molecular biology, 3rd edn. [Internet]. National Center for Biotechnology Information (US), Bethesda. www.ncbi.nlm.nih.gov/books/NBK114593/

[144].Palomares LA, Realpe M, Ramírez OT (2015) An overview of cell culture engineering for the insect cell-baculovirus expression vector system. In: Animal cell culture, Cell

Engineering 9: 501-518.

[145].刘高强,章克昌,王晓玲,等 (2004) 昆虫杆状病毒表达系统的研究与应用进展[J]. 中国生物工程杂志, 24(7):40-44.

[146].彭建新(2000)杆状病毒分子生物学[M].武汉:华中师范大学出版社,32-84.

[147].王文兵,张志芳,何家禄,等(2000)杆状病毒基因组 DNA 复制相关基因的研究进展[J].生物化学与生物物理进展, 27(3):257-261.

[148].CARSIENS E B,BAN L J,DOMINY C (2002) Identification and molecular characterization of the baculovirus OMNPV early genes:ie-1,ie-2 and pe-38.Virus Research83 (1-2):13-30.

[149].周亚亮,易咏竹,张志芳,等 (2003) 杆状病毒囊膜糖蛋白 gp64 基因启动子活性分析[J].生物化学与生物物理学报,35(1):18-26.

[150].刘高强,余晓丹(2006)昆虫杆状病毒分子生物学及其应用研究的新进展[J].安徽农业科学,34(9):1748-1750.

[151].Lacount DJ, Hanson SF, Schneiderc L, et al (2000) Caspaseinhibitor p35 and inhibitor of caspase Op-IAP block in vivo proteolytic.J Biol Chem 275 (21):15657-15664.

[152].Chen YR, Zhong S, Fei Z, Hashimoto Y, Xiang JZ, et al (2013) The trans- criptome of the baculovirus Autographa californica multiple nucleopoly- hedrovirus in Trichoplusia ni cells. J

Virol 87:6391-6405.

[153].Cox MMJ (2012) Recombinant protein vaccines produced in insect cells. Vaccine 30:1759-1766.

[154]..Hitchman RB, Possee RD, King LA (2009) Baculovirus expression systems for recombinant protein production in insect cells. Recent Pat Biotechnol 3:46-54.

[155].Kato T, Kajikawa M, Maenaka K, Park EY (2010) Silkworm expression system as a platform technology in life science. Appl Microbiol Biotechnol 85:459-470. doi

10.1007/s00253-009-2267-2

[156].Maeda S, Kawai T, Obinata M, Fujiwara H, Horiuchi T, Saeki Y, Sato Y, Furusawa M (1985)Production of human α -interferon in silkworm using a baculovirus vector. Nature

315:592-594.

[157]. Miyajima A, Schreurs J, Otsu K, Kondo A, Arai K, Maeda S (1987) Use of the silkworm,Bombyx mori, and an insect baculovirus vector for high-level of expression and secretion of

biologically active mouse inteleukin-3. Gene 58:273-281.

[158].Wei WL, Qin JC, Sun MJ (2000) High-level expression of human butyry- lcholinesterase gene in Bombyx mori and biochemical-pharmacological characteristic study of its product.

Biochem Pharmacol 60:121-126.

[159].Kadono-Okuda K, Yamamoto M, Higashino Y, Taniai K, Kato Y, Chowdhury S, Xu J, ChoiSK, Sugiyama M, Nakashima K, Maeda S, Yamakawa M (1995) Baculovirus-mediated

production of the human growth hormone in larvae of the silkworm, Bombyx mori. Biochem Biophys Res Commun 213:389-396.

[160].Qiu P, Ding Y, Qin J, Han KK, Zhu D (1994) Expression of biologically active monomeric form of human M-CSF in baculovirus infected silkworm, Bombyx mori. Biol Chem Hoppe

Seyler 375:413-418.

