- 无标题文档
查看论文信息

中文题名:

 咖啡酸苯乙酯生物合成体系的构建及优化研究    

姓名:

 李媛媛    

学号:

 20202007095    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 081703    

学科名称:

 工学 - 化学工程与技术 - 生物化工    

学生类型:

 硕士    

学位:

 工学硕士    

学位类型:

 学术学位    

学位年度:

 2024    

学校:

 石河子大学    

院系:

 化学化工学院    

专业:

 化学工程与技术    

研究方向:

 生物化工    

第一导师姓名:

 张根林    

第一导师单位:

 石河子大学    

完成日期:

 2024-05-01    

答辩日期:

 2024-05-06    

外文题名:

 Construction and optimization of Caffeic acid phenethyl ester biosynthesis pathway    

中文关键词:

 咖啡酸苯乙酯 ; 途径优化 ; 混菌发酵 ; 2-苯乙醇     

外文关键词:

 Caffeic acid phenethyl ester ; Path optimization ; Mixed fermentation ; 2-phenylethanol     

中文摘要:

咖啡酸苯乙酯是一种主要存在于蜂胶中的天然化合物,具有显著的抗癌、抗炎等药理作用,在医药领域有广泛的应用。咖啡酸苯乙酯的生产通常采用化学合成法,但是在合成过程中不可避免的会涉及环境污染问题,如酰氯法中酰化剂的使用;且部分反应所需原料制备困难,价格高昂,如Witting反应原料三苯基膦等。因此化学合成法不符合当今绿色化工的要求。体外酶催化法是另一种合成咖啡酸苯乙酯的方法,但由于酶的特异性和温度的限制,导致其合成效率不高。近年来,代谢工程和合成生物学的快速发展已经使次生代谢途径能够在快速分裂的微生物如大肠杆菌、酿酒酵母中得以重建,为次生代谢产物的合成提供了重要平台。因此本论文尝试构建微生物合成咖啡酸苯乙酯的体系,主要研究结果如下:

(1)通过数据库挖掘和文献分析,筛选出以苯丙氨酸为起始合成咖啡酰辅酶A的苯丙氨酸裂解酶(PAL)、肉桂酸-4-羟化酶(C4H)、4-香豆酰-CoA连接酶(4CL)和羟基肉桂酰转移酶(HCT),密码子优化后整合至酿酒酵母INVSc1 YPRCΔ15位点上,在酵母自身酰基转移酶的催化下与2-苯乙醇酯化成功合成咖啡酸苯乙酯,摇瓶发酵120h后测得15.63 μg/L咖啡酸苯乙酯。为了提高合成效率,强化酰基转移酶(Eht1编码)的表达,并过表达kdc/Aro10(编码苯丙酮酸脱羧酶)和Adh6(编码醇脱氢酶)优化2-苯乙醇的供应,使咖啡酸苯乙酯的产量提高到56.44 μg/L。

由于苯丙酮酸是咖啡酰辅酶A和2-苯乙醇的共同前体,为了提高苯丙酮酸供应,过表达苯丙酮酸合成途径,使咖啡酸苯乙酯产量进一步提高至98.56 μg/L(S4)。中间产物对香豆酸和2-苯乙醇的累积量达到700.36 μg/L和188.92 mg/L,低浓度的对香豆酸累积说明咖啡酰辅酶A仍是咖啡酸苯乙酯合成的限制。

(2)考虑苯丙酮酸是咖啡酰辅酶A和2-苯乙醇的共同前体,为了平衡发酵体系中咖啡酰辅酶A和2-苯乙醇两种底物,设计混菌发酵体系。首先在大肠杆菌中引入酪氨酸为起始的咖啡酰辅酶A合成途径,并过表达pal和c4h强化对香豆酸合成,建立了以大肠杆菌MG1655为底盘的咖啡酰辅酶A合成工程菌株M2。然后与构建的酿酒酵母工程菌S4耦合形成混菌发酵体系,咖啡酸苯乙酯的产量提升到272.37 μg/L,是单菌(S4)发酵的2.76倍。

(3)为了进一步提高咖啡酸苯乙酯的发酵产量,优化了混菌发酵条件,以平衡大肠杆菌和酿酒酵母对培养环境、营养的不同需求。结果显示,当酿酒酵母培养60h后再按照1∶1的接种比例接种大肠杆菌、控制发酵温度在35℃、转速为240 rpm、并添加1.0 g/L Mg2SO4和40 mg/L K2HPO4·3H2O,发酵120h后咖啡酸苯乙酯最高达到了667.64 μg/L,与最初相比,咖啡酸苯乙酯的产量提升了41.72倍。

本论文通过合成生物技术和代谢途径优化,构建了酿酒酵母INVSc1和大肠杆菌MG1655的混菌咖啡酸苯乙酯生物合成体系,为微生物合成咖啡酸苯乙酯提供了参考。

外文摘要:

