- 无标题文档
查看论文信息

中文题名:

 两种杂环化合物的设计、合成及抗真菌活性研究    

姓名:

 杨柯    

学号:

 20212015005    

保密级别:

 内部1年后开放    

论文语种:

 chi    

学科代码:

 100701    

学科名称:

 医学 - 药学(可授医学、理学学位) - 药物化学    

学生类型:

 硕士    

学位:

 医学硕士    

学位类型:

 学术学位    

学位年度:

 2024    

学校:

 石河子大学    

院系:

 药学院    

专业:

 药学    

研究方向:

 抗真菌衍生物的设计合成及活性研究    

第一导师姓名:

 杨晓达    

第一导师单位:

 北京大学    

第二导师姓名:

 潘馨慧    

完成日期:

 2024-05-15    

答辩日期:

 2024-05-08    

外文题名:

 Design, synthesis and antifungal activity of two heterocyclic compounds    

中文关键词:

 吲哚 ; 异噁唑 ; 衍生物 ; 抗耐药真菌 ; 侵袭性真菌感染     

外文关键词:

 Indole ; Isoxazole ; Derivatives ; Antidrug-resistant fungi ; Invasive fungal infections     

中文摘要:

目的:

侵袭性真菌感染(IFIs)发病率逐年递增。由于现有药物中唑类药物的耐药性、多烯类的肾毒性、棘白素类的口服性等问题,IFIs患者死亡人逐渐不可控制,已然成为人类健康的威胁。所以,研发新型抗真菌及耐药真菌的药物刻不容缓。本论文以2-苯基吲哚及4,5-二氢异噁唑为先导化合物,设计、合成了新型真菌外排泵抑制剂并对目标化合物进行体内外活性评价及相关作用机制研究,发现新型抗真菌苗头化合物,为开发临床应用的新药以及探索新作用机制奠定了基础。

方法:

对2-苯基吲哚进行改造,通过引入卤素、烷基、硝基、甲氧基等基团,形成一系列衍生物,并氧化催化形成二聚体得到吲哚啉类衍生物;对4,5-二氢异噁唑进行改造,在R3取代基通过羰基连接烷基、芳基、五元杂环等基团后对R4取代基通过引入芳基、长链烷烃、卤素等基团修饰改造形成一系列衍生物。通过HRMS、1H-NMR和13C-NMR对化合物的结构进行表征;

通过体内外多种方法来检测并验证吲哚类衍生物抗真菌活性及作用机制;

采用微量稀释法评价合成的异噁唑衍生物对6种致病菌以及氟康唑耐药白色念珠菌的抑制作用;

采用棋盘法检测异噁唑衍生物与氟康唑联用抗耐药菌活性;

结果:

本文共合成36个吲哚类衍生物及16个异噁唑类衍生物,并确定其化学结构,其中得到4个吲哚啉化合物及5个异噁唑类衍生物为课题组首次合成。

体外活性结果显示,合成的衍生物不仅拥有良好的敏感白色念珠菌抑制活性,而且化合物3d、3o、3r对于耐药白色念珠菌表现出了强于阳性药氟康唑8倍的优秀的抑制活性(MIC80为32 μg/mL)。通过杀菌曲线实验表明化合物3o具有杀死白色念珠菌的能力。通过检测活性氧及线粒体膜电位实验表明化合物3o能刺激线粒体产生过多活性氧积累在线粒体中,使线粒体损伤导致菌株死亡,进一步研究发现化合物3o能通过参与真菌生物被膜的形成来实现杀菌效果的。通过棋盘法发现化合物4o、8f、8j均有优秀的协同抗耐药真菌活性(FICI < 0.5)。

通过罗丹明123外排实验表明化合物4o具有抑制真菌外排泵的活性。对化合物作用下的耐药菌株基因表达水平检测,结果显示化合物4o能下调外排泵基因(MDR1、CDR1、CDR2)的表达。在蜡螟幼虫感染模型中,化合物4o能显著延长感染蜡螟幼虫的存活时间。

结论:

本文设计改造了合成了吲哚类及异噁唑类衍生物,共合成的52个衍生物,其中9个为新化合物。化合物3d、3o和3r(可用于新药研发前体化合物)、化合物4o和8j(可用于逆转耐药的备选药物)具有深入开发研究价值。总结构效关系发现,吲哚类化合物中吲哚环上的卤素取代以及芳环上烷基取代可增强化合物的抗菌作用;异噁唑类衍生物中R3取代基为对卤素芳环和R4取代基引入卤素,可增强化合物的抗敏感菌活性。本文结果为后续抗耐药白色念珠菌药物的研究提供了新的数据和理论基础。

外文摘要:

Objective:

The incidence of invasive fungal infections ( IFIs ) is increasing in the past years. However due to the limitations of azole drug resistance in existing drugs, nephrotoxicity of polyenes, and oral toxicity of echinocandins, IFIs caused increasing number of deaths and seriously threatens human health. Consequently, the development of novel antifungal and drug-resistant fungus medications is essential. In this thesis, 2-phenylindole and 4,5-dihydroisoxazole were used as lead compounds to design and synthesize novel fungal efflux pump inhibitors for the development of novel anti-fungal drugs for clinical application.

