| 中文题名: |
卤代吡唑并[1,5-a]嘧啶的制备及其衍生化研究
|
| 姓名: |
桑田
|
| 学号: |
20202115001
|
| 保密级别: |
公开
|
| 论文语种: |
chi
|
| 学科代码: |
086000
|
| 学科名称: |
工学 - 生物与医药
|
| 学生类型: |
硕士
|
| 学位: |
工学硕士
|
| 学位类型: |
专业学位
|
| 学位年度: |
2023
|
| 学校: |
石河子大学
|
| 院系: |
药学院
|
| 专业: |
生物与医药
|
| 研究方向: |
绿色有机合成反应研究
|
| 第一导师姓名: |
刘岩
|
| 第一导师单位: |
石河子大学
|
| 完成日期: |
2023-05-07
|
| 答辩日期: |
2023-05-08
|
| 外文题名: |
Preparation and Derivatization of Halopyrazolo[1,5-a]Pyrimidine
|
| 中文关键词: |
吡唑并[1 ; 5-a]嘧啶 ; 区域选择性 ; C-H卤化 ; C-S/Se偶联
|
| 外文关键词: |
Pyrazolo[1 ; 5-a]pyrimidine ; Regional selectivity ; C-H halogenation ; C-S/Se coupling
|
| 中文摘要: |
︿
吡唑并[1,5-a]嘧啶衍生物的合成在药理活性和生物制品方面具有重要作用。药物例如抗焦虑药Ocinaplon,安眠药Zaleplon和Inplon,杀菌剂吡唑磷,生物制品例如KDR激酶抑制剂,融合三环抑制剂前体,由罗氏公司最新开发的一种血清素5-HT6受体,均含有吡唑并[1,5-a]嘧啶这种母核结构。有关吡唑并[1,5-a]嘧啶的构建报道较少,虽然取得了一些成果,但存在反应条件苛刻,合成方法繁琐,其卤化反应的毒性较大,原子利用率较低,不符合绿色化学的要求;在关于C-S偶联的相关报道当中,存在有产物的选择性不高,生成的底物较单一的问题。针对以上问题,本研究以吡唑并[1,5-a]嘧啶为骨架,通过一种反应高效,操作简便的方法合成一系列带有不同取代基的吡唑并[1,5-a]嘧啶环;使用NIS做碘源,对其进行选择性单/双碘化反应,反应条件绿色无污染;其次研究其C-S/Se的偶联反应,能够选择性的进行单硫/硒醚的取代,以水为溶剂且反应时间较短。本论文的工作内容具体如下:
第一部分:I2催化β-酮腈与1H -吡唑-5-胺的环化反应。本章使用一种简单高效的方法,即单质碘做催化剂,1H-吡唑-5-胺和β-酮基腈为底物,合成吡唑并[1,5-a]嘧啶,在底物适用性研究中,以良好至优秀产率合成了一系列的吡唑并[1,5-a]嘧啶。该方法具有反应条件简单温和、底物范围广等优点,并可以进行克级规模放大反应。
第二部分:吡唑并[1,5-a]嘧啶与NXS的卤化反应研究。本章开发了一种用于吡唑并[1,5-a]嘧啶的卤化的方法,使用NXS (X=I, Br, Cl)作为卤源,反应过程绿色高效,首先通过改变吡唑并[1,5-a]嘧啶与NIS的比例和溶剂的种类,对吡唑并[1,5-a]嘧啶进行选择性的单碘化和二碘化取代,选择性较好,且能达到良好至优秀的产率;其次,在吡唑并[1,5-a]嘧啶与NBS和NCS的反应中,以中等至良好的产率,生成了一系列的二溴代产物和二氯代产物。该方法具有广泛的底物、良好的官能团耐受性和能够克级合成等特点。这项工作为构建结构多样的卤代吡唑并[1,5-a]嘧啶衍生物提供了一种有效的方法。
第三部分:吡唑并[1,5-a]嘧啶选择性C-S(Se)偶联反应研究。本章报告了一种简便的合成单芳基硫醚吡唑并[1,5-a]嘧啶的方法,使用单碘代吡唑并[1,5-a]嘧啶作为底物,磺酰肼作为硫源,使用水作为溶剂,在相转移催化剂PEG-400的催化下,以较短的时间,合成一系列单取代的芳基硫醚,具有产率良好,选择性高的特点。此外,该条件适用于C-Se的偶联反应,用于合成芳基硒取代的吡唑并[1,5-a]嘧啶。
本研究为吡唑并[1,5-a]嘧啶及其衍生物的构建提供了一种高效便捷的方法,其温和的反应条件,优良的产率,较高的选择性,大大拓宽了吡唑并[1,5-a]嘧啶类化合物的应用范围。
﹀
|
| 外文摘要: |
︿
The synthesis of pyrazolo[1,5-a]pyrimidine derivatives plays an important role in pharmacological activities and biological products. Drugs such as anti-anxiety drugs Ocinaplon, sleeping drugs Zaleplon and Inplon, fungicides Pyrazophos, biological products such as KDR kinase inhibitors, precursors of fused tricyclic inhibitors, and a serotonin 5-HT6 receptor newly developed by Roche, all contain the parent structure of pyrazolo[1,5-a]pyrimidine.