[161].Nagaya H, Kanaya T, Kaki H, Tobita Y, Takahashi M, Takahashi H, Yokomizo Y, Inumaru S (2004) Establishment of a large-scale purification procedure for purified recombinant bovine

interfe-γproduced by a silkworm-baculovirus gene expression system. J Vet Med Sci 66:1395-1401.

[162].Mori H, Nakazawa H, Shirai N, Shibata N, Sumida M, Matsubara F (1992) Foreign gene expression by a baculovirus vector with an expanded host range. J Gen Virol 73:1877-1880.

[163].Muneta Y, Nagaya H, Minagawa Yu, Enomoto C, Matsumoto S, Mori Y (2004) Expression and one-step purification of bovine interleukin-21 (IL-21) in silkworm using a hybrid

baculovirus expression system. Biotechnol Lett 26:1453-1458.

[164].Motohashi T, Shimojima T, Fukagawa T, Maenaka K, Park EY (2005) Efficient large-scale protein production of larvae and pupae of silkworm by Bombyx mori nuclear polyhedrosis

virus bacmid system. Biochem Biophys Res Commun 326:564-569.

[165].Suzuki Y, Nagano Y, Kato H, Matsumoto M, Nerome K, Nakajima K, Nobusawa E (1986) Human influenza A virus hemagglutinin distinguishes sialyl oligosaccharides in

membrane-associated gangliosides as its receptor which mediates the adsorption and fusion processes of virus infection. J Biol Chem 261:17057-17061.

[166].Ogata M, Murata T, Murakami K, Suzuki T, I-PJ HK, Suzuki Y, Usui T (2007) Chemoenzymatic synthesis of artificial glycopolypeptides containing multivalent sialyl oligosaccharides with a γpolyglutamic acid backbone and their effect on inhibition of infection by influenza viruses. Bioorg Med Chem 15:1383-1393.

[167].Yamada S, Suzuki Y, Suzuki T, Li MQ, Nidom CA, Sakai-Tagawa Y, MuramotoY, Ito M,KisoM,HiromotoT,ShinyaK,SawadaT,Kiso M, Usui T, Murata T, Lin Y, Hay A, Haire LF,

Stevens DJ, Russell RJ, Gamblin SJ, Skehel JJ, Kawaoka Y (2006) Hemagglutininmutations responsible for the binding of H5N1 influenza Aviruses to human-type receptors.

Nature 444:378-382.

[168].Ogata M, Nakajima M, Kato T, Obara T, Yagi H, Kato K, Usui T, Park EY (2009b) Synthesis of sialoglycopolypeptide for potentially blocking influenza virus infection using a rat α

2,6-sialyltransferase expressed in BmNPV bacmid-injected silkworm larvae. BMC Biotechnol 9:54.

[169].Tamura T, Thibert C, Royer C, Kanda T, Abraham E, Kamba M, Komoto N, Thomas JL,Mauchamp B, Chavancy G, Shirk P, Fraser M, Prudhomme JC, Couble P (2000) Germ line transformation of the silkworm Bombyx mori L. using piggyBac transposon-derived vector.Nat Biotechnol 18:81-84.

[170].Yamamoto M, Yamao M, Nishiyama H, Sugihara S, Nagaoka S, Tomita M, Yoshizato K,Tamura T, Mori H (2004) New and highly efficient method for silkworm transgenesis using Autographa californica nucleopolyhedrovirus and piggyBac transposable elements.Biotechnol Bioeng 88:849-853.

[171].Kurihara H, Sezutsu TT, Yamada K (2007) Production of an active feline interferon in the cocoon of transgenic silkworms using the fibroin H-chain expression system. Biochem Biophys Res Commun 355:976-980.

[172].Tateno M, Toyooka M, Shikano Y, Takeda S, Kuwabara N, Sezutsu H, Tamura T (2009) Production and characterization of the recombinant human u-opioid receptor from transgenic silkworms. J Biochem 145:37-42.

[173].Luckow VA, Lee SC, Barry GF, Olins PO ( 1993) Efficient generation of infectious recombinant baculoviruses by site-specific transposen-mediated insertion of foreign genes

into a baculovirus genome propagated in Escherichia coli. J Viml 67(8):4566-4579.