Methods:

1. The modification of 2-phenylindole by introducing halogen, alkyl, nitro, methoxy and other groups to form a series of derivatives, and oxidative catalysis to form dimers to obtain indoline derivatives. The 4,5-dihydroisoxazole was modified after the R3 substituent was linked to alkyl, aryl, five-membered heterocyclic groups by carbonyl and the R4 substituent was modified by introducing aryl, long-chain alkane, halogen and other groups to obtain a series of derivatives. 1H-NMR, 13C-NMR, and HRMS were used to characterize the compounds' structures;

2. The antifungal activity and mechanism of indole derivatives were tested by conventional methods in vivo and in vitro;

3. Microdilution method was used to evaluate the inhibitory effect of the isoxazole derivatives against six pathogenic microorganism and drug-resistant Candida albicans;

4. The activity of isoxazole derivatives to reverse drug resistance gainst azoles was tested using a checkerboard microdilution method.

Results:

A total of 36 indole derivatives and 16 isoxazole derivatives were synthesized and their chemical structures were determined. Amongst, 4 indoline compounds and 5 isoxazole derivatives were new compounds. The results of erythrocyte hemolysis test showed that 8 compounds had hemolytic toxicity, and the rest had good biosafety.

The activity studies showed that most of the derivatives showed good inhibitory activity against six pathogenic microorganism; Amongst, compounds 3d, 3o, and 3r showed excellent inhibitory activity against drug-resistant Candida albicans with the MICs 8 times stronger than FLC ( MIC80 = 32 μg/mL ). The fungicidal tests showed that compound 3o could kill Candida albicans. According to experiments on mitochondrial membrane potential and reactive oxygen species (ROS), chemical 3o might cause mitochondrial damage and ROS generation, and this would have killed the strain. Additional research indicated that compound 3o could effectively block the development of fungal biofilm and hinder morphological transformation. Compounds 4o, 8f and 8j were found to have excellent synergistic antifungal activity in combination with fluconazole (FICI < 0.5).

The efflux tests of rhodamine 123 showed that compound 4o could inhibit the activity of efflux pump. The findings indicate that compound 4o successfully reduced the expression of efflux pump genes (MDR1、CDR1、CDR2). In the Galleria mellonella larvae infection models, compound 4o could significantly prolong the survival time of Galleria mellonella larvae.

Conclusion:

In this work, indole and isoxazole derivatives were designed and synthesized. A total of 52 derivatives were synthesized, of which 9 were new compounds. Compounds 3d, 3o and 3r (precursor compounds for new drug development), compounds 4o and 8j (alternative drugs for reversing drug resistance ) have in-depth development and research value. The overall structure-activity relationship found that the halogen substitution on the indole ring and the alkyl substitution on the aromatic ring in the indole compounds can enhance the antifungal effect of the compounds; In isoxazole derivatives, the R3 substituent with the halogen aromatic ring and halogen substituent in R4 can enhance the activity against sensitive strains. The results of this thesis would provide new basis for the future tudy on agents against drug-resistant Candida albicans.

参考文献:

[1]MASUR H, MICHELIS M A, GREENE J B, et al. An outbreak of community-acquired Pneumocystis carinii pneumonia: initial manifestation of cellular immune dysfunction[J].The New England journal of medicine,1981,305(24):1431-1438.

[2]JAMPILEK J. Novel avenues for identification of new antifungal drugs and current challenges[J].Expert Opinion on Drug Discovery,2022,17(9):949-968.

[3]JENKS J D, CORNELY O A, CHEN S C A, et al. Breakthrough invasive fungal infections: Who is at risk?[J].Mycoses,2020,63(10):1021-1032.

[4]ROGERS T R, VERWEIJ P E, CASTANHEIRA M, et al. Molecular mechanisms of acquired antifungal drug resistance in principal fungal pathogens and EUCAST guidance for their laboratory detection and clinical implications[J].Journal of Antimicrobial Chemotherapy,2022,77(8):2053-2073.

[5]FISHER M C, HAWKINS N J, SANGLARD D, et al. Worldwide emergence of resistance to antifungal drugs challenges human health and food security[J].Science,2018,360(6390):739-742.

[6]FILLINGER R J, ANDERSON M Z. Seasons of change: Mechanisms of genome evolution in human fungal pathogens[J].Infection Genetics and Evolution,2019,70:165-174.

[7]SIPSAS N V, KONTOYIANNIS D P. Invasive fungal infections in patients with cancer in the Intensive Care Unit[J].International Journal of Antimicrobial Agents,2012,39(6):464-471.

[8]ANDES D R, SAFDAR N, BADDLEY J W, et al. The epidemiology and outcomes of invasive Candida infections among organ transplant recipients in the United States: results of the Transplant-Associated Infection Surveillance Network (TRANSNET)[J].Transplant Infectious Disease,2016,18(6):921-931.