Caffeic acid phenethyl ester is a natural compound mainly existing in propolis, which has obvious pharmacological effects such as anti-cancer and anti-inflammation, and is widely used in the medical field. The production of caffeic acid phenylethyl ester usually adopts chemical synthesis method, but in the process of synthesis, environmental pollution problems will inevitably be involved, such as the use of acylating agent in acyl chloride method; moreover, some raw materials needed for the reaction are difficult to prepare and expensive, such as triphenylphosphine, which is the raw material of Witting reaction. Therefore, the chemical synthesis method does not meet the requirements of green chemical industry today. In vitro enzyme catalysis is another method to synthesize caffeic acid phenylethyl ester, but its synthesis efficiency is not high due to the specificity of enzyme and the limitation of temperature. In recent years, the rapid development of metabolic engineering and synthetic biology has enabled the secondary metabolic pathway to be rebuilt in rapidly dividing microorganisms such as Escherichia coli and Saccharomyces cerevisiae, providing an important platform for the synthesis of secondary metabolites. Therefore, this paper attempts to construct a system for synthesizing caffeic acid phenylethyl ester by microorganisms. The main results are as follows:

(1)Through database mining and literature analysis, phenylalanine lyase (PAL), cinnamic acid -4- hydroxylase (C4H), 4- coumaroyl -CoA ligase (4CL) and hydroxycinnoyltransferase (HCT) were screened for the synthesis of caffeoyl-CoA from phenylalanine. After codon optimization, they were integrated into the site of Invsc1 YPRC δ15 in Saccharomyces cerevisiae. Under the catalysis of yeast's own acyltransferase, In order to improve the synthesis efficiency, the expression of acyltransferase (Eht1 coding) was strengthened, and the supply of 2- phenylethanol was optimized by expressing kdc/Aro10 (encoding phenylpyruvate decarboxylase) and Adh6 (encoding alcohol dehydrogenase), so that the yield of caffeic acid phenylethyl ester was increased to 56.44 μg/L.

As phenylpyruvic acid is the common precursor of caffeoyl-CoA and 2- phenylethanol, in order to improve the supply of phenylpyruvic acid, the yield of caffeic acid phenylethyl ester was further increased to 98.56 μ g/L by overexpression of phenylpyruvic acid (S4). The accumulation of intermediate products p-coumaric acid and 2- phenylethanol reached 700.36 μg/L and 188.92 mg/L, and the accumulation of low concentration of p-coumaric acid showed that caffeoyl-CoA was still the limit of the synthesis of caffeic acid phenylethyl ester.

(2)Considering that phenylpyruvic acid is the common precursor of caffeoyl-CoA and 2- phenylethanol, in order to balance the two substrates of caffeoyl-CoA and 2- phenylethanol in the fermentation system, a mixed fermentation system was designed. Firstly, tyrosine was introduced into Escherichia coli to synthesize caffeoyl-CoA, and p-coumaric acid synthesis was enhanced by expressing pal and c4h, and an engineering strain M2 for caffeoyl-CoA synthesis based on Escherichia coli MG1655 was established. Then it was coupled with the constructed Saccharomyces cerevisiae engineering strain S4 to form a mixed-strain fermentation system, and the yield of caffeic acid phenylethyl ester was increased to 272.37 μg/L, which was 2.76 times that of single-strain (S4) fermentation.

(3)In order to further improve the fermentation yield of caffeic acid phenylethyl ester, the fermentation conditions of mixed bacteria were optimized to balance the different needs of Escherichia coli and Saccharomyces cerevisiae for culture environment and nutrition. The results showed that the highest yield of caffeic acid phenylethyl ester reached 667.64 μg/L after 120h of fermentation, when Saccharomyces cerevisiae was cultured for 60h and then inoculated with Escherichia coli according to the inoculation ratio of 1∶1, the fermentation temperature was controlled at 35℃, the rotation speed was 240 rpm, and 1.0 g/L Mg2SO4 and 40 mg/L K2HPO4·3H2O were added. Compared with the initial fermentation, the yield of caffeic acid phenylethyl ester increased by 41.

In this paper, through the optimization of synthetic biotechnology and metabolic pathway, the biosynthesis system of phenylethyl caffeic acid mixed with Saccharomyces cerevisiae INVSc1 and Escherichia coli MG1655 was constructed, which provided a reference for the synthesis of caffeic acid phenylethyl ester by microorganisms.

参考文献:

[1]Grunberger D, Banerjee R, Eisinger K, et al. Preferential cytotoxicity on tumor cells by caffeic acid phenethyl ester isolated from propolis[J]. Experientia, 1988, 44(3): 230-232.

[2]Bankova V, Trusheva B, Popova M. Caffeic acid phenethyl ester (CAPE) – Natural sources, analytical procedures and synthetic approaches[J]. Comptes rendus de l’Académie bulgare des sciences: sciences mathématiques et naturelles, 2018, 71: 1157-1169.

[3]Bankova V. Recent trends and important developments in propolis research[J]. Evidence-Based Complementary and Alternative Medicine: eCAM, 2005, 2(1): 29-32.