There are few reports on the construction of pyrazolo[1,5-a]pyrimidine. Although some achievements have been made, the reaction conditions and synthesis methods are harsh, the toxicity of the halogenation reaction is high, and the utilization rate of atoms is low, which does not meet the requirements of green chemistry. There are few reports on the C-S coupling of pyrazolo[1,5-a]pyrimidine. Among the existing synthesis methods, the product selectivity is not high and the substrate is relatively single. In order to solve the above problems, a series of pyrazolo[1,5-a]pyrimidine rings with different substituents were synthesized by using a highly efficient and easy to operate method with pyrazolo[1,5-a]pyrimidine as the backbone. NIS was used as iodine source to carry out selective single/double iodination reaction, and the reaction conditions were green and pollution-free. Secondly, the coupling reaction of C-S/Se is studied, which can selectively replace monosulfur/selenoether, water as solvent, and the reaction time is short. The work content of this thesis is as follows:
Part one: I2-catalyzed cyclization of β-ketonitrile with 1H-pyrazol-5-amine. In this thesis, a simple and efficient method was used to synthesize pyrazolo[1,5-a]pyrimidine using I2 as catalyst, 1H-pyrazo-5-amine and β-ketonitrile as substrates. In the substrate suitability study, a series of pyrazolo[1,5-a]pyrimidine were synthesized in good to excellent yields. This method has the advantages of simple and mild reaction conditions, a wide range of substrates, and the ability to amplify the reaction on a gram scale.
Part two: Halogenation of pyrazolo[1,5-a]Pyrimidines with NXS. This chapter developed a method for the halogenation of pyrazolo[1,5-a]pyrimidine, using NXS (X=I, Br, Cl) as the halogenating agent, the reaction process is green and efficient. Firstly, changing the ratio of pyrazolo[1,5-a]pyrimidines to NIS and the type of solvent, selective monoiodination and diiodination of pyrazolo[1,5-a]pyrimidine were performed with good selectivity and good to excellent yields. Secondly, in the reaction of pyrazolo[1,5-a]pyrimidine with NBS and NCS, a series of dibrominated and dichlorinated products were formed in moderate to good yields. This method is characterized by a wide range of substrates, good functional group tolerance, and the ability to synthesize at gram level. This work provides an efficient method for the construction of structurally diverse halo pyrazolo[1,5-a]pyrimidine derivatives.
Part three: Selective C-S(Se) coupling of pyrazolo[1,5-a]pyrimidine. This chapter reports a simple method for the synthesis of monoaryl thioether pyrazolo[1,5-a]pyrimidine, using monoiodo pyrazolo[1,5-a]pyrimidine as the substrate, sulfonyl hydrazide as the sulfur source, and water as the solvent. Under the catalysis of phase transfer catalyst PEG-400, a series of monosubstituted aryl thioethers are synthesized in a short time with good yield. Characteristic of high selectivity. Furthermore, the conditions are suitable for the coupling reaction of C-Se for the synthesis of arylse-substituted pyrazolo[1,5-a]pyrimidine.
This research provides an efficient and convenient method for the construction of pyrazolo[1,5-a]pyrimidine and its derivatives. Its mild reaction conditions, excellent yield and high selectivity greatly broaden the applied range of pyrazolo[1,5-a]pyrimidine compounds.