[9]SILVA M F, FERRIANI M P, TERRERI M T, et al. A Multicenter Study of Invasive Fungal Infections in Patients with Childhood-onset Systemic Lupus Erythematosus[J].Journal of Rheumatology,2015,42(12):2296-2303.

[10]ENOCH D A, YANG H, ALIYU S H, et al. The Changing Epidemiology of Invasive Fungal Infections [J].Molecular Aspects of Medicine,2023,94:17-35.

[11]廖万清.病原真菌生物学的研究与应用[C].中国药学会医院药学专业委员会.第十四届全国感染药学学术会议暨感染药学与感染性疾病药物治疗新进展学术研讨会报告汇编.中国上海,2012:20 .

[12]BROWN G D, DENNING D W, GOW N A R, et al. Hidden Killers: Human Fungal Infections[J].Science Translational Medicine,2012,4(165):98-99.

[13]BROWN G D, DENNING D W, LEVITZ S M. Tackling Human Fungal Infections[J].Science,2012,336(6082):647-647.

[14]PFALLER M A, DIEKEMA D J, TURNIDGE J D, et al. Twenty Years of the SENTRY Antifungal Surveillance Program: Results for Candida Species From 1997-2016[J].Open Forum Infectious Diseases,2019,6:79-94.

[15]SATOH K, MAKIMURA K, HASUMI Y, et al. Candida auris sp nov., a novel ascomycetous yeast isolated from the external ear canal of an inpatient in a Japanese hospital[J].Microbiology and Immunology,2009,53(1):41-44.

[16]赵伟娜,张冰,王启明.耳念珠菌致病及耐药机制的研究进展[J].中国科学:生命科学, 2021,51(9):1254-1263.

[17]RHODES J, FISHER M C. Global epidemiology of emerging Candida auris[J].Current Opinion in Microbiology,2019,52: 84-89.

[18]MUNOZ J F, GADE L, CHOW N A, et al. Genomic insights into multidrug-resistance, mating and virulence in Candida auris and related emerging species[J].Nature Communications,2018,9:136-138

[19]LOCKHART S R. Candida auris and multidrug resistance: Defining the new normal[J].Fungal Genetics and Biology,2019,3:131-133.

[20]SANGLARD D. Emerging Threats in Antifungal-Resistant Fungal Pathogens[J].Frontiers in Medicine,2016,3:67-69.

[21]VANZOLINI T, BRUSCHI M, RINALDI A C, et al. Multitalented Synthetic Antimicrobial Peptides and Their Antibacterial, Antifungal and Antiviral Mechanisms[J].International Journal of Molecular Sciences,2022,23(1):88-90.

[22]ROBBINS N, CAPLAN T, COWEN L E. Molecular Evolution of Antifungal Drug Resistance[M].GOTTESMAN: Annual Review of Microbiology,2017,71:753-775.

[23]REVIE N M, LYER K R, ROBBINS N, et al. Antifungal drug resistance: evolution, mechanisms and impact[J].Current Opinion in Microbiology,2018,45:70-76.

[24]黄海,王彦,李莹.白念珠菌的应激反应与耐药性[J].第二军医大学学报,2010,31(11):1239-1243.

[25]BERMAN J, KRYSAN D J. Drug resistance and tolerance in fungi[J].Nature Reviews Microbiology,2020,18(6):319-331.

[26]张欠欠,封小川,张凯玄.白念珠菌对临床常用抗真菌药物耐药机制研究进展[J].中国真菌学杂志,2022,17(03):251-254.

[27]CAROLUS H, PIERSON S, LAGROU K, et al. Amphotericin B and Other Polyenes-Discovery, Clinical Use, Mode of Action and Drug Resistance[J].Journal of Fungi,2020,6(4):321-321

[28]ELLIS D. Amphotericin B: spectrum and resistance[J].Journal of Antimicrobial Chemotherapy,2002,49:7-10.

[29]JENSEN R H, ASTVAD K M T, SILVA L V, et al. Stepwise emergence of azole, echinocandin and amphotericin B multidrug resistance in vivo in Candida albicans orchestrated by multiple genetic alterations[J].Journal of Antimicrobial Chemotherapy,2015,70(9):2551-2555.

[30]MARTEL C M, PARKER J E, BADER O, et al. A Clinical Isolate of Candida albicans with Mutations in ERG11 (Encoding Sterol 14α-Demethylase) and ERG5 (Encoding C22 Desaturase) Is Cross Resistant to Azoles and Amphotericin B[J].Antimicrobial Agents and Chemotherapy,2010,54(9):3578-3583.

[31]MORIO F, LOGE C, BESSE B, et al. Screening for amino acid substitutions in the Candida albicans Erg11 protein of azole-susceptible and azole-resistant clinical isolates: new substitutions and a review of the literature[J].Diagnostic Microbiology and Infectious Disease,2010,66(4):373-384.