[174].曹建斌,范晓军,梁爱华(2007)杆状病毒及其应用.科技情报开发与经济 17:131-132.

[175].吴小峰,岳万福,刘剑梅,等(2007)Bac-to-Bac 系统的研究进展及在家蚕中的应用[J].蚕业科学,33(1):146-149.

[176].Hitchman RB, Possee RD, Crombie AT, et al (2010) Genetic modification of a baculovirus vector for increased expression in insect cells. Cell Biol Toxicol 26:57-68.

[177].Zhao Y, Chapman DA, Jones IM (2003) Improving baculovirus recombination. Nucleic Acids Res 31:E6–6.

[178].Aucoin MG, Mena JA, Kamen AA (2010) Bioprocessing of baculovirus vectors: a review.Curr Gene Ther 10:174-86.

[179].Cox MM (2012) Recombinant protein vaccines produced in insect cells. Vaccine 30:1759-1766.

[180].Liu F, Wu X, Li L, Liu Z, Wang Z (2013) Use of baculovirus expression system for generation of virus-like particles: successes and challenges. Prot Exp Pur 90:104-446.

[181].Lua LHL, Connors NK, Sainsbury F, Chuan YP, Wibiwo N, Middelberg APJ (2014)Bioengineering virus-like particles as vaccines. Biotechnol Bioeng 111:425-440.

[182].Mena JA, Kamen AA (2011) Insect cell technology is a versatile and robust vaccine manufacturing platform. Expert Rev Vaccines 10:1063-1081.

[183].Palomares LA, Mena JA, Ramírez OT (2012) Simultaneous expression of recombinant proteins in the insect cell-baculovirus system: Production of virus-like particles. Methods

53:389-395

[184].Castro-Acosta RM, Rodríguez-Limas WA, Valderrama B, Ramírez OT, Palomares LA(2014) Effect of metal catalyzed oxidation in recombinant viral protein assemblies. Microb

Cell Fact 13:25.

[185].Plascencia-Villa G, Saniger JM, Ascencio JA, Palomares LA, Ramírez OT (2009) Use of recombinant rotavirus VP6 nanotubes as a multifunctional template for the synthesis of

nanobiomaterials functionalized with metals. Biotechnol Bioeng 104:871-881.

[186].Plascencia-Villa G, Mena JA, Castro-Acosta R, Fabián JC, Ramírez OT, Palomares LA (2011) Strategies for the purification and characterization of protein scaffolds for the

production of hybrid nanobiomaterials. J Chromatogr B Analyt Technol Biomed Life Sci 879:1105-1111.

[187].Carreño-Fuentes L, Ascencio JA, Medina A, Aguila S, Palomares LA, Ramírez OT (2013) Strategies for specifically directing metal functionalization of protein nanotubes:

Constructing protein coated silver nanowires. Nanotechnology 24:235602.

[188].Kool M, Voncken JW, van Lier FL, Tramper J, Vlak JM (1991) Detection and analysis of Autographa californica nuclear polyhedrosis virus mutants with defective interfering

properties. Virology 183:739-46.

[189].Madsen JM, Zimmermann NG, Timmons J, Tablante NL (2013) Avian influenza seroprevalence and biosecurity risk factors in Maryland backyard poultry: a cross-sectional study. PLoS One 8:e56851. doi: 10.1371/journal.pone.0056851

[190].De Leo GA, Bolzoni L (2012) Getting a free ride on poultry farms: how highly pathogenic avian influenza may persist in spite of its virulence. Theor Ecol 5:23-35. doi:

10.1007/s12080-011-0136-y

[191].Cappelle J, Girard O, Fofana B, Gaidet N, Gilbert M (2010) Ecological modeling of the spatial distribution of wild waterbirds to identify the main areas where avian influenza

viruses are circulating in the Inner Niger Delta, Mali. Ecohealth 7:283-293. doi:10.1007/s10393-010-0347-5