[4]Lv L, Cui H, Ma Z, et al. Recent progresses in the pharmacological activities of caffeic acid phenethyl ester[J]. Naunyn-Schmiedeberg’s Archives of Pharmacology, 2021, 394(7): 1327-1339.

[5]Pisarev D I, Novikov O O, Malyutina A Yu, et al. Development of a technique for assessing the quality of propolis by the content of caffeic acid phenethyl ester by high-performance liquid chromatography with a diode- matrix detector[J]. Drug Invention Today, 2018, 9(3): 53-58.

[6]Pellati F, Orlandini G, Pinetti D, et al. HPLC-DAD and HPLC-ESI-MS/MS methods for metabolite profiling of propolis extracts[J]. Journal of Pharmaceutical and Biomedical Analysis, 2011, 55(5): 934-948.

[7]Piero, Del, Boccio, et al. Quantitative analysis of caffeic acid phenethyl ester in crude propolis by liquid chromatography-electrospray ionization mass spectrometry[J]. Journal of Separation Science, 2004, 27(7-8): 619-623.

[8]Castro C, Mura F, Valenzuela G, et al. Identification of phenolic compounds by HPLC-ESI-MS/MS and antioxidant activity from Chilean propolis[J]. Food Research International, 2014, 64: 873-879.

[9]Shi H, Yang H, Zhang X, et al. Identification and Quantification of Phytochemical Composition and Anti-inflammatory and Radical Scavenging Properties of Methanolic Extracts of Chinese Propolis[J]. Journal of Agricultural and Food Chemistry, 2012, 60(50): 12403-12410.

[10]Gardana C, Scaglianti M, Pietta P, et al. Analysis of the polyphenolic fraction of propolis from different sources by liquid chromatography-tandem mass spectrometry[J]. Journal of Pharmaceutical & Biomedical Analysis, 2007, 45(3): 390-399.

[11]Venegas Y, Peña C, Pastene E, et al. A new near-infrared method for simultaneous determination of caffeic acid phenethyl ester and antioxidant activity of propolis samples[J]. Journal of Apicultural Research, 2016, 55: 1-11.

[12]Park E H, Kahng J H. Suppressive effects of propolis in rat adjuvant arthritis[J]. Archives of Pharmacal Research, 1999, 22(6): 554-558.

[13]Ozyurt H, Pekmez H, Parlaktas B S, et al. Oxidative stress in testicular tissues of rats exposed to cigarette smoke and protective effects of caffeic acid phenethyl ester[J]. Asian Journal of Andrology, 2006, 8(2): 189-193.

[14]Sud’ina G F, Mirzoeva O K, Pushkareva M A, et al. Caffeic acid phenethyl ester as a lipoxygenase inhibitor with antioxidant properties[J]. FEBS letters, 1993, 329(1-2): 21-24.

[15]Mirzoeva O K, Calder P C. The effect of propolis and its components on eicosanoid production during the inflammatory response[J]. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 1996, 55(6): 441-449.

[16]Omene C O, Wu J, Frenkel K. Caffeic Acid Phenethyl Ester (CAPE) derived from propolis, a honeybee product, inhibits growth of breast cancer stem cells[J]. Investigational New Drugs, 2012, 30(4): 1279-1288.

[17]Chang H, Wang Y, Yin X, et al. Ethanol extract of propolis and its constituent caffeic acid phenethyl ester inhibit breast cancer cells proliferation in inflammatory microenvironment by inhibiting TLR4 signal pathway and inducing apoptosis and autophagy[J]. Bmc Complementary & Alternative Medicine, 2017, 17(1): 471.

[18]He Y, Liu B, Xiang D, et al. Inhibitory effect of caffeic acid phenethyl ester on the growth of SW480 colorectal tumor cells involves beta-catenin associated signaling pathway down-regulation[J]. World Journal of Gastroenterology, 2006, 12(31): 4981-4985.

[19]Budisan L, Gulei D, Jurj A, et al. Inhibitory Effect of CAPE and Kaempferol in Colon Cancer Cell LinesPossible Implications in New Therapeutic Strategies[J]. International journal of molecular science, 2019, 20(5): 1199.

[20]Lee H, Jeong Y, Kim E, et al. Preparation of Caffeic Acid Phenethyl Ester-Incorporated Nanoparticles and Their Biological Activity[J]. Journal of pharmaceutical science, 2015, 104(1): 144-154.

[21]Chuu C P, Lin H P, Ciaccio M F, et al. Caffeic acid phenethyl ester suppresses the proliferation of human prostate cancer cells through inhibition of p70S6K and Akt signaling networks[J]. Cancer Prevention Research (Philadelphia, Pa.), 2012, 5(5): 788-797.

[22]Parlakpinar H, Sahna E, Acet A, et al. Protective effect of caffeic acid phenethyl ester (CAPE) on myocardial ischemia-reperfusion-induced apoptotic cell death[J]. toxicology , 2005, 209(1): 1-14.

[23]Ren J, Zhang N, Liao H, et al. Caffeic acid phenethyl ester attenuates pathological cardiac hypertrophy by regulation of MEK/ERK signaling pathway in vivo and vitro[J]. Life Sciences, 2017, 181: 53-61.