[32]MARICHAL P, KOYMANS L, WILLEMSENS S, et al. Contribution of mutations in the cytochrome P450 14α-demethylase (Erg11p, Cyp51p) to azole resistance in Candida albicans[J].Microbiology-Sgm,1999,145:2701-2713.

[33]WU Y, GAO N, LI C, et al. A newly identified amino acid substitution T123I in the 14α-demethylase (Erg11p) of Candida albicans confers azole resistance[J].Fems Yeast Research,2017,17(3):1878-1881.

[34]HOOT S J, SMITH A R, BROWN R P, et al. An A643V Amino Acid Substitution in Upc2p Contributes to Azole Resistance in Well-Characterized Clinical Isolates of Candida albicans[J].Antimicrobial Agents and Chemotherapy,2011,55(2):940-942.

[35]FLOWERS S A, BARKER K S, BERKOW E L, et al. Gain-of-Function Mutations in UPC2 Are a Frequent Cause of ERG11 Upregulation in Azole-Resistant Clinical Isolates of Candida albicans[J].Eukaryotic Cell,2012,11(10):1289-1299.

[36]COLEMAN J J, MYLONAKIS E. Efflux in Fungi: La Piece de Resistance[J].Plos Pathogens,2009,5(6):e1000486.

[37]贾淑琳.香莲方对耐药白念珠菌外排泵基因表达影响的研究[D].广东:广州中医药大学,2016.

[38]COSTE A, TURNER V, ISCHER F, et al. A mutation in Tac1p, a transcription factor regulating CDR1 and CDR2, is coupled with loss of heterozygosity at chromosome 5 to mediate antifungal resistance in Candida albicans[J].Genetics,2006,172(4):2139-2156.

[39]李旭领.化脓隐秘杆菌MFS外排泵抑制剂的筛选及其对外排基因表达的影响[D].辽宁:沈阳农业大学,2023.

[40]SUWUNNAKORN S, WAKABAYASHI H, KORDALEWSKA M, et al. FKS2 and FKS3 Genes of Opportunistic Human Pathogen Candida albicans Influence Echinocandin Susceptibility[J].Antimicrobial Agents and Chemotherapy,2018,62(4):4-5.

[41]KORDALEWSKA M, LEE A, PARK S, et al. Understanding Echinocandin Resistance in the Emerging Pathogen Candida auris[J].Antimicrobial Agents and Chemotherapy,2018,62(6):56-58.

[42]COWEN L E, STEINBACH W J. Stress, drugs, and evolution: The role of cellular signaling in fungal drug resistance[J].Eukaryotic Cell,2008,7(5):747-764.

[43]O'MEARA T R, ROBBINS N, COWEN L E. The Hsp90 Chaperone Network Modulates Candida Virulence Traits[J].Trends in Microbiology,2017,25(10):809-819.

[44]COWEN L E. The fungal Achilles' heel: targeting Hsp90 to cripple fungal pathogens[J].Current Opinion in Microbiology,2013,16(4):377-384.

[45]TAIPALE M, KRYKBAEVA I, KOEVA M, et al. Quantitative Analysis of Hsp90-Client Interactions Reveals Principles of Substrate Recognition[J].Cell,2012,150(5):987-1001.

[46]谈军军.白念珠菌小分子热休克蛋白Fmp28的致病功能及机制初探[D].江西:南昌大学,2023.

[47]丁子超.新型抗真菌化合物的设计合成及其活性评价[D],上海:中国人民解放军海军军医大学,2021.

[48]COWEN L E, LINDQUIST S. Hsp90 potentiates the rapid evotution of new traits: Drug resistance in diverse fungi[J].Science,2005,309(5744):2185-2189.

[49]KIM S H, IYER K R, PARDESHI L, et al. Genetic Analysis of Candida auris Implicates Hsp90 in Morphogenesis and Azole Tolerance and Cdr1 in Azole Resistance[J].Mbio,2019,10(1):186-188.

[50]SINGH S D, ROBBINS N, ZAAS A K, et al. Hsp90 Governs Echinocandin Resistance in the Pathogenic Yeast Candida albicans via Calcineurin[J].Plos Pathogens,2009,5(7):67-71.

[51]BRUNO V M, MITCHELL A P. Regulation of azole drug susceptibility by Candida albicans protein kinase CK2[J].Molecular Microbiology,2005,56(2):559-573.

[52]ROBBINS N, WRIGHT G D, COWEN L E. Antifungal Drugs: The Current Armamentarium and Development of New Agents[J].Microbiology Spectrum,2016,4(5):55-63.

[53]ROBBINS N, LEACH M D, COWEN L E. Lysine Deacetylases Hda1 and Rpd3 Regulate Hsp90 Function thereby Governing Fungal Drug Resistance[J].Cell Reports,2012,2(4):878-888.

[54]JUVVADI P R, LEE S C, HEITMAN J, et al. Calcineurin in fungal virulence and drug resistance: Prospects for harnessing targeted inhibition of calcineurin for an antifungal therapeutic approach[J].Virulence,2017,8(2):186-197.