[192].Chang H, Dai F, Liu Z, Yuan F, Zhao S, Xiang X, Zou F, Zeng B, Fan Y, Duan G (2014) Seroprevalence Survey of Avian influenza A (H5) in wild migratory birds in Yunnan Province,

Southwestern China. Virol J 11:18. doi: 10.1186/1743-422X-11-18

[193].Hall JS, Teslaa JL, Nashold SW, Halpin RA, Stockwell T, Wentworth DE, Dugan V, Ip HS (2013) Evolution of a reassortant North American gull influenza virus lineage: drift, shift and

stability. Virol J 10:179. doi: 10.1186/1743-422X-10-179

[194].Scotch M, Brownstein JS, Vegso S, Galusha D, Rabinowitz P (2011) Human vs. animal outbreaks of the 2009 swine-origin H1N1 influenza A epidemic. Ecohealth 8:376-380. doi:

10.1007/s10393-011-0706-x

[195].Schemann K, Firestone SM, Taylor MR, Toribio JA, Ward MP, Dhand NK (2013) Perceptions of vulnerability to a future outbreak: a study of horse managers affected by the first

Australian equine influenza outbreak. BMC Vet Res 9:152. doi: 10.1186/1746-6148-9-152

[196].Yamanaka T, Nemoto M, Bannai H, Tsujimura K, Kondo T, Matsumura T, Muranaka M,Ueno T, Kinoshita Y, Niwa H, Hidari KI, Suzuki T (2012) No evidence of horizontal infection

in horses kept in close contact with dogs experimentally infected with canine influenza A virus (H3N8). Acta Vet Scand 54:25. doi: 10.1186/1751-0147-54-25

[197].McCullers JA, Van De Velde LA, Schultz RD, Mitchell CG, Halford CR, Boyd KL,Schultz-Cherry S (2011) Seroprevalence of seasonal and pandemic influenza A viruses in

domestic cats. Arch Virol 156:117-120. doi: 10.1007/s00705-010-0809-7

[198].Amonsin A, Songserm T, Chutinimitkul S, Jam-On R, Sae-Heng N, Pariyothorn N,Payungporn S, Theamboonlers A, Poovorawan Y (2007) Genetic analysis of influenza A

virus (H5N1) derived from domestic cat and dog in Thailand. Arch Virol 152:1925-1933. doi:10.1007/s00705-007-1010-5

[199].Graves IL, Pyakural S, Sousa VO (1974) Susceptibility of a yak to influenza A viruses and presence of H3N2 antibodies in animals in Nepal and India. Bull World Health Organ

51:173-177

[200].Wu SS, Wang F, Ci YP, Liu LL, Tian GB, Zeng XY, Chen HL, Li YB (2013) Genetic analysis and pathogenicity of an H5N1 avian influenza virus isolated from palm civet. Chin J Prev Vet

Med 35:181-184. (In Chinese)

[201].Sun P (2008) Isolation and identification of avian influenza H5N1 subtype virus from foxes.Master`s thesis, Jilin University

[202].Mushtaq MH, Juan H, Jiang P, Li Y, Li T, Du Y, Mukhtar MM (2008) Complete genome analysis of a highly pathogenic H5N1 influenza A virus isolated from a tiger in China. Arch

Virol 153:1569-1574. doi: 10.1007/s00705-008-0145-3

[203].Nielsen O, Clavijo A, Boughen JA (2001) Serologic evidence of influenza A infection in marine mammals of arctic Canada. J Wildl Dis 37:820-825. doi: 10.7589/0090-3558-37.