[24]Cheng C, Chi P, Shen M, et al. Caffeic Acid Phenethyl Ester Rescues Pulmonary Arterial Hypertension through the Inhibition of AKT/ERK-Dependent PDGF/HIF-1 In Vitro and In Vivo[J]. International journal of molecular science, 2019, 20(6): 1468.

[25]Lim K M, Bae S J, Koo J E, et al. Suppression of skin inflammation in keratinocytes and acute/chronic disease models by caffeic acid phenethyl ester[J]. Archives of Dermatological Research, 2015, 307(3): 219-227.

[26]Romana-Souza B, Dos Santos J S, Monte-Alto-Costa A. Caffeic acid phenethyl ester promotes wound healing of mice pressure ulcers affecting NF-kappa B, NOS2 and NRF2 expression[J]. Life sciences, 2018(207): 207.

[27]Shin E J, Jo S, Choi H K, et al. Caffeic Acid Phenethyl Ester Inhibits UV-Induced MMP-1 Expression by Targeting Histone Acetyltransferases in Human Skin[J]. International Journal of Molecular Sciences, 2019, 20(12): 3055.

[28]Akyol S, Armutcu F, Yiğitoğlu M R. The Medical Usage of Caffeic Acid Phenethyl Ester (CAPE), an Active Compound of Propolis, in Neurological Disorders and Emergencies[J]. Spatula DD, 2011, 1(1): 37.

[29]Wei X, Ma Z, Fontanilla C V, et al. Caffeic acid phenethyl ester prevents cerebellar granule neurons (CGNs) against glutamate-induced neurotoxicity[J]. Neuroscience, 2008, 155(4): 1098-1105.

[30]Altu M E, Serarslan Y, Bal R, et al. Caffeic acid phenethyl ester protects rabbit brains against permanent focal ischemia by antioxidant action: A biochemical and planimetric study[J]. Brain Research, 2008, 1201: 135-142.

[31]Pérez R, Burgos V, Marín V, et al. Caffeic Acid Phenethyl Ester (CAPE): Biosynthesis, Derivatives and Formulations with Neuroprotective Activities[J]. Antioxidants, 2023, 12(8): 1500.

[32]Amodio R, Ruvo C D, Matteo V D, et al. Caffeic acid phenethyl ester blocks apoptosis induced by low potassium in cerebellar granule cells[J]. International Journal of Developmental Neuroscience, 2003, 21(7): 379-389.

[33]Cagli K, Bagci C, Gulec M, et al. In vivo effects of caffeic acid phenethyl ester on myocardial ischemia-reperfusion injury and apoptotic changes in rats[J]. Annals of Clinical and Laboratory Science, 2005, 35(4): 440-448.

[34]Irmak M K, Fadillioglu E, Sogut S, et al. Effects of caffeic acid phenethyl ester and alpha-tocopherol on reperfusion injury in rat brain[J]. 2003, 21(3): 283-289.

[35]Grémy O, Benderitter M, Linard C, et al. Caffeic acid phenethyl ester modifies the Thl/Th2 balance in ileal mucosa afterγ-irradiation in the rat by modulating the cytokine pattern[J]. World Journal of Gastroenterology, 2006, 12(31): 4996-5004.

[36]Fontanilla C V, Ma Z, Wei X, et al. Caffeic acid phenethyl ester prevents 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced neurodegeneration[J]. Neuroscience, 2011, 188(3): 135-141.

[37]Ma Z, Wei X, Fontanilla C, et al. Caffeic acid phenethyl ester blocks free radical generation and 6-hydroxydopamine-induced neurotoxicity[J]. Life Sciences, 2006, 79(13): 1307-1311.

[38]Noelker C, Bacher M, Gocke P, et al. The flavanoide caffeic acid phenethyl ester blocks 6-hydroxydopamine-induced neurotoxicity[J]. Neuroscience Letters, 2005, 383(1-2): 39-43.

[39]Eşrefoğlu M, Gül M, Ateş B, et al. The ultrastructural and biochemical evidences of the beneficial effects of chronic caffeic acid phenethyl ester and melatonin administration on brain and cerebellum of aged rats[J]. Fundamental & Clinical Pharmacology, 2010, 24(3): 305-315.

[40]王雨宵, 常相伟, 陈博文, 等. 蜂胶化学成分,药理作用及临床应用研究进展[J]. 中国现代中药, 2023, 25(3): 665-685.

[41]F G, F M, A F, et al. Chemical Composition and Antioxidant Activity of Propolis Prepared in Different Forms and in Different Solvents Useful for Finished Products[J]. Foods (Basel, Switzerland), 2018, 7(3): 41.

[42]Tolba M, Azab S, Khalifa A, et al. Caffeic acid phenethyl ester, a promising component of propolis with a plethora of biological activities: A review on its anti-inflammatory, neuroprotective, hepatoprotective, and cardioprotective effects[J]. Iubmb Life, 2013, 65(8): 699-709.