[55]LAFAYETTE S L, COLLINS C, ZAAS A K, et al. PKC Signaling Regulates Drug Resistance of the Fungal Pathogen Candida albicans via Circuitry Comprised of Mkc1, Calcineurin, and Hsp90[J].Plos Pathogens,2010,6(8):85-88.

[56]XIE J L, QIN L, MIAO Z, et al. The Candida albicans transcription factor Cas5 couples stress responses, drug resistance and cell cycle regulation[J].Nature Communications,2017,8:499-499.

[57]CAPLAN T, POLVI E J, XIE J L, et al. Functional Genomic Screening Reveals Core Modulators of Echinocandin Stress Responses in Candida albicans[J].Cell Reports,2018,23(8):2292-2298.

[58]宋晓婷,赵作涛,王爱平.新型系统性抗真菌药物研究进展[J].中国真菌学杂志,2023,18(04):370-376.

[59]PERFECT J R. The antifungal pipeline: a reality check[J].Nature Reviews Drug Discovery,2017,16(9):603-616.

[60]CHE X, SHENG C, WANG W, et al. New azoles with potent antifungal activity: Design, synthesis and molecular docking[J].European Journal of Medicinal Chemistry,2009,44(10):4218-4226.

[61]HOWARD K C, DENNIS E K, WATT D S, et al. A comprehensive overview of the medicinal chemistry of antifungal drugs: perspectives and promise[J].Chemical Society Reviews,2020,49(8):2426-2440.

[62]NICOLA A M, ALBUQUERQUE P, PAES H C, et al. Antifungal drugs: New insights in research & development[J].Pharmacology & Therapeutics,2019,195:21-38.

[63]LOCKHART S R, FOTHERGILL A W, IQBAL N, et al. The Investigational Fungal Cyp51 Inhibitor VT-1129 Demonstrates Potent In Vitro Activity against Cryptococcus neoformans and Cryptococcus gattii[J].Antimicrobial Agents and Chemotherapy,2016,60(4):2528-2531.

[64]NIELSEN K, VEDULA P, SMITH K D, et al. Activity of VT-1129 against Cryptococcus neoformans clinical isolates with high fluconazole MICs[J].Medical Mycology,2017,55(4):453-456.

[65]WIEDERHOLD N P, NAJVAR L K, GARVEY E P, et al. The Fungal Cyp51 Inhibitor VT-1129 Is Efficacious in an Experimental Model of Cryptococcal Meningitis[J].Antimicrobial Agents and Chemotherapy,2018,62(9):1071-1118.

[66]WIEDERHOLD N P, XU X, WANG A, et al. In Vivo Efficacy of VT-1129 against Experimental Cryptococcal Meningitis with the Use of a Loading Dose-Maintenance Dose Administration Strategy[J].Antimicrobial Agents and Chemotherapy,2018,62(11):1315-1318.

[67]YATES C M, GARVEY E P, SHAVER S R, et al. Design and optimization of highly-selective, broad spectrum fungal CYP51 inhibitors[J].Bioorganic & Medicinal Chemistry Letters,2017,27(15):3243-3248.

[68]WARRILOW A G S, HULL C M, PARKER J E, et al. The Clinical Candidate VT-1161 Is a Highly Potent Inhibitor of Candida albicans CYP51 but Fails To Bind the Human Enzyme[J].Antimicrobial Agents and Chemotherapy,2014,58(12):7121-7127.

[69]GARVEY E P, HOEKSTRA W J, MOORE W R, et al. VT-1161 Dosed Once Daily or Once Weekly Exhibits Potent Efficacy in Treatment of Dermatophytosis in a Guinea Pig Model[J].Antimicrobial Agents and Chemotherapy,2015,59(4):1992-1997.

[70]SHUBITZ L F, ROY M E, TRINH H T, et al. Efficacy of the Investigational Antifungal VT-1161 in Treating Naturally Occurring Coccidioidomycosis in Dogs[J].Antimicrobial Agents and Chemotherapy,2017,61(5):78-85

[71]BREAK T J, DESAI J V, NATARAJAN M, et al. VT-1161 protects mice against oropharyngeal candidiasis caused by fluconazole-susceptible and -resistant Candida albicans[J].Journal of Antimicrobial Chemotherapy,2018,73(1):151-155.

[72]BRAND S R, DEGENHARDT T P, PERSON K, et al. A phase 2, randomized, double-blind, placebo-controlled, dose-ranging study to evaluate the efficacy and safety of orally administered VT-1161 in the treatment of recurrent vulvovaginal candidiasis[J].American Journal of Obstetrics and Gynecology,2018,218(6):92-98

[73]BRAND S R, SOBEL J D, NYIRJESY P, et al. A Randomized Phase 2 Study of VT-1161 for the Treatment of Acute Vulvovaginal Candidiasis[J].Clinical Infectious Diseases,2021,73(7):E1518-E1524.

[74]MARTENS M G, MAXIMOS B, DEGENHARDT T, et al. Phase 3 study evaluating the safety and efficacy of oteseconazole in the treatment of recurrent vulvovaginal candidiasis and acute vulvovaginal candidiasis infections[J].American Journal of Obstetrics and Gynecology,2022,227(6):8801-8811.