﹀
|
| 参考文献: |
︿
[1] Moustafa, M. S. Nour-Eldeen, A. M. Al-Mousawi, S. M. El-Hameed, A. A. Magdy, M. Sadek, K. U. Regioselectivity in the reaction of 5-amino-3-anilino-1H-pyrazole-4-carbonitrile with cinnamonitriles and enaminones: Synthesis of functionally substituted pyrazolo[1,5-a]pyrimidine derivatives[J]. Green Processing and Synthesis 2022, 11, 116-128. [2] Zhao, M. Ren, H. Chang, J. Zhang, D. Yang, Y. Yong, H. Qi, C. Zhang, H. Design and synthesis of novel pyrazolo[1,5-a]pyrimidine deriva tives bearing nitrogen mustard moiety and evaluation of their antitumor activity in vitro and in vivo[J]. European Journal of Medicinal Chemistry, 2016, 119, 183-196. [3] Tigreros, A. Rosero, H. A. Castillo, J. C. Portilla J. Integrated pyrazolo[1,5-a]pyrimidine–hemicyanine system as a colorimetric and fluorometric chemosensor for cyanide recognition in water[J]. Talanta, 2019, 96, 395-401. [4] Castillo, J. C. Tigreros, A. Portilla, J. 3-Formylpyrazolo[1,5-a]pyrimidines as key intermediates for the preparation of functional fluorophores[J]. The Journal of Organic Chemistry, 2018, 83, 10887-10897. [5] Li, G. Wang, Y. Li, L. Ren, Y. Deng, X. Liu, J. Wang, W. Luo, M. Liu, S. Chen, J. Design, synthesis, and bioevaluation of pyrazolo [1,5-a] pyrimidine derivatives as tubulin polymerization inhibitors targeting the colchicine binding site with potent anticancer activities[J]. European Journal of Medicinal Chemistry 2020, 202, 112519. [6] Liu, Y. Laufer, R. Patel, N. K. Ng, G. Sampson, P. B. Li, S. W. Lang, Y. Feher, M. Brokx, R. Beletskaya, I. Hodgson, R. Plotnikova, O. Awrey, D. E. Qiu, W. Chirgadze, N. Y. Mason, J. M. Wei, X. Lin, D. C. C. Che, Y. Kiarash, R. Fletcher, G. C. Mak, T. W. Bray, M. R. Pauls, H. W. Discovery of Pyrazolo[1,5-a]pyrimidine TTK Inhibitors: CFI-402257 is a Potent, Selective, Bioavailable Anticancer Agent[J]. ACS Medicinal Chemistry Letters, 2016, 7, 671-675. [7] Carvalho, D. Taylor, K. R. Olaciregui, N. G. Molinari, V. Clarke, M. Mackay, A. Ruddle, R. Henley, A. Valenti, M. Hayes, A. Brandon, A. D. H. Eccles, S. A. Raynaud, F. Boudhar, A. Monje, M. Popov, S. Moore, A. S. Mora, J. Cruz, O. Vinci, M. Brennan, P. E. Bullock, A. N. Carcaboso, A. M. Jones, C. ALK2 inhibitors display beneficial effects in preclinical models of ACVR1 mutant diffuse intrinsic pontine glioma[J]. Communications Biology 2019, 2, 156. [8] Al-Adiwish, W. M. Tahir, M. I. M. Adnalizawati, A. S.-N. Hashim, S. F. Ibrahim, N. Yaacob, W. A. Synthesis, antibacterial activity and cytotoxicity of new fused pyrazolo[1,5-a]pyrimidine and pyrazolo[5,1-c][1,2,4]triazine derivatives from new 5-aminopyrazoles[J]. European Journal of Medicinal Chemistry, 2013, 64, 464-476. [9] Ammar, Y. A. Thabet, H. K. Aly, M. M. Mohamed, Y. A. Ismail, M. A. Salem, M. A. Cyanothioacetanilide intermediates in heterocyclic synthesis, Part 1: Synthesis and biological evaluation of some novel thiazole, thiophene, pyrazole, and pyrazolo[1,5-a] pyrimidine derivatives[J]. Phosphorus, Sulfur, Silicon, 2010, 185, 743–753. [10] Elnagdi, M. H. Elmoghayar, M. R. H. Elgemeie, G. E. H. Chemistry of Pyrazolopyrimidines[J]. Advances in Heterocyclic Chemistry, 1987, 41, 319-376. [11] Sanna, E. Busonero, F. Talani, G. Carta, M. Massa, F. Peis, M. Maciocco, E. Biggio, G. Comparison of the effects of zaleplon, zolpidem, and triazolam at various GABAA receptor subtypes[J]. European Journal of Pharmacology. 