- 无标题文档
查看论文信息

中文题名:

 5-氨基吡唑参与不对称催化反应的研究    

姓名:

 童淑君    

学号:

 20222107017    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0856    

学科名称:

 工学 - 材料与化工    

学生类型:

 硕士    

学位:

 工学硕士    

学位类型:

 专业学位    

学位年度:

 2025    

学校:

 石河子大学    

院系:

 化学化工学院    

专业:

 材料与化工    

研究方向:

 不对称催化    

第一导师姓名:

 齐誉    

第一导师单位:

 石河子大学    

第二导师姓名:

 李师伍    

完成日期:

 2025-06-10    

答辩日期:

 2025-05-18    

外文题名:

 5-aminopyrazole in asymmetric catalytic reactions    

中文关键词:

 不对称催化 ; Friedel-Crafts反应 ; 5-氨基吡唑 ; 螺环氧化吲哚 ; 轴手性     

外文关键词:

 Asymmetric Catalysis ; Friedel-Crafts Reaction ; 5-Aminopyrazoles ;   ; Spirocyclic Oxindoles ; Axial Chirality.     

中文摘要:

不对称催化已成为现代有机合成领域中手性分子高效构建的关键核心技术之一。该方法能够高效地调控反应产物的对映选择性,为合成手性药物、天然产物以及功能型光学材料提供具有价值的合成策略。5-氨基吡唑结构单元不仅在有机合成领域中扮演着关键角色,还在药理学研究中展现出了潜在的应用价值。同时,5-氨基吡唑是多种抗炎药、抗肿瘤制剂等药物的关键骨架结构。本文主要包括以下两部分研究工作:

1.采用手性Ni(II)/联吡啶N,O配体催化体系,我们实现了5-氨基吡唑与3-烯基氧化吲哚的不对称Friedel-Crafts酰基化反应。为得到最佳的反应条件,本课题对金属镍、手性配体、溶剂和温度以及配体和金属的用量进行一系列考察后,确定了反应的最优条件:即10 mol%的Ni(OTf)2作为金属催化剂,11 mol%的L12作为手性配体,DCM作为溶剂,在室温下进行反应。在最佳条件下,我们以89-98%的产率和56-99% ee的对映选择性合成了36种手性螺环氧化吲哚化合物。此外,通过克级放大实验和衍生化实验,证实了该方法的实用性。

2.手性磷酸作为催化剂实现了5-氨基吡唑和偶氮萘衍生物的不对称芳基化反应。本课题对催化剂的类型、溶剂的种类、反应的温度和催化剂的用量进行一系列考察后,确定了反应的最优条件:即15 mol%的C3作为催化剂,DCM作为溶剂,在0 ℃下进行反应。在最优条件下,我们以73-89%的产率和75-95% ee的对映选择性合成了30种轴手性芳基吡唑化合物。此外,通过克级放大实验和衍生化实验,验证了该策略的应用价值。

外文摘要:

Asymmetric catalysis is a key for the efficient construction of chiral molecules in the field of modern organic synthesis. This method enables precise control over the production enantioselectivity, offering a valuable synthetic strategy for chiral molecules, including chiral drugs, natural products, and functional optical materials. The 5-aminopyrazole scaffold is not only a key structural motif in organic synthesis but also exhibits promising potential in drug discovery. Notably, this core framework constitutes the essential skeleton of numerous therapeutic agents, including anti-inflammatory drugs and antitumor medications. This paper presents the following two research components:

Asymmetric Friedel-Crafts acylation of 5-aminopyrazoles with 3-alkenyloxindoles was achieved using chiral Ni(II)/bipyridine N, O ligand-catalyzed system. In order to identify the optimal reaction conditions, we systematically screened nickel sources, chiral ligands, solvents, temperatures, and metal-to-ligand ratios. The optimized conditions were determined as follows: 10 mol% Ni(OTf)₂ as the metal catalyst, 11 mol% L12 as the chiral ligand in dichloromethane (DCM) at room temperature. The optimized protocol afforded 36 structurally diverse spirooxindoles in excellent yields (89-98%) with good to outstanding enantiocontrol (56-99% ee). The synthetic utility was highlighted by successful gram-scale implementation and downstream functionalization.

