- 无标题文档
查看论文信息

中文题名:

 枸杞多糖对ICV-STZ诱导的痴呆小鼠认知功能改善作用及机制研究    

姓名:

 贺颖西    

学号:

 20212115005    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 105500    

学科名称:

 医学 - 药学(可授医学、理学学位) - 药学    

学生类型:

 硕士    

学位:

 药学硕士    

学位类型:

 专业学位    

学位年度:

 2024    

学校:

 石河子大学    

院系:

 药学院    

专业:

 药学硕士    

研究方向:

 神经药理    

第一导师姓名:

 胡艳丽    

第一导师单位:

 石河子大学    

完成日期:

 2024-05-05    

答辩日期:

 2024-05-05    

外文题名:

 Study on mechanism of LBP to improve cognitive functions of ICV-STZ-induced Alzheimer’s disease mice    

中文关键词:

 阿尔茨海默病 ; 胰岛素抵抗 ; 枸杞多糖 ; 链脲佐菌素 ; Tau蛋白磷酸化     

外文关键词:

   ; Alzheimer&rsquo ; s disease ; insulin resistance ; Lycium barbarum polysaccharide ; Streptozotociotocin ; phosphorylated tau protein     

中文摘要:

目的:

本实验拟通过侧脑室注射链脲佐菌素(ICV-STZ)建立阿尔茨海默病(AD)动物模型,探究枸杞多糖(LBP)对痴呆小鼠学习记忆能力的影响及其发挥神经保护作用的相关机制。主要内容有:(1)基于Meta分析探讨滋补肝肾方药治疗阿尔茨海默病的临床疗效,并对滋补肝肾方药组分及中药使用频次进行统计。(2)LBP对ICV-STZ诱导的痴呆小鼠学习记忆能力的影响。(3)LBP对ICV-STZ诱导的痴呆小鼠脑组织病理学改变及突触相关蛋白表达水平的影响。(4)LBP对ICV-STZ诱导的痴呆小鼠脑组织Tau蛋白磷酸化水平的调节作用及对IRS1/PI3K/AKT信号通路相关蛋白表达水平的影响。

方法:

(1)检索滋补肝肾方药治疗阿尔茨海默病的临床随机对照研究文献,使用RevMan 5.1软件进行Meta分析,并对滋补肝肾方药组分及中药使用频次进行统计。

(2)15只3月龄雄性C57BL/6J小鼠侧脑室注射人工脑脊液(aCSF)作为对照组,即ICV-aCSF组;75只同月龄小鼠侧脑室注射STZ后随机分为5组,每组15只,即模型组(ICV-STZ),低剂量枸杞多糖组(ICV-STZ+L-LBP,50 mg/kg),中剂量枸杞多糖组(ICV-STZ+M-LBP,100 mg/kg),高剂量枸杞多糖组(ICV-STZ+H-LBP,200 mg/kg),多奈哌齐组(ICV-STZ+Donepezil,0.75 mg/kg)。造模1周后,连续灌胃给药4周,通过Y迷宫实验、Morris水迷宫实验、避暗实验以及跳台实验探究LBP对ICV-STZ诱导的痴呆小鼠空间认知以及学习能力的影响。

(3)运用Nissl染色观察LBP对ICV-STZ诱导的痴呆小鼠脑组织形态学的影响。Th-T染色法评价LBP对ICV-STZ诱导的痴呆小鼠脑组织Aβ沉积的影响。Western Blot检测各组小鼠脑组织中突触相关蛋白的表达水平。

(4)Western Blot检测各组小鼠脑组织中Ser199、Thr205、Ser396、Ser404位点的磷酸化Tau蛋白水平以及蛋白激酶、蛋白磷酸酶、IRS1/PI3K/AKT信号通路相关蛋白表达水平。

结果:

(1)Meta分析结果显示,滋补肝肾方药治疗AD具有明显的临床疗效;能够明显改善AD患者的认知功能;同时,滋补肝肾方药可能会改善AD患者的生活能力。对Meta分析所纳入的文献包含的处方组成及中药频数进行统计,枸杞的使用频次较高,枸杞的主要成分枸杞多糖具有良好的降糖、抗氧化、抗衰老、神经保护、提高胰岛素敏感性等作用,确定LBP为动物实验治疗用药。

(2)在Y迷宫实验中,与ICV-aCSF组小鼠相比,ICV-STZ组小鼠对新异臂的探索次数、探索距离显著减少,在新异臂中的探索时间也有所降低;自发交替率显著下降;与ICV-STZ组小鼠相比,LBP治疗可增加小鼠对新异臂的探索,自发交替率也显著提高。Morris水迷宫实验中,ICV-STZ组小鼠与ICV-aCSF组小鼠相比,第一次穿越平台时间显著延长,穿越平台次数显著减少,LBP治疗可显著缩短第一次穿越平台时间并增加穿越平台次数。在避暗实验中,与ICV-aCSF组小鼠相比,ICV-STZ组小鼠潜伏期缩短、错误次数显著增加;跳台实验中ICV-STZ组小鼠潜伏期显著缩短;LBP治疗后明显延长ICV-STZ组小鼠跳台实验潜伏期,并且显著降低了避暗实验和跳台实验错误次数。