2002, 451, 103–110. [12] Martin, M. P. Olesen, S. H. Georg, G. I. Schonbrunn, E. Cyclin-Dependent Kinase Inhibitor Dinaciclib Interacts with the Acetyl-Lysine Recognition Site of Bromodomains[J]. ACS Chemical Biology. 2013, 8, 2360–2365. [13] Castillo-Sánchez, J. Aguilera-del Real, A. Rodriguez-Sánchez, M. Valverde-García, A. Residue Levels, Decline Curves, and Plantation Distribution of Procymidone in Green Beans Grown in Greenhouse[J]. Journal of Agricultural and Food Chemistry 2000, 48, 2991-2994. [14] Walsh, J. K. Moscovitch, A. Burke, J. Farber, R. Roth, T. Efficacy and tolerability of indiplon in older adults with primary insomnia[J]. Sleep Medicine. 2007, 8, 753–759. [15] Vinkers, C. H. Olivier, B. Hanania, T. Min, W. Schreiber, R. Hopkins, S. C. Campbell, U. Paterson, N. Discriminative stimulus properties of GABAA receptor positive allosteric modulators TPA023, ocinaplon and NG2-73 in rats trained to discriminate chlordiazepoxide or zolpidem[J]. European Journal of Pharmacology. 2011, 668, 190–193. [16] Mukaiyama, H. Nishimura, T. Shiohara, H. Kobayashi, S. Komatsu, Y. Kukuchi, S. Tsuji, E. Kamada, N. Ohnota, H. Kusama, H. Discovery of novel 2-Anilinopyrazolo[1,5-a]pyrimidine derivatives as c-Src kinase inhibitors for the treatment of acute ischemic stroke[J]. Chemical & Pharmaceutical Bulletin, 2007, 55, 881-889. [17] Popovici-Muller, J. Shipps Jr. G.W. Rosner, K.E. Deng, Y. Wang, T. Curran, P.J. Brown, M.A. Siddiqui, M.A. Cooper, A.B. Duca, J. Cable, M. Girijavallabhan, V. Pyrazolo[1,5-a]pyrimidine-based inhibitors of HCV polymerase[J]. Bioorganic & Medicinal Chemistry Letters, 2009, 19, 6331-6336. [18] Xu, J. Liu, H. Li, G. He, Y. Ding, R. Wang, X. Feng, M. Zhang, S. Chen, Y. Li, S. Zhao, M. Qi, C. Dang, Y. Synthesis and biological evaluation of novel F-18 labeled pyrazolo[1,5-a]pyrimidine derivatives: Potential PET imaging agents for tumor detection[J]. Bioorganic & Medicinal Chemistry Letters, 2011, 21, 4736-4741. [19] Ding, R. He, Y. Xu, J. Liu, H. Wang, X. Feng, M. Qi, C. Zhang, J. Synthesis and biological evaluation of pyrazolo[1,5-a]pyrimidine-containing 99mTc Nitrido Radiopharmaceuticals as imaging agents for Tumors[J]. Molecules, 2010, 15, 8723-8733. [20] Shiota, T. Yamamori, T. Sakai, K. Kiyokawa, M. Honma, T. Ogawa, M. Hayashi, K. Ishizuka, N. Matsumura, K. Hara, M. Fujimoto, M. Kawabata, T. Nakajima, S. Synthesis and structure-activity relationship of a new series of potent angiotensin II receptor antagonists: Pyrazolo[1,5-a]pyrimidine derivatives[J]. Chemical & Pharmaceutical Bulletin, 1999, 47, 928-38. [21] Davidson, J. D. Feigelson, P. The inhibition of adenosine deaminase by 8-azaguanine in vitro[J]. Journal of Biological Chemistry. 