[75]BREAK T J, DESAI J V, HEALEY K R, et al. VT-1598 inhibits the in vitro growth of mucosal Candida strains and protects against fluconazole-susceptible and -resistant oral candidiasis in IL-17 signalling-deficient mice[J].Journal of Antimicrobial Chemotherapy,2018,73(8):2089-2094.

[76]刘昱,阎澜,姜远英.新型抗真菌药物研究进展[J].中国真菌学杂志,2018,13(02):105-113.

[77]魏文华,曲秀君,胡欣.抗真菌药物研究进展[J].中国现代药物应用,2012,6(23):111-112.

[78]MORENO-SABATER A, NORMAND A-C, BIDAUD A-L, et al. Terbinafine Resistance in Dermatophytes: A French Multicenter Prospective Study[J].Journal of Fungi,2022,8(3):220.

[79]OSTROSKY-ZEICHNER L, MARR K A, REX J H, et al. Amphotericin B: Time for a new "gold standard"[J].Clinical Infectious Diseases,2003,37(3):415-425.

[80]ODDS F C, BROWN A J P, GOW N A R. Antifungal agents: mechanisms of action[J].Trends in Microbiology,2003,11(6):272-279.

[81]ANDERSON T M, CLAY M C, CIOFFI A G, et al. Amphotericin forms an extramembranous and fungicidal sterol sponge[J].Nature Chemical Biology,2014,10(5):400-406.

[82]SKLENAR Z, SCIGEL V, HORACKOVA K, et al. COMPOUNDED PREPARATIONS WITH NYSTATIN FOR ORAL AND OROMUCOSAL ADMINISTRATION[J].Acta Poloniae Pharmaceutica,2013,70(4):759-762.

[83]LALITHA P, VIJAYKUMAR R, PRAJNA N V, et al. In vitro natamycin susceptibility of ocular isolates of Fusarium and Aspergillus species:: Comparison of commercially formulated natamycin eye drops to pharmaceutical-grade powder[J].Journal of Clinical Microbiology,2008,46(10):3477-3478.

[84]FARID M A, EL-ENSHASY H A, EL-DIWANY A I, et al. Optimization of the cultivation medium for natamycin production by Streptomyces natalensis[J].Journal of Basic Microbiology,2000,40(3):157-166.

[85]ZOTCHEV S B. Polyene macrolide antibiotics and their applications in human therapy[J].Current Medicinal Chemistry,2003,10(3):211-223.

[86]LANZA J S, POMEL S, LOISEAU P M, et al. Recent advances in amphotericin B delivery strategies for the treatment of leishmaniases[J].Expert Opinion on Drug Delivery,2019,16(10):1063-1079.

[87]PAPPAS P G, KAUFFMAN C A, ANDES D R, et al. Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America[J].Clinical Infectious Diseases,2016,62(4):409-417.

[88]LETSCHER-BRU V, HERBRECHT R. Caspofungin: the first representative of a new antifungal class[J].Journal of Antimicrobial Chemotherapy,2003,51(3):513-521.

[89]CORNELY O A, BASSETTI M, CALANDRA T, et al. ESCMID* guideline for the diagnosis and management of Candida diseases 2012: non-neutropenic adult patients[J].Clinical Microbiology and Infection,2012,18:19-37.

[90]徐贝雪,刘泉波.抗真菌药物临床应用及研究进展[J].现代医药卫生,2022,38(14):2435-2440.

[91]WALSH T J, PAPPAS P, WINSTON D J, et al. Voriconazole compared with liposomal amphotericin B for empirical antifungal therapy in patients with neutropenia and persistent fever[J].New England Journal of Medicine,2002,346(4):225-234.

[92]郭宗儒.芬净类抗真菌药物的研制[J].药学学报,2023,3(10):1-15.

[93]王亚男.抗真菌药物研究进展[J].国外医药(抗生素分册),2005,(02):59-63+77.

[94]DAVIS M R, DONNELLEY M A, THOMPSON G R, III. Ibrexafungerp: A novel oral glucan synthase inhibitor[J].Medical Mycology,2020,58(5):579-592.

[95]THAKARE R, DASGUPTA A, CHOPRA S. Ibrexafungerp 1, 3-β-Glucan synthase inhibitor Triterpenoid antifungal agent[J].Drugs of the Future,2019,44(4):265-275.

[96]代猛,裘娟萍,汪琨.几丁质合酶抑制剂作为抗真菌药物的研究进展[J].科技通报,2017,33(03):71-76.

[97]GE Z, JI Q, CHEN C, et al. Synthesis and biological evaluation of novel 3-substituted amino-4-hydroxylcoumarin derivatives as chitin synthase inhibitors and antifungal agents[J].Journal of Enzyme Inhibition and Medicinal Chemistry,2016,31(2):219-228.

[98]SUGIMOTO Y, SAKOH H, YAMADA K. IPC synthase as a useful target for antifungal drugs[J].Current drug targets Infectious disorders,2004,4(4):311-322.