(3)Nissl染色结果显示,ICV-STZ组小鼠海马各分区及皮层部分神经元缺失严重,神经元胞体缩小,细胞排列稀疏、排布不连续,细胞间隙增大,胞浆尼氏小体减少,染色质分布不均匀。经LBP治疗后,神经元缺失有所改善,细胞排列较ICV-STZ组小鼠紧密、连续,细胞间隙减小,染色质分布较为均匀。Th-T染色结果提示,LBP有减轻ICV-STZ组小鼠脑内Aβ的沉积的趋势。Western Blot结果显示,LBP可以上调ICV-STZ诱导的痴呆小鼠脑组织内PSD95、Homer-1、SV2A、和SYP的蛋白表达水平。

(4)Western Blot结果表明,LBP可以降低ICV-STZ诱导的痴呆小鼠脑组织Ser199、Thr205、Ser396、Ser404位点的磷酸化Tau蛋白表达水平,上调p-GSK3β(Ser9)蛋白表达水平,下调p-GSK3β(Tyr216)的表达水平,同时,提高了小鼠脑内IRS1/PI3K/AKT通路相关蛋白的表达水平。

结论:

(1)滋补肝肾方药对于AD具有良好的临床治疗效果。其中枸杞使用频次较高,LBP作为枸杞的主要活性成分之一,具有良好的改善胰岛功能、促进胰岛素分泌、神经保护、改善认知等作用,因此确定LBP作为动物实验治疗用药。

(2)LBP对ICV-STZ诱导的痴呆小鼠学习记忆功能障碍具有较好的改善作用。

(3)LBP能够改善ICV-STZ诱导的痴呆小鼠脑组织病理损伤,减轻脑内Aβ沉积,提高突触相关蛋白的表达水平。

(4)LBP可以降低ICV-STZ诱导的痴呆小鼠脑组织Tau蛋白磷酸化水平,其机制可能与上调IRS1/PI3K/AKT通路相关蛋白的表达并调节下游GSK3β蛋白磷酸化相关。

外文摘要:

Objective:

In this study, male C57BL/6J mice injected with STZ (3 mg/kg) in the lateral ventricle were used as Alzheimer’s disease (AD) animal model. The study aimed to evaluate the effects of Lycium barbarum polysaccharide (LBP) on the learning and memory ability in the model mice and clarify the related mechanisms by which it exerts neuroprotective effects. The main results: (1) Based on Meta-analysis to explore the clinical efficacy of the ZiBuGanShen prescription in the treatment of Alzheimer's Disease (AD), and statistics on the components of the ZiBuGanShen prescription and the frequency of the use of traditional Chinese medicine. (2) Effects of lycium barbarum polysaccharide (LBP) on the learning and memory ability in the ICV-STZ-induced demented mice. (3) The effects of LBP on the brain histopathology and the expression levels of synapse-related protein in ICV-STZ-induced dementia mice. (4) Regulatory effects of LBP on Tau protein phosphorylation in ICV-STZ-induced dementia mice and its effects on the expression levels of proteins related to the IRS1/PI3K/AKT signalling pathway.

Methods:

(1)Randomized controlled trials (RCTS) on treatment of Alzheimer’s disease (AD) by ZiBuGanShen prescription were searched, and meta-analysis was performed using RevMan software. After that, statistics on the components of the ZiBuGanShen prescription and the frequency of use of Chinese medicines were also obtained.

(2)Fifteen 3-month-old male C57BL/6J mice were injected with artificial cerebrospinal fluid (aCSF) in the lateral ventricle as a control group (ICV-aCSF group); Seventy-five mice of the same month were injected with STZ in the lateral ventricle and were randomly divided into five groups with 15 mice in each group, the model group (ICV-STZ), the low-dose LBP group (ICV-STZ+L-LBP, 50 mg/kg), the medium-dose LBP group (ICV-STZ+M-LBP, 100 mg/kg), high-dose LBP group (ICV-STZ+H-LBP, 200 mg/kg), and donepezil group (ICV-STZ+Donepezil, 0.75 mg/kg). After 1 week of modelling, the drug was administered by continuous gavage for 4 weeks, and the effects of LBP on the learning and memory ability of ICV-STZ-induced dementia mice were observed by the Y maze test, Morris water maze test, step-through test and step-down test.