1956, 223, 65–73. [22] Kaswan, P. Pericherla, K. Purohit, D. Kumar, A. Synthesis of 5,7-diarylpyrazolo[1,5-a]pyrimidines via KOH mediated tandem reaction of 1H-pyrazol-3-amines and chalcones[J]. Tetrahedron Letters 2015, 56, 549-553. [23] Saikia, P. Gogoi, S. Boruah, R. C. Carbon–Carbon Bond Cleavage Reaction: Synthesis of Multisubstituted Pyrazolo[1,5-a]pyrimidines[J]. The Journal of Organic Chemistry 2015, 80, 6885-6889. [24] Mukta, S. Rajib, S. Koushik, M. Subrata, S. Alakananda, H. Brønsted Acidic Ionic Liquid‐Catalyzed Regioselective Synthesis of Pyrazolopyrimidines and Their Photophysical Properties[J]. Chemistry Select 2018, 3, 1404. [25] Liang, X. Cui T. M. Ying G. O. Jia Q. D. Zhan H. Z. Synthesis of pyrimidine derivatives via multicomponent reaction catalyzed by ferric chloride[J]. Applied Organometallic Chemistry 2020, 34:e, 5921. [26] Qi, J. Zhang, F. Mi, Y. Fu, Y. Xu, W. Zhang, D. Wu, Y. Du, X. Jia, Q. Wang, K. Zhang, H. Design, synthesis and biological activity of pyrazolo[1,5-a]pyrimidin-7(4H)-ones as novel Kv7/KCNQ potassium channel activators[J]. European Journal of Medicinal Chemistry 2011, 46, 934-943. [27] Jun, S. Jiang K. Q. Bo, J. Wen J. H. Cheng, G. Shu J. T. I2-Catalyzed Multicomponent Reactions for Accessing Densely Functionalized Pyrazolo [1,5-a] pyrimidines and Their Disulphenylated Derivatives[J]. The Journal of Organic Chemistry 2016, 81, 3321-3328. [28] Hassan, A. S. Mady, M. F. Awad, H. M. Hafez, T. S. Synthesis and antitumor activity of some new pyrazolo[1,5-a]pyrimidines[J]. Chinese Chemical Letters 2017, 28, 388-393. [29] Badr, J. Hassan, A. Gérald, G. Mohamed, A. Mohamed, A. An Efficient Synthesis of New 7-Trifluoromethyl-2,5-disubstituted Pyrazolo[1,5-a] pyrimidines[J]. Synthesis 2018, 50, 1675-1686. [30] Abbas-Temirek, H. Abo-Bakr, A. Reactions with heterocyclic amidines: Synthesis of several new pyrazolo[1,5-a]pyrimidines and pyrazolo[1,5-a][1,3,5]triazines[J]. Chemistry - A European Journal 2016, 7, 107-114. [31] Zhang, J. Peng, J. F. Bai, Y. B. Wang, P. Wang, T. Gao, J. M. Zhang, Z. T. Synthesis of pyrazolo[1,5-a]pyrimidine derivatives and their antifungal activities against phytopathogenic fungi in vitro[J]. Molecular Diversity 2016, 20, 887-896. [32] Xu, Y. Brenning, B. G. Kultgen, S. G. Foulks, J. M. Cli, A. Lai, S. Chan, A. Merx, S. McCullar, M. V. Kanner, S. B. Ho, K. Synthesis and biological evaluation of pyrazolo[1,5-a]pyrimidine compounds as potent and selective Pim-1 inhibitors[J]. ACS Medicinal Chemistry Letters. 2015, 6, 63–67. [33] Gommermann, N. Buehlmayer, P. Matt, A. V. Breitenstein, W. Masuya, K. Pirard, B. Furet, P. Cowan-Jacob, S. W. Weckbecker, G. New pyrazolo[1,5-a]pyrimidines as orally active inhibitors of Lck[J]. Bioorganic & Medicinal Chemistry Letters 2010, 20, 3628–3631. [34] Labroli, M. Paruch, K. Dwyer, M. P. Alvarez, C. Keertikar, K. Poker, C. Rossman, R. Duca, J. S. Fischmann, T. O. Madison, V. Parry, D. Davis, N. Seghezzi, W. Wiswell, D. Guzi, T. J. Discovery of pyrazolo[1,5-a]pyrimidine-based CHK1 inhibitors: A template-based approach—Part 2[J]. Bioorganic & Medicinal Chemistry Letters. 2011, 21, 471–474. [35] Dwyer, M. P. Keertikar, K. Paruch, K. Alvarez, C. Labroli, M. Poker, C. Fischmann, T. O. Mayer-Ezell, R. Bond, R. Wang, Y. Azevedo, R. Guzi, T. J. Discovery of pyrazolo[1,5-a]pyrimidine-based Pim inhibitors: A template-based approach[J]. Bioorganic & Medicinal Chemistry Letters. 2013, 23, 6178–6182. [36] El-Enany, M. M. Kamel, M. M. Khalil, O. M. El-Nassan, H. B. Synthesis and anti-tumor activity of novel pyrazolo[1,5-a]pyrimidine derivatives[J]. European Journal of Chemistry. 