A chiral phosphoric acid-catalyzed asymmetric arylation of 5-aminopyrazoles with naphthyl azodicarboxylates has been developed. Through systematic optimization of catalyst structures, solvent systems, reaction temperatures, and catalyst loadings, the optimal conditions were identified as: 15 mol% CPA C3 in dichloromethane (DCM) at 0°C. Under these conditions, a series of 30 axially chiral arylpyrazole derivatives were obtained in good to excellent yields (73-89%) with high enantioselectivity (75-95% ee). The synthetic utility of this methodology was further validated by gram-scale synthesis and subsequent derivatization experiments.

参考文献:

[1]Li F, Kan J-L, Yao B-J, et al. Synthesis of chiral covalent organic frameworks via asymmetric organocatalysis for heterogeneous asymmetric catalysis[J]. Angewandte Chemie. 2022, 134 (25): e202115044.

[2]Wang J-C, Kan X, Shang J-Y, et al. Catalytic asymmetric synthesis of chiral covalent organic frameworks from prochiral monomers for heterogeneous asymmetric catalysis[J]. Journal of the American Chemical Society. 2020, 142(40): 16915-16920.

[3]Iribarren I, Garcia M R, Trujillo C. Catalyst design within asymmetric organocatalysis[J]. Wiley Interdisciplinary Reviews: Computational Molecular Science. 2022, 12(6): e1616.

[4]Chen Z-C, Du W, Chen Y-C. New amines and activation modes in asymmetric aminocatalysis[J]. Chinese Journal of Chemistry. 2021, 39(7): 1775-1786.

[5]Carceller‐Ferrer L, Gonzalez del Campo A, Vila C, et al. Organocatalytic enantioselective aminoalkylation of 5‐aminopyrazole derivatives with cyclic imines[J]. European Journal of Organic Chemistry. 2020, 2020(48): 7450-7454.

[6]Hao Y, Xu X-P, Chen T, et al. Multicomponent approaches to 8-carboxylnaphthyl-functionalized pyrazolo [3,4-b] pyridine derivatives[J]. Organic & Biomolecular Chemistry. 2012, 10(4): 724-728.

[7]Gao Q, Tian J-H, Wen K-M, et al. Copper-Mediated C4-benzylations of 5-aminopyrazoles with 3-indoleacetic Acid[J]. The Journal of Organic Chemistry. 2023, 88(11): 6623-6632.

[8]Yen W-P, Tsai S E, Uramaru N, et al. One-Flask synthesis of pyrazolo [3,4-d] pyrimidines from 5-aminopyrazoles and mechanistic study[J]. Molecules. 2017, 22(5): 820.

[9]Estevez V, Villacampa M, Menendez J C. Multicomponent reactions for the synthesis of pyrroles[J]. Chemical Society Reviews. 2010, 39(11): 4402-4421.

[10]Gale P A. Structural and molecular recognition studies with acyclic anion receptors[J]. Accounts of Chemical Research. 2006, 39, 465-475.

[11]Gedye R N, Smith F E, Westawa K C. The rapid synthesis of organic compounds in microwave ovens[J]. Canadian Journal of Chemistry. 1988, 66(1): 17-26.

[12]Wang S-M, Folkes, A. Studies on pyrrolopyrimidines as selective inhibitors of multidrug resistance-associated protein in multidrug resistance[J]. Journal of Medicinal Chemistry. 2004, 47, 1329-1338.

[13]Fernandes E, Costa D, Toste S A, et al. In vitro scavenging activity for reactive oxygen and nitrogen species by nonsteroidal anti-inflammatory indole, pyrrole, and oxazole derivative drugs[J]. Free Radical Biology & Medicine. 2004, 37, 1895-1905.

[14]Bocheva A, Bijev A, Nankov A. Further evaluation of a series of anti-inflammatory N-pyrrolylcarboxylic acids: effects on the nociception in rats[J]. Archiv der Pharmazie. 2006, 339, 141-144.