[43]Son S, Lobkowsky E B, Lewis B A. Caffeic acid phenethyl ester (CAPE): synthesis and X-ray crystallographic analysis[J]. Chemical & Pharmaceutical Bulletin, 2001, 49(2): 236-238.

[44]Zhu R, Ning X, Zhang Z, et al. Design, synthesis and pharmacological evaluation of caffeic acid phenethyl ester acylation as multifunctional neuroprotective agents against oxidative stress injury[J]. 中国药学(英文版), 2013, 22(6): 475-482.

[45]Nakamura K, Nakajima T, Aoyama T, et al. One-pot esterification and amidation of phenolic acids[J]. Tetrahedron, 2014, 70(43): 8097-8107.

[46]Chen W K, Tsai C F, Liao P H, et al. Synthesis of caffeic acid esters as antioxidants by esterification via acyl chlorides[J]. The Chinese Pharmaceutical Journal, 51(4): 271-278

[47]Piechucki, C. Phase-Transfer Catalysed Wittig-Horner Reactions of Diethyl Phenyl- and Styrylmethanephosphonates; a Simple Preparation of 1-Aryl-4-phenylbuta-1, 3-dienes[J]. Chemischer Informationsdienst, 1976, 1976(03): 187-188.

[48]Xia C nian, Hu W xiao. Synthesis of Caffeic Acid Esters[J]. Journal of Chemical Research, 2005, 2005: 332-334.

[49]Ryu Y, Scott A I. Self-condensation of activated malonic acid half esters: a model for the decarboxylative Claisen condensation in polyketide biosynthesis[J]. Tetrahedron Letters, 2003, 44(40): 7499-7502.

[50]Kishimoto N, Kakino Y, Iwai K, et al. Chlorogenate hydrolase-catalyzed synthesis of hydroxycinnamic acid ester derivatives by transesterification, substitution of bromine, and condensation reactions[J]. Applied Microbiology and Biotechnology, 2005, 68(2): 198-202.

[51]Stevenson D E, Parkar S G, Zhang J, et al. Combinatorial enzymic synthesis for functional testing of phenolic acid esters catalysed by Candida antarctica lipase B (Novozym 435 (R))[J]. Enzyme & Microbial Technology, 2007, 40(5): 1078-1086.

[52]Widjaja A, Yeh T H, Ju Y H. Enzymatic synthesis of caffeic acid phenethyl ester[J]. Journal of the Chinese Institute of Chemical Engineers, 2008, 39(5): 413-418.

[53]Jia Z C, Liu D, Ma H D, et al. Yeast Metabolic Engineering for Biosynthesis of Caffeic Acid-Derived Phenethyl Ester and Phenethyl Amide[J]. ACS Synthetic Biology, 2023, 12(12): 3635-3645.

[54]Zhou P, Yue C, Shen B, et al. Metabolic engineering of Saccharomyces cerevisiae for enhanced production of caffeic acid[J]. Applied Microbiology and Biotechnology, 2021, 105(14-15): 5809-5819.

[55]Reifenrath M, Bauer M, Oreb M, et al. Bacterial bifunctional chorismate mutase-prephenate dehydratase PheA increases flux into the yeast phenylalanine pathway and improves mandelic acid production[J]. Metabolic Engineering Communications, 2018, 7: e00079.

[56]Pellagatti A, Dolatshad H, Yip B H, et al. Application of genome editing technologies to the study and treatment of hematological disease[J]. Advances in Biological Regulation, 2016: 122-134.

[57]Bin, Liu, Huifen, et al. CRISPR/Cas: A Faster and More Efficient Gene Editing System[J]. Journal of Nanoscience and Nanotechnology, 2015, 15(3): 1946-1959.

[58]Gaj T, Gersbach C A, Barbas C F. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering[J]. Trends in Biotechnology, 2013, 31(7): 397-405.

[59]Genovese P, Schiroli G, Escobar G, et al. Targeted genome editing in human repopulating haematopoietic stem cells[J]. Nature, 2014, 510(7504): 235-240.

[60]Quétier F. The CRISPR-Cas9 technology: Closer to the ultimate toolkit for targeted genome editing[J]. Plant Science: An International Journal of Experimental Plant Biology, 2016, 242: 65-76.

[61]Xiao A, Wu Y, Yang Z, et al. EENdb: a database and knowledge base of ZFNs and TALENs for endonuclease engineering[J]. Nucleic Acids Research, 2013, 41: D415-422.

[62]Chandrasegaran S, Carroll D. Origins of Programmable Nucleases for Genome Engineering[J]. Journal of Molecular Biology, 2016, 428(5): 963-989.

[63]Bondy-Denomy J, Pawluk A, Maxwell K L, et al. Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system[J]. Nature, 2013, 493(7432): 429-432.

[64]Hendel A, Bak R O, Clark J T, et al. Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells[J]. Nature Biotechnology, 2015, 33(9): 985-989.

[65]Arazoe T, Miyoshi K, Yamato T, et al. Tailor-made CRISPR/Cas system for highly efficient targeted gene replacement in the rice blast fungus[J]. Biotechnology and Bioengineering, 2015, 112(12): 2543-2549.