4.820

[204].Chan PK (2002) Outbreak of avian influenza A (H5N1) virus infection in Hong Kong in 1997.Clin Infect Dis 34(Suppl 2):S58-S64. doi: 10.1086/338820

[205].Peiris JS, Yu WC, Leung CW, Cheung CY, Ng WF, Nicholls JM, Ng TK, Chan KH, Lai ST,Lim WL, Yuen KY, Guan Y (2004) Re-emergence of fatal human influenza A subtype H5N1

disease. Lancet 363:617-619. doi: 10.1016/S0140-6736(04)15595-5 [206].Gao R, Song J, Zhang Y, Zou S, Bai T, Li X, Qu J, Zhou J, Hung T, Shu Y (2014)

Ultrastructural characterization of avian influenza A (H7N9) virus infecting humans in China.Virol Sin 29:119-122. doi: 10.1007/s12250-014-3443-9

[207].Dinh PN, Long HT, Tien NT, Hien NT, Mai le TQ, Phong le H, Tuan le V, Van Tan H, Nguyen NB, Van Tu P, Phuong NT, World Health Organization/Global Outbreak Alert and Response

Network Avian Influenza Investigation Team in Vietnam (2006) Risk factors for human infection with avian influenza A H5N1, Vietnam, 2004. Emerg Infect Dis 12:1841-1847. doi:

10.3201/eid1212.060829

[208].Uyeki TM, Nguyen DC, Rowe T, Lu X, Hu-Primmer J, Huynh LP, Hang NL, Katz JM (2012)Seroprevalence of antibodies to avian influenza A (H5) and A (H9) viruses among market

poultry workers, Hanoi, Vietnam, 2001. PLoS One 7:e43948. doi: 10.1371/journal.pone.0043948

[209].Wu Y, Gao GF (2013) Lessons learnt from the human infections of avian-origin influenza A H7N9 virus: live free markets and human health. Sci China Life Sci 56:493-494. doi:

10.1007/s11427-013-4496-y

[210].Gao GF (2014) Influenza and the live poultry trade. Science 344:235. doi: 10.1126/science.1254664

[211].Anonymous (2006) Influenza. Bird flu moves west, spreading alarm. Science 311:1084. doi:10.1126/science.311.5764.1084b

[212].Aly MM, Arafa A, Hassan MK (2008) Epidemiological findings of outbreaks of disease caused by highly pathogenic H5N1 avian influenza virus in poultry in Egypt during 2006.

Avian Dis 52:269-277. doi: 10.1637/8166-103007-Reg.1

[213].Kapoor S, Dhama K (2014) Role of migratory birds in spreading influenza viruses. In:Insight into influenza viruses of animals and humans, Springer Publishing, New York,

87-101

[214].Yu YL (2006) Xinjiang. Migratory birds. Influenza virus. Forest Xinjiang 3:18 (In Chinese)

[215].汪萍,夏俊,参都哈什,等. 新疆哺乳动物流感病毒血清学监测与分析[J].中国预防兽医学报,2013,35(9):767-769.

[216].WHO. WHO Manual on animal influenza Diagnosis and surveillance (2002) http://www.who.int/csr/resources/publications/influenza/en/whocdscsrncs20025rev.pdf.

[217].Garamszegi LZ, Møller AP (2007) Prevalence of avian influenza and host ecology. Proc Biol Sci 274:2003–2012. doi: 10.1098/rspb.2007.0124

[218].Bridges CB, Lim W, Hu-Primmer J, Sims L, Fukuda K, Mak KH, Rowe T, Thompson WW,Conn L, Lu X, Cox NJ, Katz JM (2002) Risk of influenza A (H5N1) infection among poultry

workers, Hong Kong, 1997-1998. J Infect Dis 185:1005-1010. doi: 10.1086/340044

[219].Smith RP Jr, Rand PW, Lacombe EH, Morris SR, Holmes DW, Caporale DA (1996) Role of bird migration in the long-distance dispersal of Ixodes dammini, the vector of Lyme disease.

J Infect Dis 174:221-224. doi: 10.1093/infdis/174.1.221

[220].Kida H, Ito T, Yasuda J, Shimizu Y, Itakura C, Shortridge KF (1994) Potential for transmission of avian influenza viruses to pigs. J Gen Virol. 75:2183-2188. doi: 10.1099/0022-

1317-75-9-2183

[221].Ito T, Couceiro JN, Kelm S, Baum LG, Krauss S, Castrucci MR, Donatelli I, Kida H, Paulson JC, Webster RG, Kawaoka Y (1998) Molecular basis for the generation in pigs of influenza A

viruses with pandemic potential. J. Virol. 72:7367-7373.