[15]Lessigiarska I, Nankov A, Bocheva A, et al. 3DQSAR and preliminary evaluation of anti-inflammatory activity of series of N-pyrrolylcarboxylic acids[J]. IL Farmaco. 2005, 60, 209-218.

[16]Majumdar K C, Mondal S. A new strategy for the synthesis of coumarin-and quinoloneannulated pyrroles via Pd(0) mediated cross-coupling followed by Cu(I) catalyzed heteroannulation[J]. Tetrahedron Letters. 2008, 49, 2418-2420.

[17]Ushiyama S, Yamada T, Murakami Y, et al. Preclinical pharmacology profile of CS-706 a novel cyclooxygenase-2 selective inhibitor, with potent antinociceptive and anti-inflammatory effects[J]. European Journal of Pharmacology. 2008, 578, 76-82.

[18]Moon J T, Jeon J Y, Park H A, et al. Synthesis and PGE2 production inhibition of 1H-furan-2, 5-dione and 1H-pyrrole-2, 5-dione derivatives[J]. Bioorganic & Medicinal Chemistry Letters. 2010, 20, 734-737.

[19]Bubenyak M, Noszal B, Koczian K, et al. Bioisosteric hybrids of two antiinflammatory agents, rutaecarpine and piroxicam[J]. Tetrahedron Letters. 2008, 49, 5711-5713.

[20]Rudolph D A, Dvorak C A, Dvorak, L, et al. Novel tetrahydropyrido [3,2-c] pyrroles as 5-HT7 antagonists[J]. Bioorganic & Medicinal Chemistry Letters. 2011, 21, 42-44.

[21]Mai A, Massa S, Ragno R, et al. 3-(4-Aroyl-1-methyl-1H-2- pyrrolyl)-N-hydroxy-2-alkylamides as a new class of synthetic histone deacetylase inhibitors. 1. Design, synthesis, biological evaluation, and binding mode studies performed through three different docking procedures[J]. Journal of Medicinal Chemistry. 2003, 46, 512-517.

[22]Lauriary A, Bruno M, Almerico A M. Annelated pyrrolopyrimidines from amino-cyano pyrroles and BMMAs as leads for new DNA-interactive ring systems[J]. Bioorganic & Medicinal Chemistry Letters. 2005, 13, 1545-1553.

[23]Lipitor, LAB-0021-7.0, Pfizer Ireland Pharmaceuticals, 2004.

[24]Park W K C, Kennedy R M, Larsen S D, et al. Hepatoselectivity of statins: design and synthesis of 4-sulfamoyl pyrroles as HMG-CoA reductase inhibitors[J]. Bioorganic & Medicinal Chemistry Letters, 2008, 18, 1151-1156.

[25]Kang S-Y, Park E, Park W, et al. Further optimization of novel pyrrole 3-carboxamides for targeting serotonin 5-HT2A, 5-HT2C, and the serotonin transporter as a potential antidepressant[J] Bioorganic & Medicinal Chemistry. 2010, 20, 1705-1711.

[26]Goel A, Agarwal N, Singh F V, et al. Antihyperglycemic activity of 2-methyl-3,4,5-triaryl-1H-pyrroles in SLM and STZ models[J]. Biorganic & Medicinal Chemistry Letters. 2004, 14, 1089-1092.

[27]Morgan E D, Mandava N B. CRC handbook of natural pesticides, vol Ⅲ: insect growth regulators[M]. Boca Raton Florida: CRC Press Inc, 1987.

[28]Copping L, Menn J J. Biopesticides: a review of their action, application and efficacy[J]. Pest Manag Sci, 2000, 56:651-676.

[29]Seki M, Mori K. The absolute configuration of axinellamine A a pyrrole alkaloid of the marine sponge axinellasp[J]. European Journal of Organic Chemistry. 2001, (3):503-506.

[30]徐石海,曾陇海,苏镜娱. 海绵 Spongia obligue 中生物碱的分离和结构鉴定[J/OL].化学通报,1999:99087.