(3)The effects of LBP on neurons in the brain tissue of ICV-STZ-induced dementia mice were evaluated by Nissl staining. The effects of LBP on Aβ desposition in the brain tissue of mice were observed by Th-T staining. The expression level of synapse-associated proteins in the cerebral cortex and hippocampus of mice of each group was determined by Western blot.

(4)Western blot was used to detect the phosphorylation degree of Tau protein at Ser199, Thr205, Ser396 and Ser404 sites as well as the expression levels of protein kinase, protein phosphatase, and protein expression related to IRS1/PI3K/AKT signaling pathway in the brain tissues of mice in each group.

 

Results: 

(1)The results of Meta-analysis show that ZiBuGanShen prescription has significant clinical efficacy in treating AD; it can significantly improve the cognitive function of AD patients; at the same time, it may improve the living ability of AD patients. The composition of ZiBuGanShen prescriptions and the frequency of the traditional Chinese medicines were counted in the literature included in the Meta-analysis. Lycium barbarum polysaccharide was used more frequently, and as one of the main active ingredients of lycium barbarum polysaccharide, LBP has good hypoglycemic, antioxidant, anti-aging, neuroprotective, and insulin sensitivity-enhancing effects. Consequently, LBP was used as a therapeutic agent in animal experiments.

(2)In the Y maze test, compared with the ICV-aCSF group, the exploration times, exploration distance and the time spent in the novel arm were significantly reduced, and the rate of spontaneous alternation was also significantly decreased; After treatment with LBP, the exploration of the novel arm and the rate of spontaneous alternation was significantly increased. In the Morris water maze experiment, mice in the ICV-STZ group had a significantly longer time to the first crossing of the platform and a significantly lower number of crossing times compared with mice in the ICV-aCSF group, and the LBP treatment significantly shortened the time to the first crossing of the platform and increased the number of crossings.

(3)In the step-through test, the latency of ICV-STZ mice was shortened and the number of errors was significantly increased compared with that of mice in the ICV-aCSF group; the latency of mice in the ICV-STZ group was significantly shortened in the step-down test; and LBP treatment significantly prolonged the latency of the step-down test of the mice in the ICV-STZ group, as well as significantly reduced the number of errors in both step-through test and step-down test.

(4)Nissl staining results showed that neuronal deficits were severe in hippocampus and the cortex in ICV-STZ group mice, with neuronal cytosol shrinkage, sparse and discontinuous cell arrangement, increased cell gaps, reduced cytoplasmic Nissl bodys, and non-uniform chromatin distribution. After treatment with LBP, the neuronal deficits were improved, the cell arrangement was tighter and more continuous than that of the ICV-STZ group mice, the cell gap was reduced, and the chromatin distribution was more uniform. Th-T staining results showed that LBP could reduce the deposition of Aβ in the brain tissue of ICV-STZ-induced dementia mice. The results of Western blot experiment showed that LBP could up-regulate the expression levels of PSD95, SV2A, Homer-1 and SYP in the cortex and hippocampus of ICV-STZ-induced dementia mice.

(5)Western Blot results showed that LBP reduced the phosphorylation of Tau protein at Ser199, Thr205, Ser396, Ser404 sites, up-regulated the protein expression level of p-GSK3β (Ser9), and down-regulated the expression level of p-GSK3β (Tyr216), and, at the same time, increased the expression level of the IRS1/PI3K/AKT pathway-related proteins in the brains of ICV-STZ-induced demented mice.

Conclusion:

(1)ZiBuGanShen prescription has a good clinical effect on AD. Lycium barbarum was used more frequently, and LBP, as one of the main active ingredients of Lycium barbarum, has good effects of improving pancreatic islet function, promoting insulin secretion, neuroprotection, and improving cognition, therefore, it was determined that LBP was used as a therapeutic drug in animal experiments.

(2)LBP has a favourable ameliorative effect on learning and memory dysfunction in ICV-STZ-induced dementia mice.

(3)LBP can protect the brain neurons in ICV-STZ-induced dementia mice, reduce the depositionof Aβ in the brain tissue, and increase the expression level of synapse-associated proteins.

(4)LBP can reduce the Tau protein phosphorylation in the brain of ICV-STZ-induced dementia mice, and the mechanism may be related to the up-regulation of the expression of IRS1/PI3K/AKT pathway-related proteins and the regulation of downstream GSK3β protein phosphorylation.

参考文献:

[1]August I,Semendeferi K,Marchetto M C.Brain aging,Alzheimer's disease,and the role of stem cells in primate comparative studies[J].J Comp Neurol,2022,530(17):2940-2953.

[2]Takizawa C,Thompson P L,van Walsem A,et al.Epidemiological and economic burden of Alzheimer's disease:a systematic literature review of data across Europe and the United States of America[J].J Alzheimers Dis,2015,43(4):1271-1284.

[3]Long S,Benoist C,Weidner W.World Alzheimer Report 2023:Reducing dementia risk:never too early,never too late[J].London,England:Alzheimer's Disease International,2023.