[99]TAN H W, TAY S T. The inhibitory effects of aureobasidin A on Candida planktonic and biofilm cells[J].Mycoses,2013,56(2):150-156.

[100]AEED P A, YOUNG C L, NAGIEC M M, et al. Inhibition of Inositol Phosphorylceramide Synthase by the Cyclic Peptide Aureobasidin A[J].Antimicrobial Agents and Chemotherapy,2009,53(2):496-504.

[101]WUTS P G M, SIMONS L J, METZGER B P, et al. Generation of Broad-Spectrum Antifungal Drug Candidates from the Natural Product Compound Aureobasidin A[J].Acs Medicinal Chemistry Letters,2015,6(6):645-649.

[102]SIGERA L S M, DENNING D W. Flucytosine and its clinical usage[J].Therapeutic advances in infectious disease,2023,10:87-90.

[103]TOLEDO-BAHENA M E, BUCKO A, OCAMPO-CANDIANI J, et al. The Efficacy and Safety of Tavaborole, a Novel, Boron-Based Pharmaceutical Agent: Phase 2 Studies Conducted for the Topical Treatment of Toenail Onychomycosis[J].Journal of Drugs in Dermatology,2014,13(9):1124-1132.

[104]VLAHOVIC T C, CORONADO D, CHANDA S, et al. Evaluation of the Appearance of Nail Polish Following Daily Treatment of Ex Vivo Human Fingernails With Topical Solutions of Tavaborole or Efinaconazole[J].Journal of Drugs in Dermatology,2016,15(1):89-94.

[105]朱育菁,于晓杰,潘志针.灰黄霉素的研究进展[J].厦门大学学报(自然科学版),2010,49(03):435-439.

[106]SPITZER M, ROBBINS N, WRIGHT G D. Combinatorial strategies for combating invasive fungal infections[J].Virulence,2017,8(2):169-185.

[107]NISHIKAWA J L, BOESZOERMENYI A, VALE-SILVA L A, et al. Inhibiting fungal multidrug resistance by disrupting an activator-Mediator interaction[J].Nature,2016,530(7591):485-489.

[108]COWEN L E, SINGH S D, KOEHLER J R, et al. Harnessing Hsp90 function as a powerful, broadly effective therapeutic strategy for fungal infectious disease[J].Proceedings of the National Academy of Sciences of the United States of America,2009,106(8):2818-2823.

[109]WHITESELL L, ROBBINS N, HUANG D S, et al. Structural basis for species-selective targeting of Hsp90 in a pathogenic fungus[J].Nature Communications,2019,10:402.

[110]SPITZER M, GRIFFITHS E, BLAKELY K M, et al. Cross-species discovery of syncretic drug combinations that potentiate the antifungal fluconazole[J].Molecular Systems Biology,2011,7:499.

[111]CAPLAN T, LORENTE-MACIAS A, STOGIOS P J, et al. Overcoming Fungal Echinocandin Resistance through Inhibition of the Non-essential Stress Kinase Yck2[J].Cell Chemical Biology,2020,27(3):269-277.

[112]TOROSANTUCCI A, BROMURO C, CHIANI P, et al. A novel glyco-conjugate vaccine against fungal pathogens[J].Journal of Experimental Medicine,2005,202(5):597-606.

[113]ARMSTRONG-JAMES D, BROWN G D, NETEA M G, et al. Immunotherapeutic approaches to treatment of fungal diseases[J].Lancet Infectious Diseases,2017,17(12):393-402.

[114]AJULO S, AWOSILE B. Global antimicrobial resistance and use surveillance system (GLASS 2022): Investigating the relationship between antimicrobial resistance and antimicrobial consumption data across the participating countries[J].PloS one,2024,19(2):e0297921.

[115]SANGUINETTI M, POSTERARO B, LASS-FLOERL C. Antifungal drug resistance among Candida species: mechanisms and clinical impact[J].Mycoses,2015,58:2-13.

[116]KOTHAVADE R J, KURA M M, VALAND A G, et al. Candida tropicalis: its prevalence, pathogenicity and increasing resistance to fluconazole[J].Journal of Medical Microbiology,2010,59(8):873-880.

[117]SANGLARD D, COSTE A, FERRARI S. Antifungal drug resistance mechanisms in fungal pathogens from the perspective of transcriptional gene regulation[J].Fems Yeast Research,2009,9(7):1029-1050.

[118]PATHANIA S, RAWAL R K. Pyrrolopyrimidines: An update on recent advancements in their medicinal attributes[J].European Journal of Medicinal Chemistry,2018,157:503-526.

[119]胡诗寒,贺超,金枝.吲哚衍生物生物活性研究进展[J].当代化工,2022,51(03):718-722.

[120]DE LOS ANGELES ZERMENO-MACIAS M, MARTIN GONZALEZ-CHAVEZ M, MENDEZ F, et al. Theoretical Reactivity Study of Indol-4-Ones and Their Correlation with Antifungal Activity[J].Molecules,2017,22(3):427-428.