[31]沈寅初.农用抗生素研究开发的新进展[J]. 农药译丛. 1997, 19(增刊): 1-10.

[32]Pachlatko J P. Natural products in crop protection[J]. CHIMA International Journal for Chemistry. 1998, 52(1-2):29-29.

[33]Shekarrao K, Kaishap P P, Saddanapu V, et al. Microwave-assisted palladium mediated efficient synthesis of pyrazolo [3,4-b] pyridines, pyrazolo [3,4-b] quinolines, pyrazolo [1,5-a] pyrimidines and pyrazolo [1,5-a] quinazolines[J]. RSC Advances. 2014, 4(46): 24001-24006.

[34]Jiang B, Ye Q, Fan W, et al. Four-component strategy for selective synthesis of azepino [5,4,3-cd] indoles and pyrazolo [3,4-b] pyridines[J]. Chemical Communications. 2014, 50(46): 6108-6111.

[35]Fan L, Yao C, Shu M. Three-component synthesis of new o-hydroxyphenyl-substituted pyrazolo [3,4-b] pyridines promoted by FeCl3[J]. Heterocyclic Communications. 2016, 22(2): 63-67.

[36]Ghaedi A, Bardajee G R, Mirshokrayi A, et al. Facile, novel and efficient synthesis of new pyrazolo [3,4-b] pyridine products from condensation of pyrazole-5-amine derivatives and activated carbonyl groups[J]. RSC advances. 2015, 5(109): 89652-89658.

[37]Hill M D. A multicomponent approach to highly substituted 1H-pyrazolo [3,4-b] pyridines[J]. Synthesis. 2016, 48(14): 2201-2204.

[38]Woldegiorgis A G, Han Z, Lin X. Chiral phosphoric acid‐catalyzed enantioselective synthesis of pyrazole‐based unnatural α‐amino acid derivatives[J]. Advanced Synthesis & Catalysis. 2022, 364(2): 274-280.

[39]Vartanova A E, Levina I I, Ratmanova N K, et al. Ambident reactivity of 5-aminopyrazoles towards donor-acceptor cyclopropanes[J]. Organic & Biomolecular Chemistry. 2022, 20(39): 7795-7802.

[40]Woldegiorgis A G, Han Z, Lin X. Asymmetric [3+3] annulation to construct trifluoromethylated pyrazolo [3,4-b] pyridin-6-ones via chiral phosphoric acid and MgSO4 synergistic catalysis[J]. Organic Letters. 2022, 24(22): 4058-4063.

[41]Dong L-N, Wang Y-M, Zhang W-L, et al. Nickel supported on magnetic biochar as a highly efficient and recyclable heterogeneous catalyst for the one‐pot synthesis of spirooxindole‐dihydropyridines[J]. Applied Organometallic Chemistry. 2022, 36(5): e6667.

[42]Nie G-H, Sun J, Mou C-L, et al. Enantioselective synthesis of pyrazolo [3,4-b] pyridone derivatives with antifungal activities against phytophthora capsici and colletotrichum fructicola[J]. Organic Letters. 2022, 25(1): 134-139.

[43]Tang M-D, Wang M, Li S-Y, et al. Switchable chemoselectivity in [3+3] annulation of β, γ-unsaturated α-ketoesters and 1 H-pyrazol-5-amines by cooperative acid catalysis with Ni(II) and In(I)[J]. Organic Letters. 2024, 26(32): 6894-6899.

[44]Qiao X-X, He Y, Ma T, et al. Asymmetric aza‐friedel-crafts reaction of cyclic ketimines with 5‐aminopyrazole derivatives: expedient access to pyrazole‐based C2‐quaternary Indolin‐3‐Ones[J]. Chemistry-A European Journal. 2023, 29(20): e202203914.

[45]Li J, Duan X-Y, Ren X, et al. N-heterocyclic carbene-catalyzed [3+3] annulation of 5-aminopyrazoles with enals: enantioselective synthesis of pyrazolo [3,4-b] pyridones[J]. The Journal of Organic Chemistry. 2023, 88(23): 16621-16632.