[4]Rajmohan R,Reddy P H.Amyloid-Beta and Phosphorylated Tau Accumulations Cause Abnormalities at Synapses of Alzheimer's disease Neurons[J].J Alzheimers Dis,2017,57(4):975-999.

[5]Abeysinghe A,Deshapriya R,Udawatte C.Alzheimer's disease;a review of the pathophysiological basis and therapeutic interventions[J].Life Sci,2020,256:117996.

[6]Tönnies E,Trushina E.Oxidative Stress,Synaptic Dysfunction,and Alzheimer's Disease[J].J Alzheimers Dis,2017,57(4):1105-1121.

[7]Messier C,Teutenberg K.The role of insulin, insulin growth factor,and insulin-degrading enzyme in brain aging and Alzheimer's disease[J].Neural Plast,2005,12(4):311-328.

[8]Ma L,Wang J,Li Y.Insulin resistance and cognitive dysfunction[J].Clin Chim Acta,2015,444:18-23.

[9]Ganda O P,Rossini A A,Like A A.Studies on streptozotocin diabetes[J].Diabetes,1976,25(7):595-603.

[10]Grieb P.Intracerebroventricular Streptozotocin Injections as a Model of Alzheimer's Disease:in Search of a Relevant Mechanism[J].Mol Neurobiol,2016,53(3):1741-1752.

[11]Fan M,Liu S,Sun H M,et al.Bilateral intracerebroventricular injection of streptozotocin induces AD-like behavioral impairments and neuropathological features in mice:Involved with the fundamental role of neuroinflammation[J].Biomed Pharmacother,2022,153:113375.

[12]田金洲,时晶.阿尔茨海默病的中医诊疗共识[J].中国中西医结合杂志,2018,38(05):523-529.

[13]朱美薇,杨芳芳,聂泽卉,等.逍遥散及其活性成分抗阿尔茨海默病作用的研究进展[J].中成药,2024,46(02):524-530.

[14]Cheng J,Zhou Z W,Sheng H P,et al.An evidence-based update on the pharmacological activities and possible molecular targets of Lycium barbarum polysaccharides[J].Drug Des Devel Ther,2015,9:33-78.

[15]Zhou Y,Duan Y,Huang S,et al.Polysaccharides from Lycium barbarum ameliorate amyloid pathology and cognitive functions in APP/PS1 transgenic mice[J].Int J Biol Macromol,2020,144:1004-1012.

[16]2023 Alzheimer's disease facts and figures[J]. Alzheimers Dement,2023,19(4):1598-1695.

[17]任汝静,殷鹏,王志会,等.中国阿尔茨海默病报告2021[J].诊断学理论与实践,2021,20(04):317-337.

[18]徐勇,王军,王虹峥,等. 2023中国阿尔茨海默病数据与防控策略[J].阿尔茨海默病及相关病杂志,2023,6(03):175-192.

[19]Jucker M,Walker L C.Alzheimer's disease: From immunotherapy to immunoprevention[J].Cell,2023,186(20):4260-4270.

[20]Kleinridders A,Ferris H A,Cai W,et al.Insulin action in brain regulates systemic metabolism and brain function[J].Diabetes,2014,63(7):2232-2243.

[21]Agrawal R,Reno C M,Sharma S,et al.Insulin action in the brain regulates both central and peripheral functions[J].Am J Physiol Endocrinol Metab,2021,321(1):E156-E163.

[22]Lee J,Kim K,Cho J H,et al.Insulin synthesized in the paraventricular nucleus of the hypothalamus regulates pituitary growth hormone production[J].JCI Insight,2020,5(16).

[23]Nakabeppu Y.Origins of Brain Insulin and Its Function[J].Adv Exp Med Biol,2019,1128:1-11.

[24]Gupta S,Singhal N K,Ganesh S,et al.Extending Arms of Insulin Resistance from Diabetes to Alzheimer's Disease:Identification of Potential Therapeutic Targets[J].CNS Neurol Disord Drug Targets,2019,18(3):172-184.

[25]Williams K W,Elmquist J K.From neuroanatomy to behavior: central integration of peripheral signals regulating feeding behavior[J].Nat Neurosci,2012,15(10):1350-1355.

[26]Arvanitakis Z,Wang H Y,Capuano A W,et al.Brain Insulin Signaling, Alzheimer Disease Pathology,and Cognitive Function[J].Ann Neurol,2020,88(3):513-525.

[27]Kullmann S,Heni M,Hallschmid M,et al.Brain Insulin Resistance at the Crossroads of Metabolic and Cognitive Disorders in Humans[J].Physiol Rev,2016,96(4):1169-1209.

[28]Kellar D,Craft S.Brain insulin resistance in Alzheimer's disease and related disorders:mechanisms and therapeutic approaches[J].Lancet Neurol,2020,19(9):758-766.