[66]Jiang W, Zhou H, Bi H, et al. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice[J]. Nucleic Acids Research, 2013, 41(20): e188.

[67]Richardson C D, Ray G J, DeWitt M A, et al. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA[J]. Nature Biotechnology, 2016, 34(3): 339-344.

[68]Sternburg E L, Dias K C, Karginov F V. Selection-dependent and Independent Generation of CRISPR/Cas9-mediated Gene Knockouts in Mammalian Cells[J]. Journal of Visualized Experiments: JoVE, 2017(124): 55903.

[69]Sander J D, Joung J K. CRISPR-Cas systems for editing, regulating and targeting genomes[J]. Nature Biotechnology, 2014, 32(4): 347-355.

[70]M C, J B. The CRISPR-Cas system - from bacterial immunity to genome engineering[J]. Postepy higieny i medycyny doswiadczalnej, 2016, 70(0): 901-916.

[71]Gibson D G, Benders G A, Andrews-Pfannkoch C, et al. Complete Chemical Synthesis, Assembly, and Cloning of a Mycoplasma genitalium Genome[J]. Science, 2008, 319(5867): 1215-1220.

[72]Engler C, Kandzia R, Marillonnet S, et al. A One Pot, One Step, Precision Cloning Method with High Throughput Capability[J]. Plos One, 2008, 3(11): e3647.

[73]Engler C, Youles M, Gruetzner R, et al. A Golden Gate Modular Cloning Toolbox for Plants[J]. ACS Synthetic Biology, 2014, 3(11): 839-843.

[74]Weber E, Engler C, Gruetzner R, et al. A Modular Cloning System for Standardized Assembly of Multigene Constructs[J]. Plos One, 2012, 6(2): e16765.

[75]Vazquez-Vilar, Quijano-Rubio, Fernandez-del-Carmen, et al. GB3.0: a platform for plant bio-design that connects functional DNA elements with associated biological data[J]. Nucleic acid research, 2017, 45(4): 2196-2209.

[76]Sarrion-Perdigones, Alejandro, Vazquez-Vilar, et al. GoldenBraid 2.0: A Comprehensive DNA Assembly Framework for Plant Synthetic Biology[J]. Plant Physiology, 2013, 163(3): 1618-1631.

[77]Sarrion-Perdigones A, Falconi E E, Zandalinas S I, et al. GoldenBraid: An Iterative Cloning System for Standardized Assembly of Reusable Genetic Modules[J]. Plos One, 2011, 6(7): e21622.

[78]Bird J E, Marles-Wright J, Giachino A. A User’s Guide to Golden Gate Cloning Methods and Standards[J]. ACS Synthetic Biology, 2022, 11(11): 3551-3563.

[79]Pryor J M, Potapov V, Kucera R B, et al. Enabling one-pot Golden Gate assemblies of unprecedented complexity using data-optimized assembly design.[J]. Plos One, 2020, 15(9): e0238592.

[80]Potapov V, Ong J L, Kucera R B, et al. Comprehensive Profiling of Four Base Overhang Ligation Fidelity by T4 DNA Ligase and Application to DNA Assembly[J]. ACS Synthetic Biology, 2018, 7(11): 2665-2674.

[81]Marillonnet S, Grützner R. Synthetic DNA Assembly Using Golden Gate Cloning and the Hierarchical Modular Cloning Pipeline[J]. Current Protocols in Molecular Biology, 2020, 130(1): e115.

[82]Yan W, Gao H, Jiang W, et al. The De Novo Synthesis of 2-Phenylethanol from Glucose by the Synthetic Microbial Consortium Composed of Engineered Escherichia coli and Meyerozyma guilliermondii[J]. ACS Synthetic Biology, 2022, 11(12): 4018-4030.

[83]Zhan Y, Shi J, Xiao Y, et al. Multilevel metabolic engineering of Bacillus licheniformis for de novo biosynthesis of 2-phenylethanol[J]. Metabolic engineering, 2022, 70: 43-54.

[84]Liang J, Guo L, Sun P, et al. A novel process for obtaining phenylpropanoic acid precursor using Escherichia coli with a constitutive expression system[J]. Food science and biotechnology, 2016, 25(3): 795-801.

[85]Liu Y, Xu W, Xu W. Production of Trans-Cinnamic and p-Coumaric Acids in Engineered E. coli[J]. Catalysts, 2022, 12(10): 1144.

[86]X O, Y C, W L, et al. Stepwise engineering of Saccharomyces cerevisiae to produce (+)-valencene and its related sesquiterpenes[J]. RSC advances, 2019, 9(52): 30171-30181.

[87]Zhang C, Li M, Zhao G R, et al. Harnessing Yeast Peroxisomes and Cytosol Acetyl-CoA for Sesquiterpene α-Humulene Production[J]. Journal of Agricultural and Food Chemistry, 2020, 68(5): 1382-1389.

[88]Luo X, Reiter M A, d’Espaux L, et al. Complete biosynthesis of cannabinoids and their unnatural analogues in yeast[J]. Nature, 2019, 567(7746): 123-126.