[121]DICUOLLO C J, ZAREMBO J E, PAGANO J F. The metabolism of 3-((5-methyl-5H-as-triazino(5, 6-b)-indol-3-yl)amino)-1-propanol (SK&F 21687). A Potent antiviral[J].Xenobiotica; the fate of foreign compounds in biological systems,1973,3(3):171-178.

[122]HAIDER N, KABICHER T, KAEFERBOECK J, et al. Synthesis and In-vitro antitumor activity of 1- 3-(Indol-1-yl)prop-1-yn-1-yl phthalazines and related compounds[J].Molecules,2007,12(8):1900-1909.

[123]DA SETTIMO F, SIMORINI F, TALIANI S, et al. Anxiolytic-like effects of N, N-Dialkyl-2-phenylindol-3-ylgiyoxylamides by modulation of translocator protein promoting neurosteroid biosynthesis[J].Journal of Medicinal Chemistry,2008,51(18):5798-5806.

[124]魏玮,许晴,朱芸.醋酸钯催化直接芳基化合成2-芳基吲哚类化合物[J].山东化工,2022,51(18):231-236.

[125]潘馨慧,杨柯,张明等.一种2-苯基吲哚衍生物的制备方法及其用途:新疆维吾尔自治区,CN115181050B[P].2024-01-30.

[126]YAN X, JIANG C-S, et al. Oxidative Dearomative Cross-Dehydrogenative Coupling of Indoles with Diverse C-H Nucleophiles: Efficient Approach to 2, 2-Disubstituted Indolin-3-ones[J].Molecules,2020,25(2):419.

[127]EGGIMANN P, BARBERINI L, CALANDRA T, et al. Invasive Candida infections in the ICU[J].Mycoses,2012,55:65-72.

[128]TEYMURI M, MAMISHI S, POURAKBARI B, et al. Investigation of ERG11 gene expression among fluconazole-resistant Candida albicans: first report from an Iranian referral paediatric hospital[J].British Journal of Biomedical Science,2015,72(1):28-31.

[129]LOFFLER J, KELLY S L, HEBART H, et al. Molecular analysis of cyp51 from fluconazole-resistant Candida albicans strains[J].Fems Microbiology Letters,1997,151(2):263-268.

[130]DOUGLAS L J. Candida biofilms and their role in infection[J].Trends in Microbiology,2003,11(1):30-36.

[131]WALL G, MONTELONGO-JAUREGUI D, BONIFACIO B V, et al. Candida albicans biofilm growth and dispersal: contributions to pathogenesis[J].Current Opinion in Microbiology,2019,52:1-6.

[132]CANNON R D, LAMPING E, HOLMES A R, et al. Candida albicans drug resistance: another way to cope with stress[J].Microbiology-Sgm,2007,153:3211-3217.

[133]ZHU J, MO J, LIN H-Z, et al. The recent progress of isoxazole in medicinal chemistry[J].Bioorganic & Medicinal Chemistry,2018,26(12):3065-3075.

[134]杜光剑,陈东亮,卢锐炯.3-(吗啉吡啶基)-5-取代异噁唑类化合物的合成及抗菌活性研究[J].有机化学,2009,29(10):1575-1581.

[135]SYSAK A, OBMINSKA-MRUKOWICZ B. Isoxazole ring as a useful scaffold in a search for new therapeutic agents[J].European Journal of Medicinal Chemistry,2017,137:292-309.

[136]XIE F, NI T, ZHAO J, et al. Design, synthesis, and in vitro evaluation of novel antifungal triazoles[J].Bioorganic & Medicinal Chemistry Letters,2017,27(10):2171-2173.

[137]SONG M, ZHANG M, LU J, et al. Palmarumycin P3 Reverses Mrr1-Mediated Azole Resistance by Blocking the Efflux Pump Mdr1[J].Antimicrobial Agents and Chemotherapy,2022,66(3):21-26.

[138]YANG C, HU S, PAN X, et al. Novel Synthesis of Dihydroisoxazoles by p-TsOH-Participated 1, 3-Dipolar Cycloaddition of Dipolarophiles withα-Nitroketones[J].Molecules,2023,28(6):2565.

[139]LEE Y, PUUMALA E, ROBBINS N, et al. Antifungal Drug Resistance: Molecular Mechanisms in Candida albicans and Beyond[J].Chemical Reviews,2021,121(6):3390.

[140]KULLBERG B J, ARENDRUP M C. Invasive Candidiasis[J].New England Journalof Medicine,2015,373(15):1445-1456.

[141]BARLAM T F, COSGROVE S E, ABBO L M, et al. Implementing an Antibiotic Stewardship Program: Guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America[J].Clinical Infectious Diseases,2016,62(10):51-77.

[142]韩晓燕,宋亚丽,白埔等.抗真菌药物的系统分类、耐药机制及新药研发进展[J].中国现代应用药学,2019,36(11):1430-1436.

中图分类号:

 R9    

开放日期:

 2025-05-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式