[29]Vagelatos N T,Eslick G D.Type 2 diabetes as a risk factor for Alzheimer's disease:the confounders,interactions,and neuropathology associated with this relationship[J].Epidemiol Rev,2013,35:152-160.

[30]Claxton A,Baker L D,Hanson A,et al.Long-acting intranasal insulin detemir improves cognition for adults with mild cognitive impairment or early-stage Alzheimer's disease dementia[J].J Alzheimers Dis,2015,44(3):897-906.

[31]Schiöth H B,Frey W H,Brooks S J,et al.Insulin to treat Alzheimer's disease:just follow your nose?[J].Expert Rev Clin Pharmacol,2012,5(1):17-20.

[32]Craft S,Baker L D,Montine T J,et al.Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitiven impairment: a pilot clinical trial[J].Arch Neurol,2012,69(1):29-38.

[33]Grillo C A,Piroli G G,Kaigler K F,et al.Downregulation of hypothalamic insulin receptor expression elicits depressive-like behaviors in rats[J].Behav Brain Res,2011,222(1):230-235.

[34]Kleinridders A,Cai W,Cappellucci L,et al.Insulin resistance in brain alters dopamine turnover and causes behavioral disorders[J].Proc Natl Acad Sci U S A,2015,112(11):3463-3468.

[35]Marks D R,Tucker K,Cavallin M A,et al.Awake intranasal insulin delivery modifies protein complexes and alters memory, anxiety, and olfactory behaviors[J].J Neurosci,2009,29(20):6734-6751.

[36]Hill M A,Yang Y,Zhang L,et al.Insulin resistance, cardiovascular stiffening and cardiovascular disease[J].Metabolism,2021,119:154766.

[37]Czech M P.Mechanisms of insulin resistance related to white,beige,and brown adipocytes[J].Mol Metab,2020,34:27-42.

[38]Spinelli M,Fusco S,Grassi C.Brain Insulin Resistance and Hippocampal Plasticity:Mechanisms and Biomarkers of Cognitive Decline[J].Front Neurosci,2019,13:788.

[39]Pomytkin I,Costa-Nunes J P,Kasatkin V,et al.Insulin receptor in the brain:Mechanisms of activation and the role in the CNS pathology and treatment[J].CNS Neurosci Ther,2018,24(9):763-774.

[40]Ghasemi R,Haeri A,Dargahi L,et al.Insulin in the brain: sources, localization and functions[J].Mol Neurobiol,2013,47(1):145-171.

[41]Mullins R J,Diehl T C,Chia C W,et al.Insulin Resistance as a Link between Amyloid-Beta and Tau Pathologies in Alzheimer's Disease[J].Front Aging Neurosci,2017,9:118.

[42]Talbot K.Brain insulin resistance in Alzheimer's disease and its potential treatment with GLP-1 analogs[J].Neurodegener Dis Manag,2014,4(1):31-40.

[43]Vadas O,Burke J E,Zhang X,et al.Structural basis for activation and inhibition of class I phosphoinositide 3-kinases[J].Sci Signal,2011,4(195):re2.

[44]Jaworski T,Banach-Kasper E, Gralec K.GSK3βat the Intersection of Neuronal Plasticity and Neurodegeneration[J].Neural Plast,2019,2019:4209475.

[45]Schubert M,Brazil D P,Burks D J,et al.Insulin receptor substrate-2 deficiency impairs brain growth and promotes tau phosphorylation[J].J Neurosci,2003,23(18):7084-7092.

[46]Bassil F,Delamarre A,Canron M H,et al.Impaired brain insulin signalling in Parkinson's disease[J].Neuropathol Appl Neurobiol,2022,48(1):e12760.

[47]Sharma S,Verma S,Kapoor M,et al.Alzheimer's disease like pathology induced six weeks after aggregated amyloid-beta injection in rats:increased oxidative stress and impaired long-term memory with anxiety-like behavior[J].Neurol Res,2016,38(9):838-850.

[48]Rad S K,Arya A,Karimian H,et al.Mechanism involved in insulin resistance via accumulation of β-amyloid and neurofibrillary tangles:link between type 2 diabetes and Alzheimer's disease[J].Drug Des Devel Ther,2018,12:3999-4021.

[49]Ferreira S T,Klein W L.The Aβ oligomer hypothesis for synapse failure and memory loss in Alzheimer's disease[J].Neurobiol Learn Mem,2011,96(4):529-543.

[50]Ho L,Qin W,Pompl P N,et al.Diet-induced insulin resistance promotes amyloidosis in a transgenic mouse model of Alzheimer's disease[J].FASEB J,2004,18(7):902-904.

[51]Kim B,Elzinga S E,Henn R E,et al.The effects of insulin and insulin-like growth factor I on amyloid precursor protein phosphorylation in in vitro and in vivo models of Alzheimer's disease[J].Neurobiol Dis,2019,132:104541.