[89]Srinivasan P, Smolke C D. Engineering a microbial biosynthesis platform for de novo production of tropane alkaloids[J]. Nature Communications, 2019, 10(1): 3634.

[90]Ro D K, Paradise E M, Ouellet M, et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast[J]. Nature, 2006, 440(7086): 940-943.

[91]Leavell M D, McPhee D J, Paddon C J. Developing fermentative terpenoid production for commercial usage[J]. Current Opinion in Biotechnology, 2016, 37: 114-119.

[92]Dror M J, Misa J, Yee D A, et al. Engineered biosynthesis of plant heteroyohimbine and corynantheine alkaloids in Saccharomyces cerevisiae[J]. Journal of Industrial Microbiology and Biotechnology, 2023, 51: 047.

[93]Pichersky E, Noel J P, Dudareva N. Biosynthesis of plant volatiles: nature’s diversity and ingenuity[J]. Science (New York, N.Y.), 2006, 311(5762): 808-811.

[94]Y L, S L, K T, et al. Complete biosynthesis of noscapine and halogenated alkaloids in yeast[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(17): e3922-e3931.

[95]P S, Cd S. Engineering a microbial biosynthesis platform for de novo production of tropane alkaloids[J]. Nature communications, 2019, 10(1): 3634.

[96]Srinivasan P, Smolke C D. Engineering cellular metabolite transport for biosynthesis of computationally predicted tropane alkaloid derivatives in yeast[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(25): e2104460118.

[97]Wang Y, Gong X, Li F, et al. Optimized biosynthesis of santalenes and santalols in Saccharomyces cerevisiae[J]. Applied Microbiology and Biotechnology, 2021, 105(23): 8795-8804.

[98]Qiu D, Wang M, Zhou C, et al. De novo biosynthesis of vanillin in engineered Saccharomyces cerevisiae[J]. Chemical Engineering Science, 2022, 263: 118049.

[99]Gao S, Lyu Y, Zeng W, et al. Efficient Biosynthesis of (2S)-Naringenin from p-Coumaric Acid in Saccharomyces cerevisiae[J]. Journal of Agricultural and Food Chemistry, 2020, 68(4): 1015-1021.

[100]Lyu X, Zhao G, Ng K R, et al. Metabolic Engineering of Saccharomyces cerevisiae for De Novo Production of Kaempferol[J]. Journal of Agricultural and Food Chemistry, 2019, 67(19): 5596-5606.

[101]Tous Mohedano M, Mao J, Chen Y. Optimization of Pinocembrin Biosynthesis in Saccharomyces cerevisiae[J]. ACS Synthetic Biology, 2023, 12(1): 144-152.

[102]Shen C R, Liao J C. Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways[J]. Metabolic Engineering, 2008, 10(6): 312-320.

[103]Dellomonaco C, Clomburg J M, Miller E N, et al. Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals[J]. Nature, 2011, 476(7360): 355-359.

[104]Ferreira S, Pereira R, Liu F, et al. Discovery and implementation of a novel pathway for n-butanol production via 2-oxoglutarate[J]. Biotechnology for Biofuels, 2019, 12: 230.

[105]Jawed K, Abdelaal A S, Koffas M A G, et al. Improved Butanol Production Using FASII Pathway in E. coli[J]. ACS synthetic biology, 2020, 9(9): 2390-2398.

[106]Atsumi S, Hanai T, Liao J C. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels[J]. Nature, 2008, 451(7174): 86-89.

[107]Atsumi S, Cann A F, Connor M R, et al. Metabolic engineering of Escherichia coli for 1-butanol production[J]. Metabolic Engineering, 2008, 10(6): 305-311.

[108]Dong H, Zhao C, Zhang T, et al. Engineering Escherichia coli Cell Factories for n-Butanol Production[J]. Advances in Biochemical Engineering/Biotechnology, 2016, 155: 141-163.

[109]Kim S K, Seong W, Han G H, et al. CRISPR interference-guided multiplex repression of endogenous competing pathway genes for redirecting metabolic flux in Escherichia coli[J]. Microbial Cell Factories, 2017, 16(1): 188.

[110]Abdelaal A S, Jawed K, Yazdani S S. CRISPR/Cas9-mediated engineering of Escherichia coli for n-butanol production from xylose in defined medium[J]. Journal of Industrial Microbiology & Biotechnology, 2019, 46(7): 965-975.

[111]Ye W, Li J, Han R, et al. Engineering coenzyme A-dependent pathway from Clostridium saccharobutylicum in Escherichia coli for butanol production[J]. Bioresource Technology, 2017, 235: 140-148.

[112]Ohtake T, Pontrelli S, Laviña W A, et al. Metabolomics-driven approach to solving a CoA imbalance for improved 1-butanol production in Escherichia coli[J]. Metabolic Engineering, 2017, 41: 135-143.

[113]Shen C R, Lan E I, Dekishima Y, et al. Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli[J]. Applied and Environmental Microbiology, 2011, 77(9): 2905-2915.