[222].Yuan Z, Zhu W, Chen Y, Zhou P, Cao Z, Xie J, Zhang C, Ke C, Qi W, Su S, Zhang G (2013) Serological surveillance of H5 and H9 avian influenza A viral infections among pigs in

southern China. Microb Pathog. 64:39-42. doi: 10.1016/j.micpath.2013.08.001

[223].Ninomiya A, Takada A, Okazaki K, Shortridge KF, Kida H (2002) Seroepidemiological evidence of avian H4, H5, and H9 influenza A virus transmission to pigs in southeastern

China. Vet Microbiol 88:107-114. doi: 10.1016/S0378-1135(02)00105-0

[224].Li H, Yu K, Xin X, Yang H, Li Y, Qin Y, Bi Y, Tong G, Chen H (2004) Serological and virologic surveillance of swine influenza in China from 2000 to 2003. Int Congr Ser 1263:754-757.

doi:10.1016/j.ics.2004.04.002

[225].Karasin AI, Brown IH, Carman S, Olsen CW (2000) Isolated and characterization of H4N6 avian influenza viruses from pigs with pneumonia in Canada. J. Virol. 74:9322-9327. doi:

10.1128/JVI.74.19.9322-9327.2000

[226].Peiris JS, Guan Y, Markwell D, Ghose P, Webster RG, Shortridge KF (2001) Cocirculation of avian H9N2 and contemporary “human” H3N2 influenza A viruses in pigs in southeastern

China: potential for genetic reassortment? J. Virol. 75:9679e86. doi: 10.1128/JVI.75.20.9679-9686.2001

[227].Gipson PS, Veatch JK, Matlack RS, Jones DP: Health status of a recently discovered population of feral swine in Kansas. J Wildl Dis 1999, 35:624-627.

[228].Saliki JT, Rodgers SJ, Eskew G: Serosurvey of selected viral and bacterial diseases in wild swine from Oklahoma. J Wildl Dis 1998, 34:834-838.

[229].Baumer A, Feldmann J, Renzullo S, Müller M, Thür B, Hofmann MA (2010) Epidemiology of avian influenza virus in wild birds in Switzerland between 2006 and 2009. Avian Dis

54:875-884. doi: 10.1637/9119-110209-Reg.1

[230].Jackwood MW, Stallknecht DE (2007) Molecular epidemiologic studies on North American H9 avian influenza virus isolated from waterfowl and shorebirs. Avian Dis 51:448-450. doi:10.1637/7536-032706R.1

[231].Luo J, Dong G, Li K, Lv Z, Huo X, He H (2013) Exposure to swine H1 and H3 and avian H5 and H9 influenza A viruses among feral swine in southern China, 2009. J Wildl Dis

49:375-380. doi: 10.7589/2012-03-079

[232].Gortázar C, Ferroglio E, Höfle U, Frölich K, Vicente J (2007) Diseases shared between wildlife and livestock: a European perspective. Eur J Wildl Res 53:241-256. doi: 10.1007/

s10344-007-0098-y

[233].Kato T,Suzuki F, Park EY (2011) Purification of functional baculovirus particles from silkworm larval hemolymph and their use as nanoparticles for the detection of human

prorenin receptor (PRR) binding. BMC Biotechnology 11:60.

[234].Lee KS, Sohn MR, Kim BY,et al (2012) Production of Classical Swine Fever Virus Envelope Glycoprotein E2 as Recombinant Polyhedra in Baculovirus-Infected Silkworm Larvae.

Molecular Biotechnology 50(3): 211-220.

[235].张韵,易咏竹,李志勇,等(2008)O 型口蹄疫病毒 P1-2A3C 基因在家蚕杆状病毒表达系统中的表达[J].蚕业科学, 34(1):148-153.