[52]Yamamoto N,Ishikuro R,Tanida M,et al.Insulin-signaling Pathway Regulates the Degradation of Amyloid β-protein via Astrocytes[J].Neuroscience,2018,385:227-236.

[53]Gao Y,Tan L,Yu J T,et al.Tau in Alzheimer's Disease:Mechanisms and Therapeutic Strategies[J].Curr Alzheimer Res,2018,15(3):283-300.

[54]Bazrgar M,Khodabakhsh P,Mohagheghi F,et al.Brain microRNAs dysregulation: Implication for missplicing and abnormal post-translational modifications of tau protein in Alzheimer's disease and related tauopathies[J].Pharmacol Res,2020,155:104729.

[55]Maqbool M,Mobashir M,Hoda N.Pivotal role of glycogen synthase kinase-3:A therapeutic target for Alzheimer's disease[J].Eur J Med Chem,2016,107:63-81.

[56]Hernandez F,Lucas J J,Avila J.GSK3 and tau: two convergence points in Alzheimer's disease[J].J Alzheimers Dis,2013,33 Suppl 1:S141-S144.

[57]Fadó R,Molins A,Rojas R,et al.Feeding the Brain: Effect of Nutrients on Cognition,Synaptic Function,and AMPA Receptors[J].Nutrients,2022,14(19):4137.

[58]Yin H,Wang W,Yu W,et al.Changes in Synaptic Plasticity and Glutamate Receptors in Type 2 Diabetic KK-Ay Mice[J].J Alzheimers Dis,2017,57(4):1207-1220.

[59]Valastro B,Cossette J,Lavoie N,et al.Up-regulation of glutamate receptors is associated with LTP defects in the early stages of diabetes mellitus[J].Diabetologia,2002,45(5):642-650.

[60]Sacai H,Sasaki-Hamada S,Sugiyama A,et al.The impairment in spatial learning and hippocampal LTD induced through the PKA pathway in juvenile-onset diabetes rats are rescued by modulating NMDA receptor function[J].Neurosci Res,2014,81-82:55-63.

[61]Yan W,Pang M,Yu Y,et al.The neuroprotection of liraglutide on diabetic cognitive deficits is associated with improved hippocampal synapses and inhibited neuronal apoptosis[J].Life Sci,2019,231:116566.

[62]Stranahan A M,Norman E D,Lee K,et al.Diet-induced insulin resistance impairs hippocampal synaptic plasticity and cognition in middle-aged rats[J].Hippocampus,2008,18(11):1085-1088.

[63]Liemburg-Apers D C,Willems P H,Koopman W J,et al.Interactions between mitochondrial reactive oxygen species and cellular glucose metabolism[J].Arch Toxicol,2015,89(8):1209-1226.

[64]Chen Z,Zhong C.Oxidative stress in Alzheimer's disease[J].Neurosci Bull,2014,30(2):271-281.

[65]Newsholme P,Keane K N,Carlessi R,et al.Oxidative stress pathways in pancreatic β-cells and insulin-sensitive cells and tissues:importance to cell metabolism,function,and dysfunction[J].Am J Physiol Cell Physiol,2019,317(3):C420-C433.

[66]Pugazhenthi S,Qin L,Reddy P H.Common neurodegenerative pathways in obesity,diabetes,and Alzheimer's disease[J].Biochim Biophys Acta Mol Basis Dis,2017,1863(5):1037-1045.

[67]2022 Alzheimer's disease facts and figures[J].Alzheimer's & dementia:the journal of the Alzheimer's Association,2022,18(1):700-789.

[68]苏嘉楠,敖玉涵,安继仁,等.中医痴呆病位、病因、病机制论框架结构研究[J].辽宁中医药大学学报,2023,25(10):125-129.

[69]彭俊,张杰.中医药通过PI3K/Akt信号通路防治阿尔茨海默病的研究进展[J].中医药导报,2022,28(09):105-109.

[70]付玉,徐利飞,于晓雯,等.阿尔茨海默病的中医药治疗研究进展[J].临床医学研究与实践,2023,8(16):187-190.

[71]徐光华.补肝肾活血通窍中药治疗老年性痴呆40例疗效观察[J].医学信息,2010,23(05):1387-1388.

[72]吴超,郭学君,高波,等.补肝壮肾方加减联合盐酸多奈哌齐治疗肝肾不足型老年痴呆对MMSE评分、血浆C反应蛋白和同型半胱氨酸的影响[J].现代中西医结合杂志,2018,27(15):1649-1652.

[73]魏永吾,王红.辨证治疗老年痴呆50例[J].陕西中医,2009,30(7):819-820.

[74]刘一玄.益智胶囊治疗老年性痴呆(AD)(脾肾两虚,痰浊血瘀证)临床研究[D].湖北中医药大学;湖北中医学院中医内科学,2009.