[46]Gao X, Li C-W, Chen L, et al. Asymmetric synthesis of axially chiral arylpyrazole via an organocatalytic arylation reaction[J]. Organic Letters. 2023, 25(42): 7628-7632.

[47]Zhao S-N, Li Q, Qiao X-X, et al. asymmetric synthesis of axially chiral N, N‐1, 2‐pentatomic heterobiaryl diamines by an organocatalytic arylation reaction[J]. Chemistry-A European Journal. 2024, 30(70): e202402843.

[48]Zhu S-J, Tian X, Liu J-C, et al. Bipyridine-N,N’-dioxides catalysts: design, synthesis, and application in asymmetric synthesis of 1 H-pyrazolo [3,4-b] pyridine analogues[J]. Organic Letters. 2024, 26(17): 3487-3492.

[49]Ji X, Zhu S-J, Li Y-S, et al. Asymmetric synthesis of 1 H-pyrazolo [3,4-b] pyridine analogues catalyzed by chiral-at-metal Rh(Ⅲ) complexes[J]. Organic Chemistry Frontiers. 2024, 11(19): 5385-5389.

[50]Yamanaka M, Itoh J, Fuchibe K, et al. Chiral brønsted acid catalyzed enantioselective mannich-type reaction[J]. Journal of the American Chemical Society. 2007, 129(21): 6756-6764.

[51]Terada M, Sorimachi K. Enantioselective direct aldol reaction catalyzed by a chiral brønsted acid[J]. Journal of the American Chemical Society. 2004, 126(38), 11804-11805.

[52]Tang H-Y, Lu A-D, Zhou Z-H, et al. Chiral phosphoric acid catalyzed asymmetric friedel-crafts alkylation of indoles with simple α,β‐unsaturated aromatic ketones[J]. European Journal of Organic Chemistry. 2008, 39(29).

[53]Maynard J R J, Gallagher P, Lozano D, et al. Mechanically axially chiral catenanes and noncanonical mechanically axially chiral rotaxanes[J]. Nature chemistry. 2022, 14(9): 1038-1044.

[54]Da B-C, Xang S-H, Li S, et al. Chiral phosphoric acid catalyzed asymmetric synthesis of axially chiral compounds[J]. Chinese Journal of Chemistry. 2021, 39(7): 1787-1796.

[55]Chen Y-B, Yang Y-N, Huo X-Z, et al. Recent advances in the construction of axially chiral arylpyrroles[J]. Science China Chemistry. 2023, 66(9): 2480-2491.

[56]Li G-Q, Gao H, Keene C, et al. Organocatalytic aryl-aryl bond formation: an atroposelective [3,3]-rearrangement approach to BINAM derivatives[J]. Journal of the American Chemical Society. 2013, 135(20): 7414-7417.

[57]Mori K, Itakura T, Akiyama T. Enantiodivergent atroposelective synthesis of chiral biaryls by asymmetric transfer hydrogenation: chiral phosphoric acid catalyzed dynamic kinetic resolution[J]. Angewandte Chemie International Edition. 2016, 55(38): 11642-11646.

[58]Wang Y-B, Yu P, Zhou Z-P, et al. Rational design enantioselective synthesis and catalytic applications of axially chiral EBINOLs[J]. Nature Catalysis. 2019, 2(6): 504-513.

[59]Qi L-W, Li S-Y, Xiang S-H, et al. Asymmetric construction of atropisomeric biaryls via a redox neutral cross-coupling strategy[J]. Nature Catalysis. 2019, 2(4): 314-323.

[60]Liu W, Jiang Q-W, Yang X-Y. A versatile method for kinetic resolution of protecting-group-free BINAMs and NOBINs through chiral phosphoric acid catalyzed triazane formation[J]. Angewandte Chemie. 2020, 132(52): 23804-23808.