[236].关洪鑫,李志勇,白银梅,等(2013)家蚕杆状病毒表达系统及其在口蹄疫疫苗研究中的应用[J]中国预防兽医学报,35(9): 776-778.

[237].盛稳稳,郭庆拓,陈剑清,等(2014)间日疟疾传播阻断疫苗候选抗原 Pvs25 在家蚕杆状病毒表达系统中的表达[J]. 蚕业科学 40(4):672-680.

[238].陆叶,张孝林,郑小坚,等(2010)IL-28A 在家蚕 BmN 细胞及蛹中的表达[J].中华微生物学和免疫学杂志, 3: 244.

[239].龙虎,姚伦广,王姗姗,等(2010)杆状病毒多基因表达系统介导的轮状病毒样颗粒表达与组装[J].南方医科大学学报,2010,7: 1491-1495.

[240].李司,钟云平,张海花,等(2012)A 组轮状病毒结构蛋白 VP6 在家蚕杆状病毒表达系统中的表达[J]. 蚕业科学,38(6): 1024-1028.

[241].Xing XW, Yang R, Yu SF,et al. Construction of a BmNPV polyhedrin-plus Bac-to-Bac baculo -virus expression system for application in silkworm, Bombyx mori. Applied Microbiology

and Biotechnology 2010, 87(1):289-295.

[242].Takumi Mitsudome T, Xu J, Nagata Y,et al. Expression, Purification, and Characterization of Endo- β -N-Acetylglucosaminidase H Using Baculovirus-Mediated Silkworm Protein

Expression System. Applied Biochemistry and Biotechnology ,2014,172(8): 3978-3988.

[243].Marumoto Y, Sato Y, Fujiwara H, et al (1987) Hyperproduction of polyhedron-IGF II fusion protein in silkworm larvae infected with recombinant Bombyx mori nuclear polyhedrosis

virus[J].J Gen Virol 68:2599-2606.

[244].Miyajima A, Schereurs J, Otsu K, et al (1987) Use of the silkworm, Bombyx mori, and an insect baculovirus vector for high-level expression and secretion of biologically active

mouse interleukin-3. Gene 58:273-281.

[245].Shi X, Qin J, Zhu J, et al (1996) Expression of biologically active human granulocytemacrophage colony--stimulating factor in the silkworm (Bombyx mori). Biotechnol Appl

Biochem 24:245-249.

[246].Higashihashi N, Arai Y, Enjo T, et al (1991) High-level expression and characterization of hepatitis B virus surface antigen in silkworm using a baculovirus vector[J].J Virol Methods

35(2):159-167.

[247].Li Z, Yin X, Yi Y, et Al (2011) FMD subunit vaccine produced using a silkworm-baculovirus expression system:protective efficacy against two type Asial isolates in cattle[J].Vet

Microbiol 149:99-103.

[248].柳纪省,张志芳,李志勇,等(2008)一种口蹄疫抗原的制备方法[P].专利.

[249].Maeda S, Kawai T,Obinata M,et al (1985) Production of hum an alpha—interferon in silkworm using a baculovirus vector.Nature 315(6020):592-594.

[250].Luckow VA, Lee SC, Barry GF, et al (1993) Efficient generation of infectious recombinant baculoviruses by site-specific transposon-mediated insertion of foreign genes into a

baculovirus genome propagated in Escherichia coli. J Virol 67(8):4566-4579.

[251].Motohashi T, Shimojima T, Fukagawa T, et al (2005) Efficient large-scale protein production of larvae and pupae of silkworm by Bombyx mori nuclear polyhedrosis virus bacmid system.

Biochem Biophys Res Commun 326(3):564-569.

[252].Ishikiriyama M, Nishina T, Kato T, et al (2009) Human single-chain antibody expression in the hemolymph and fat body of silkworm larvae and pupae using BmNPV bacmids.J Biosci

Bioeng 107(1):67-72.