[114]Yim H, Haselbeck R, Niu W, et al. Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol[J]. Nature Chemical Biology, 2011, 7(7): 445-452.

[115]Hoff B, Plassmeier J, Blankschien M, et al. Unlocking Nature’s Biosynthetic Power-Metabolic Engineering for the Fermentative Production of Chemicals[J]. Angewandte Chemie (International Ed. in English), 2021, 60(5): 2258-2278.

[116]Burgard A, Burk M J, Osterhout R, et al. Development of a commercial scale process for production of 1,4-butanediol from sugar[J]. Current Opinion in Biotechnology, 2016, 42: 118-125.

[117]Satam C C, Daub M, Realff M J. Techno-economic analysis of 1,4-butanediol production by a single-step bioconversion process[J]. Biofuels, Bioproducts and Biorefining, 2019, 13(5): 1261-1273.

[118]Song F, Chen W, Wu F, et al. Heterogeneous expression of DOPA decarboxylase to improve the production of dopamine in Escherichia coli[J]. Sheng Wu Gong Cheng Xue Bao = Chinese Journal of Biotechnology, 2021, 37(12): 4266-4276.

[119]Spencer G W K, Li X, Jarrold A, et al. An industrially applicable Escherichia coli platform for bioconversion of thebaine to oripavine and codeine to morphine[J]. Chemical Communications (Cambridge, England), 2023, 59(41): 6251-6254.

[120]Rolf J, Julsing M K, Rosenthal K, et al. A Gram-Scale Limonene Production Process with Engineered Escherichia coli[J]. Molecules (Basel, Switzerland), 2020, 25(8): 1881.

[121]Li Y, Lin Z, Huang C, et al. Metabolic engineering of Escherichia coli using CRISPR-Cas9 meditated genome editing[J]. Metabolic Engineering, 2015, 31: 13-21.

[122]Wang Z, Sun J, Yang Q, et al. Metabolic Engineering Escherichia coli for the Production of Lycopene[J]. Molecules (Basel, Switzerland), 2020, 25(14): 3136.

[123]Yuan S F, Yi X, Johnston T G, et al. De novo resveratrol production through modular engineering of an Escherichia coli-Saccharomyces cerevisiae co-culture[J]. Microbial Cell Factories, 2020, 19(1): 143.

[124]Zhou K, Qiao K, Edgar S, et al. Distributing a metabolic pathway among a microbial consortium enhances production of natural products[J]. Nature Biotechnology, 2015, 33(4): 377-383.

[125]Bhatia S K, Yoon J J, Kim H J, et al. Engineering of artificial microbial consortia of Ralstonia eutropha and Bacillus subtilis for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer production from sugarcane sugar without precursor feeding[J]. Bioresource Technology, 2018, 257: 92-101.

[126]Zhang H, Pereira B, Li Z, et al. Engineering Escherichia coli coculture systems for the production of biochemical products[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(27): 8266-8271.

[127]Jones J A, Vernacchio V R, Collins S M, et al. Complete Biosynthesis of Anthocyanins Using E. coli Polycultures[J]. mBio, 2017, 8(3): e00621-17.

[128]Ganesan V, Li Z, Wang X, et al. Heterologous biosynthesis of natural product naringenin by co-culture engineering[J]. Synthetic and Systems Biotechnology, 2017, 2(3): 236-242.

[129]Thuan N H, Chaudhary A K, Van Cuong D, et al. Engineering co-culture system for production of apigetrin in Escherichia coli[J]. Journal of Industrial Microbiology & Biotechnology, 2018, 45(3): 175-185.

[130]Akdemir H, Silva A, Zha J, et al. Production of pyranoanthocyanins using Escherichia coli co-cultures[J]. Metabolic Engineering, 2019, 55: 290-298.

[131]Wang X, Li Z, Policarpio L, et al. De novo biosynthesis of complex natural product sakuranetin using modular co-culture engineering[J]. Applied Microbiology and Biotechnology, 2020, 104(11): 4849-4861.

[132]Wang X, Shao A, Li Z, et al. Constructing E. coli Co-Cultures for De Novo Biosynthesis of Natural Product Acacetin[J]. Biotechnology Journal, 2020, 15(9): e2000131.

[133]Milne N, Maris A V, Pronk J T, et al. Comparative assessment of native and heterologous 2-oxo acid decarboxylases for application in isobutanol production by Saccharomyces cerevisiae[J]. Biotechnology for Biofuels, 2015, 8(1): 204.

[134]曹宪周, 牛芳方, 杨兆明, 等. 各种维生素及微量元素在酵母菌生长过程中的优化[J]. 粮油加工, 2008(10): 3.

[135]Yan W, Gao H, Jiang W, et al. The De Novo Synthesis of 2-Phenylethanol from Glucose by the Synthetic Microbial Consortium Composed of Engineered Escherichia coli and Meyerozyma guilliermondii[J]. ACS Synthetic Biology, 2022, 11(12): 4018-4030.

中图分类号:

 Q81    

开放日期:

 2024-05-20    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式