[61]Cai B-H, Cui Y, Zhou J, et al. Asymmetric hydrophosphinylation of alkynes: facile access to axially chiral styrene-phosphines[J]. Angewandte Chemie International Edition. 2023, 62(3): e202215820.

[62]Wei Z-K, Zhao Y, Wang T-Y, et al. Bridged biaryl atropisomers by organocatalyzed kinetic asymmetric alcoholysis[J]. Organic Letters. 2024, 26(34): 7110-7115.

[63]Xu J-W, Lin W, Zheng H-L, et al. Enantioselective synthesis of sxially chiral diaryl ethers through chiral phosphoric acid-catalyzed desymmetric acylation with azlactones[J]. ACS Catalysis. 2024, 14(9): 6667-6673.

[64]Yuan L, Cui L, Liu Y, et al. Synthesis of chiral axially diaryl aldehydes by chiral phosphoric acid catalyzed desymmetrization reaction[J]. European Journal of Organic Chemistry. 2025, 28(2): e202401038.

[65]Zhang H-H, Wang C-S, Li C, et al. Design and enantioselective construction of axially chiral naphthyl-indole skeletons[J]. Angewandte Chemie. 2017, 129(1): 122-127.

[66]Wang L,Zhong J-L, Lin X. Atroposelective phosphoric acid catalyzed three-component cascade reaction: enantioselective synthesis of axially chiral N-arylindoles[J]. Angewandte Chemie International Edition. 2019, 58(44): 15824-15828.

[67]Yuan X, Wu X-D, Peng F, et al. Organocatalytic asymmetric synthesis of arylindolyl indolin-3-ones with both axial and central chirality[J]. Chemical Communications. 2020, 56(83): 12648-12651.

[68]Lu D-L, Chen Y-H, Xang S-H, et al. Atroposelective construction of arylindoles by chiral phosphoric acid-catalyzed cross-coupling of indoles and quinones[J]. Organic letters. 2019, 21(15): 6000-6004.

[69]Chen K-W, Wang Z-S, Wu P, et al. Catalytic asymmetric synthesis of 3,3’-bisindoles bearing single axial chirality[J]. The Journal of Organic Chemistry. 2020, 85(15): 10152-10166.Yuan X,

[70]Yang J, Zhang J-W, Bao W, et al. Chiral phosphoric acid-catalyzed remote control of axial chirality at boron-carbon bond[J]. Journal of the American Chemical Society. 2021, 143(33): 12924-12929.

[71]An Q J, Xia W, Ding W-Y, et al. Nitrosobenzene‐enabled chiral phosphoric acid catalyzed enantioselective construction of atropisomeric N‐arylbenzimidazoles[J]. Angewandte Chemie. 2021, 133(47): 25092-25097.

[72]Wang Z-S, Zhu L-J, Li C-T, et al. Synthesis of axially chiral N‐arylindoles via atroposelective cyclization of ynamides catalyzed by chiral brønsted acids[J]. Angewandte Chemie International Edition. 2022, 61(20): e202201436.

[73]Wang Y-C, Zhou X, Shan W-Y, et al. Construction of axially chiral indoles by cycloaddition-isomerization via atroposelective phosphoric acid and silver sequential catalysis[J]. ACS Catalysis 2022, 12(13): 8094-8103.

[74]Chen J, Shi J, Yin C, et al. Synthesis of axially chiral N-aryl benzimidazoles via chiral phosphoric acid catalyzed enantioselective oxidative aromatization[J]. New Journal of Chemistry. 2022, 46(14): 6398-6402.

[75]Pu L-Y, Zhang Y-J, Liu W, et al. Chiral phosphoric acid-catalyzed dual-ring formation for enantioselective construction of N-N axially chiral 3,3’-bisquinazolinones[J]. Chemical Communications. 2022, 58(94): 13131-13134.

[76]Song X-X, Fan Y-J, Zhu Z-M, et al. Chiral phosphoric acid-catalyzed asymmetric arylation of indolizines: atroposelective access to axially chiral 3-arylindolizines[J]. Organic Letters. 2022, 24(12): 2315-2320.