[75]李启晖.补肝壮肾方对阿尔茨海默病认知功能及血浆CRP、hcy水平的影响[J].光明中医,2020,35(22):3577-3579.

[76]李安怡.参乌胶囊治疗老年性痴呆(AD)(脾肾两虚,痰浊血瘀证)临床研究[D].湖北中医药大学;湖北中医学院中医内科学,2006.

[77]胡银柱.运用滋补肝肾法治疗老年痴呆及远期疗效观察[J].光明中医,2015,30(08):1693-1694.

[78]方鸿.聪智合剂治疗老年性痴呆的临床与实验研究[D].山东中医药大学中医内科学,2006.

[79]刘光,宋盛青,陈克,等.补肾益气活血法治疗肾虚血瘀型阿尔茨海默病疗效观察[J].四川中医,2009,27(11):72-73.

[80]朱俊新,徐慧平,叶杨.补肾益脑方治疗老年性痴呆35例疗效观察[J].海南医学,2016,27(06):1007-1009.

[81]汉·华佗.华佗神医密传[M].沈阳:辽宁科学技术出版社,1983.

[82]唐·孙思邈.千金翼方[M].北京:中国医药科技出版社,2011.

[83]宋·洪迈.夷坚志[M].北京:中华书局,1981.

[84]清·陈士铎.辨证录[M].北京:中国医药科技出版社,2011.

[85]清·汪昂.本草备要[M].人民军医出版社,2007.

[86]赵琼,赵雅飞,赵玉婷,等.从“肾藏精,精舍志”理论探讨帕金森病与阿尔茨海默病异病同治的理论基础[J].中国中医基础医学杂志,2023,29(06):903-905.

[87]李小茜,何建成.肝肾同源理论之溯源[J].西部中医药,2019,32(09):45-49.

[88]袁敏皎,袁捷,韩祖成.中医药治疗阿尔茨海默病的用药组方规律文献研究[J].现代中西医结合杂志,2021,30(18):2020-2025.

[89]Chen W,Cheng X,Chen J,et al.Lycium barbarum polysaccharides prevent memory and neurogenesis impairments in scopolamine-treated rats[J].PLoS One,2014,9(2):e88076.

[90]Kamat P K,Kalani A,Rai S,et al.Streptozotocin Intracerebroventricular-Induced Neurotoxicity and Brain Insulin Resistance:a Therapeutic Intervention for Treatment of Sporadic Alzheimer's Disease (sAD)-Like Pathology[J].Mol Neurobiol,2016,53(7):4548-4562.

[91]Agrawal M,Perumal Y,Bansal S,et al.Phycocyanin alleviates ICV-STZ induced cognitive and molecular deficits via PI3-Kinase dependent pathway[J].Food Chem Toxicol,2020,145:111684.

[92]Akhtar A,Dhaliwal J,Sah S P.7,8-Dihydroxyflavone improves cognitive functions in ICV-STZ rat model of sporadic Alzheimer's disease by reversing oxidative stress,mitochondrial dysfunction,and insulin resistance[J].Psychopharmacology (Berl),2021,238(7):1991-2009.

[93]Sonkusare S,Srinivasan K,Kaul C,et al.Effect of donepezil and lercanidipine on memory impairment induced by intracerebroventricular streptozotocin in rats[J].Life Sci,2005,77(1):1-14.

[94]Kraeuter A K,Guest P C,Sarnyai Z.The Y-Maze for Assessment of Spatial Working and Reference Memory in Mice[J].Methods Mol Biol,2019,1916:105-111.

[95]Brier M R,Gordon B,Friedrichsen K,et al.Tau and Aβ imaging,CSF measures, and cognition in Alzheimer's disease[J].Sci Transl Med,2016,8(338):338ra66.

[96]Lu B,Nagappan G,Lu Y.BDNF and synaptic plasticity,cognitive function, and dysfunction[J].Handb Exp Pharmacol,2014,220:223-250.

[97]Hou J,Wang C,Zhang M,et al.Safflower Yellow Improves the Synaptic Structural Plasticity by Ameliorating the Disorder of Glutamate Circulation in Aβ(1-42)-induced AD Model Rats[J].Neurochem Res,2020,45(8):1870-1887.

[98]Tackenberg C,Kulic L,Nitsch R M.Familial Alzheimer's disease mutations at position 22 of the amyloid β-peptide sequence differentially affect synaptic loss, tau phosphorylation and neuronal cell death in an ex vivo system[J].PLoS One,2020,15(9):e239584.

[99]Li Y,Zhang J,Wan J,et al.Melatonin regulates Aβ production/clearance balance and Aβ neurotoxicity:A potential therapeutic molecule for Alzheimer's disease[J].Biomed Pharmacother,2020,132:110887.