[253].Usami A, Suzuki T, Nagaya H, et al (2010) Silkworm as a host of baculovirus expression.Curr Pharm Biotechnol 11(3):246-250.

[254].吴蒙,张定梅,陆家海(2009)流感病毒样颗粒疫苗研究进展[J].中山大学学报(医学科学版),30(5):486-491.

[255].张立霞,于在江,周剑芳,等(2011)流感病毒样颗粒疫苗研究进展[J].病毒学报,4:402-407.

[256].Galarza JM, Latham T, Cupo A (2005) Virus-like particle (VLP) vaccine conferred complete protection against a lethal influenza virus challenge. Viral Immunol 18(1):244-251.

[257].Comez-Puertas P, Albo C, Perez-Pastrana E, et al (2000) Influenza virus matrix protein is the major driving force in virus budding. J Viml 74(24):l1538-11547.

[258].Prel A, Le Gall-Recule G, Jesfin V (2008) Achievement of avian influenza virus-like particles that could be used as a subunit vaccine against low-pathogenic avian influenza strains in ducks. Avian Pathol 37 (5):513-520.

[259.Kang SM, Yoo DG, Lipatov AS, et al (2009) Induction of long-term protective immune responses by influenza H5NI virus-like particles. PLoS One 4(3):e4667.

[260].Vicente T, Roldão A, Peixoto C, et al (2011) Large-scale production and purification of VLP-based vaccines. Journal of Invertebrate Pathology 107:S42-S48.

[261].Xue C , Wang W, Liu Q , et al (2014) Chimeric influenza-virus-like particles containing the porcine reproductive and respiratory syndrome virus GP5 protein and the influenza virus HA

and M1 proteins. Arch Virol DOI 10.1007/s00705-014-2178-0.

[262].Li ZN, Mueller SN, Ye L, et al (2005) Chimeric influenza virus hemagglutinin proteins containing large domains of the Bacillus anthracis protective antigen: protein character

-ization, incorporation into infectious influenza viruses, and antigenicity. J Virol 79(15):10003-10012.

[263].Cantin GT, Resnick S, Jin H, et al (2011) Comparison of methods for chemical conjugation of an influenza peptide to wild-type and cysteine-mutant vrus-Like particles expressed in

Pseudomonas fluorescens. Int J Pept Res Ther, 17:217-224.

[264].Knuuttila A, Aronen P, Saarinen A, et al (2009) Development and evaluation of an enzyme-linked immunosorbent assay based on recombinant VP2 capsids for the detection of antibodies to Aleutian mink disease virus . Clinical Vac Immunol 16 (9):1360-1365.

[265].Ciacci-Woolwine F, Blomfield IC, Richardson SH, et al (1998) Salmonella flagellin induces tumor necrosis factor alpha in a human promonocytic cell line. Infect Immun 66(3):

1127-1134.

[266].Lightfield KL, Persson J, Brubaker SW, et al (2008) Critical function for Naip5 in inflamma some activation by a conserved carboxy-terminal domain of flagellin. Nat Immunol, 9(10):

1171-1178.

[267].Ben-Yedidia T, Abel L, Arnon R, et al (1998) Efficacy of anti-influenza peptide vaccine in aged mice. Mech Ageing Dev 104(1):11-23.

[268].王希(2011)新型流感病毒样颗粒疫苗在老龄小鼠中免疫原性研究[M].第四军医大学博士论文.

[269].蒋涛(2010)提高广谱流感疫苗 NMZe 免疫效果的佐剂研究[M].中国疾病预防控制中心博士论文.

[270].王文娟(2013)基于 NP 和 M1 蛋白的通用型甲型流感疫苗的研究[M].安徽医科大学硕士论文.

[271].孟姝(2011)以 C48/80 及 Mastoparan 为佐剂的甲型 HINI 流感蛋白亚单位疫苗在小鼠体内的勃膜免疫效果研究[M].北京协和医学院博士论文.

开放日期:

 2016-06-13    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式