[77]Wang L-Y, Miao J, Zhao Y, et al. Chiral acid-catalyzed atroposelective indolization enables access to 1,1’-indole-pyrroles and bisindoles bearing a chiral N-N axis[J]. Organic Letters. 2023, 25(9): 1553-1557.

[78]Wei Y, Sun F, Li G, et al. Enantioselective synthesis of N-N amide-pyrrole atropisomers via paal-knorr reaction[J]. Organic Letters. 2023, 26(12): 2343-2348.

[79]Woldegiorgis A G, Gu H, Lin X. Atroposelective synthesis of axially chiral styrenes connecting an axially chiral naphthyl-indole moiety using chiral phosphoric acid catalysis[J]. Organic Letters. 2023, 25(12): 2068-2072.

[80]Yu L-B, Liu J-J, Xiang S-Y, et al. Silver-Catalyzed direct nucleophilic cyclization: enantioselective de novo synthesis of C-C axially chiral 2-arylindoles[J]. Organic Letters. 2023, 25(3): 522-527.

[81]Bao W, Chen Y-H, Liu Y-W, et al. Atroposelective synthesis of 2-arylindoles via chiral phosphoric acid-catalyzed direct amination of indoles[J]. Chinese Journal of Chemistry. 2024, 42(7): 731-735.

[82]Luo W-W, Guo H, Qiu X, et al. Organocatalytic atroposelective construction of pentatomic heterobiaryl diamines through arylation of 5-aminoisoxazoles with azonaphthalenes[J]. Organic Letters. 2024, 26(13): 2564-2568.

[83]Liu J-M, Wei X-F, Wang Y, et al. Asymmetric synthesis of atropisomeric arylpyrazoles via direct arylation of 5-aminopyrazoles with naphthoquinones[J]. Organic & Biomolecular Chemistry. 2024, 22(21): 4254-4263.

[84]Wang H, Peng X-Q, Yang Y, et al. Construction of axially chiral 4-aminoquinolines by cycloaddition and central-to-axial chirality conversion[J]. Organic Letters. 2024, 26(46): 9984-9989.

[85]Lin W, Shao Y-B, Hao Z, et al. Enantioselective synthesis of “NO2 NH” hydrogen bond-stabilized C-N axially chiral diarylamines[J]. ACS Catalysis. 2024, 14(2): 1183-1192.

[86]Zeng X-P, Cao Z-Y, Wang Y-H, et al. Catalytic enantioselective desymmetrization reactions to all-carbon quaternary stereocenters[J]. Chemical Reviews, 2016, 116, 7330-7396.

[87]Dieckmann A, Breugsz M, Houk K N. Zwitterions and unobserved intermediates in organocatalytic diels-alder reactions of linear and cross-conjugated trienamines[J]. Journal of the American Chemical Society. 2013, 135, 3237-3242.

[88]Arai T, Yamamoto Y, Awata A, et al. Catalytic asymmetric synthesis of mixed 3,3’-bisindoles and their evaluation as wnt signaling inhibitors[J]. Angewandte Chemie International Edition. 2013, 52, 2486-2490.

[89]Li N-K, Sun B-B, Chen J-B, et al. Box-copper catalyzed asymmetric inverse-electron-demand oxa-hetero-diels-alder reaction for efficient synthesis of spiro pyranyl-oxindole derivatives[J]. Organic Chemistry Frontiers. 2021, 8, 2009-2018.

[90]Zhong F, Han X, Wang Y, et al. Highly enantioselective [3+2] annulation of morita-baylis-hillman adducts mediated by L-threonine-derived phosphines: synthesis of 3-spirocyclopentene-2-oxindoles having two contiguous quaternary centers[J]. Angewandte Chemie Internaational Edition. 2011, 50, 7837-7841.

[91]Zhao H-W, Li B, Tian T, et al. Highly enantioselective synthesis of chiral pyranonaphthoquinone‐fused spirooxindoles through organocatalytic three‐component cascade reactions[J]. European Journal of Organic Chemistry. 2015, 2015(15): 3320-3326.