[100]Wang C,Ye H,Zheng Y,et al.Phenylethanoid Glycosides of Cistanche Improve Learning and Memory Disorders in APP/PS1 Mice by Regulating Glial Cell Activation and Inhibiting TLR4/NF-κB Signaling Pathway[J].Neuromolecular Med,2023,25(1):75-93.

[101]Kwon S E,Chapman E R.Synaptophysin regulates the kinetics of synaptic vesicle endocytosis in central neurons[J].Neuron,2011,70(5):847-854.

[102]Löscher W,Gillard M,Sands Z A,et al.Synaptic Vesicle Glycoprotein 2A Ligands in the Treatment of Epilepsy and Beyond[J].CNS Drugs,2016,30(11):1055-1077.

[103]Pang J,Hou J,Zhou Z,et al.Safflower Yellow Improves Synaptic Plasticity in APP/PS1 Mice by Regulating Microglia Activation Phenotypes and BDNF/TrkB/ERK Signaling Pathway[J].Neuromolecular Med,2020,22(3):341-358.

[104]Savioz A,Leuba G,Vallet P G.A framework to understand the variations of PSD-95 expression in brain aging and in Alzheimer's disease[J].Ageing Res Rev,2014,18:86-94.

[105]Iasevoli F,Tomasetti C,de Bartolomeis A.Scaffolding proteins of the post-synaptic density contribute to synaptic plasticity by regulating receptor localization and distribution:relevance for neuropsychiatric diseases[J].Neurochem Res,2013,38(1):1-22.

[106]Cuthbert P C,Stanford L E,Coba M P,et al.Synapse-associated protein 102/dlgh3 couples the NMDA receptor to specific plasticity pathways and learning strategies[J].J Neurosci,2007,27(10):2673-2682.

[107]Wang Y,Mandelkow E.Tau in physiology and pathology[J].Nat Rev Neurosci,2016,17(1):5-21.

[108]Sinsky J,Pichlerova K,Hanes J.Tau Protein Interaction Partners and Their Roles in Alzheimer's Disease and Other Tauopathies[J].Int J Mol Sci,2021,22(17):9207.

[109]李焱.中枢胰岛素抵抗与阿尔茨海默病发病关系的认识[J].诊断学理论与实践,2009,8(03):248-251.

[110]Dos S P L,Ozela P F,de Fatima D B B M,et al.Alzheimer's Disease: A Review from the Pathophysiology to Diagnosis, New Perspectives for Pharmacological Treatment[J].Curr Med Chem,2018,25(26):3141-3159.

[111]Jessberger S,Aigner S,Clemenson G J,et al.Cdk5 regulates accurate maturation of newborn granule cells in the adult hippocampus[J].PLoS Biol,2008,6(11):e272.

[112]Giovinazzo D,Bursac B,Sbodio J I,et al.Hydrogen sulfide is neuroprotective in Alzheimer's disease by sulfhydrating GSK3β and inhibiting Tau hyperphosphorylation[J].Proc Natl Acad Sci U S A,2021,118(4):e2017225118.

[113]Dong H,Mao S,Wei J,et al.Tanshinone IIA protects PC12 cells from β-amyloid(25-35)-induced apoptosis via PI3K/Akt signaling pathway[J]. Mol Biol Rep,2012,39(6):6495-6503.

[114]Gong C X,Lidsky T,Wegiel J,et al.Phosphorylation of microtubule-associated protein tau is regulated by protein phosphatase 2A in mammalian brain. Implications for neurofibrillary degeneration in Alzheimer's disease[J].J Biol Chem,2000,275(8):5535-5544.

[115]Auroprajna P,Naik B M,Sahoo J P,et al.Association of Sympathovagal Imbalance With Cognitive Impairment in Type 2 Diabetes in Adults[J].Can J Diabetes,2018,42(1):44-50.

[116]Arnold S E,Arvanitakis Z,Macauley-Rambach S L,et al.Brain insulin resistance in type 2 diabetes and Alzheimer disease: concepts and conundrums[J].Nat Rev Neurol,2018,14(3):168-181.

[117]Yamamoto M,Guo D H,Hernandez C M,et al.Endothelial Adora2a Activation Promotes Blood-Brain Barrier Breakdown and Cognitive Impairment in Mice with Diet-Induced Insulin Resistance[J].J Neurosci,2019,39(21):4179-4192.

[118]Steen E,Terry B M,Rivera E J,et al.Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer's disease-is this type 3 diabetes?[J].J Alzheimers Dis,2005,7(1):63-80.

[119]Więckowska-Gacek A,Mietelska-Porowska A,Wydrych M,et al.Western diet as a trigger of Alzheimer's disease:From metabolic syndrome and systemic inflammation to neuroinflammation and neurodegeneration[J].Ageing Res Rev,2021,70:101397.

中图分类号:

 R96    

开放日期:

 2024-05-22    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式