[92]Huang X-F, Liu Z-M, Geng Z-C, et al. Enantioselective construction of multifunctionalized spirocyclohexaneoxindoles through organocatalytic michael-aldol cyclization of isatin derived alkenes with linear dialdehydes[J]. Organic & Biomolecular Chemistry. 2012, 10, 8794-8799.

[93]Ren Y-Z, Lu S-H, He L, et al. Catalytic asymmetric decarboxylative michael addition to construct an all-carbon quaternary center with 3-alkenyl-oxindoles[J]. Organic Letters. 2022, 24, 2585-2589.

[94]Zhang C, Hooper J F, Lupton D W. N-heterocyclic carbene catalysis via the α,β-unsaturated acyl azolium[J]. ACS Catalysis. 2017, 7(4): 2583-2596.

[95]Lu S-H, Zhao Z-F, Ren Y-Z, et al. Direct catalytic asymmetric vinylogous michael addition to construct an all-carbon quaternary center with 3-alkenyl-oxindole[J]. Organic Chemistry Frontiers. 2022, 9, 3446-3451.

[96]Zhang Z-X, Zhai T-Y, Ye L-W. Synthesis of axially chiral compounds through catalytic asymmetric reactions of alkynes[J]. Chem Catalysis. 2021, 1(7): 1378-1412.

[97]Carmona J A, Rodríguez-Franco C, Fernández R, et al. Atroposelective transformation of axially chiral (hetero) biaryls. from desymmetrization to modern resolution strategies[J]. Chemical Society Reviews. 2021, 50(5): 2968-2983.

[98]Wan S-P, Lu H-Y, Li M, et al. Advances in circularly polarized luminescent materials based on axially chiral compounds[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews. 2022, 50: 100500.

[99]Zhang D-W, Li M, Chen C-F. Axially chiral materials exhibiting blue-emissive ultralong organic phosphorescence and intense circularly polarized luminescence[J]. Science China Materials. 2023, 66(10): 4030-4036.

[100]Noyori R, Takaya H. BINAP: an efficient chiral element for asymmetric catalysis[J]. Accounts of Chemical Research. 1990, 23(10): 345-350.

[101]Wang Y-B, Yu P, Zhou Z-P, et al. Rational design, enantioselective synthesis and catalytic applications of axially chiral EBINOLs[J]. Nature Catalysis. 2019, 2(6): 504-513.

[102]Da B-C, Xiang S-H, Li S, et al Chiral Phosphoric acid catalyzed asymmetric synthesis of axially chiral compounds[J]. Chinese Journal of Chemistry. 2021, 39(7): 1787-1796.

[103]Vicentini C B, Romagnoli C, Andreotti E, et al. Synthetic pyrazole derivatives as growth inhibitors of some phytopathogenic fungi[J]. Journal of Agricultural and Food Chemistry. 2007, 55, 10331-10338.

[104]Gutnov A, Heller B, Fischer B, et al. Cobalt(I)-catalyzed asymmetric [2+2+2] cycloaddition of alkynesand nitriles: synthesis of enantiomerically enriched atropoisomers of 2-arylpyridines[J]. Angewandte Chemie International Edition. 2004, 43, 3795-3797.

[105]Pettinari C, Tabacaru A, Galli S. Coordination polymers and metal-organic frameworks based on poly (pyrazole)-containing ligands[J]. Coordination Chemistry Reviews. 2016, 307, 1-31.

[106]Qi L-W, Mao J-H, Zhang J, et al. Organocatalytic asymmetric arylation of indoles enabled by azo groups[J]. Nature Chemistry. 2018, 10, 58-64.

[107]Cen S, Huang S, Lian D, et al. Conformational enantiodiscrimination for asymmetric construction of atropisomers[J]. Nature. Communications. 2022, 13, 4735.

[108]Yan S, Xia W, Li S, et al. Michael reaction inspired atroposelective construction of axially chiral biaryls[J]. Journal of the American Chemical Society. 2020, 142, 7322-7327.

中图分类号:

 O62    

开放日期:

 2025-06-13    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式