2011, 2, 331–336. [37] Li, G. Zhang, Z. T. Dai, L. Y. Du, Y. L. & Xue, D. Synthesis of Novel Disubstituted Pyrazolo[1,5-a]pyrimidines, Imidazo[1,2-a]pyrimidines, and Pyrimido[1,2-a]benzimidazoles Containing Thioether and Aryl Moieties[J]. Helvetica Chimica Acta, 2012, 95, 989-997. [38] 1 Ivanov, S. M. Mironovich, L. M. Rodinovskaya, L. A. & Shestopalov, A. M. Synthesis of new pyrido[2′,3′:3,4]pyrazolo[5,1-c]-[1,2,4]triazin-4(6H)-one derivatives[J]. Russian Chemical Bulletin, 2017, 66, 1126-1130. [39] Hossein nia, R. Mamaghani, M. Shirini, F. & Tabatabaeian, K. A Convenient One-Pot Three-Component Approach for Regioselective Synthesis of Novel Substituted Pyrazolo[1,5-a]pyrimidines Using Fe+3-Montmorillonite as Efficient Catalyst[J]. Journal of Heterocyclic Chemistry, 2014, 51, 363-367. [40] Helal, M. H. Elgemeie, G. H. & Masoud, D. M. Preparation and characterisation of novel methylsulfanylpyrazolopyrimidines as heterocyclic dyes from ketene dithioacetals[J]. Pigment & Resin Technology, 2007, 36, 306-311. [41] Jiang, J.-K. Huang, X. Shamim, K. Patel, P. R. Lee, A. Wang, A. Q. Nguyen, K. Tawa, G. Cuny, G. D. Yu, P. B. Zheng, W. Xu, X. Sanderson, P. Huang, W. Discovery of 3-(4-sulfamoylnaphthyl)pyrazolo[1,5-a]pyrimidines as potent and selective ALK2 inhibitors[J]. Bioorganic & Medicinal Chemistry Letters 2018, 28, 3356-3362. [42] Karcı, F. Demirçalı, A. Synthesis of disazo pyrazolo[1,5-a]pyrimidines[J]. Dyes and Pigments 2007, 74, 288-297. [43] Hussein, A. M. Synthesis of some new purine-related compounds: Regioselective one-pot synthesis of new tetrazolo[1,5-a]pyrimidine, pyrazolo[1,5-a]pyrimidine and pyrimido[1,6-a]pyrimidine derivatives[J]. Journal of Saudi Chemical Society 2010, 14, 61-68. [44] Bondock, S. Tarhoni, A. E. G. Fadda, A. A. Regioselective Synthesis of Some New Pyrazolo[1,5-a]pyrimidines, Pyrazolo[1,5-a]quinazoline and Pyrimido[4′,5′:3,4]pyrazolo[1,5-a] pyrimidines Containing Thiazole Moiety[J]. Journal of Heterocyclic Chemistry 2015, 52, 1792-1799. [45] Prasada Rao, D. E. David Raju, M. Ravi Kumar Reddy, N. Rajendiran, C. Sai Praneeth, M. Tej, M. B. Basaveswara Rao, M. V. Kapavarapu, R. Pal, M. A Sonochemical Access to 5-Aryl Substituted Pyrazolo[1,5-a]Pyrimidines as Potential Inhibitors of TNF-α[J]. Polycyclic Aromatic Compounds 2022, 1-18. [46] Danagulyan, G. G. Panosyan, G. A. Boyakhchyan, A. P. Synthesis of N-Alkylated Derivatives of Pyrazolo[1,5-a]pyrimidine and Their Reaction with Methylamine[J]. Chemistry of Heterocyclic Compounds 2002, 38, 581-585. [47] Khalil, M. A. Raslan, M. A. Sayed, S. M. Synthesis and Reactivity of 3-oxoprop-1-en-1-olate Derivative as a Building Block for the Synthesis of Azole and Azine Derivatives[J]. Journal of Heterocyclic Chemistry 2017, 54, 1845-1853. [48] Dawane, B. S. Konda, S. G. Zangade, S. B. Design, synthesis, and characterization of some novel pyrazolo [1,5-a] pyrimidines as potent antimicrobial agents[J]. Journal of Heterocyclic Chemistry 2010, 47, 1250-1254. [49] El-Mekabaty, A. Habib, O. M. O. Moawad, E. B. Hasel, A. M. Reactivity of 2-Thiazolylhydrazonomalononitrile toward Carbon and Nitrogen Nucleophilic Reagents: Applications to the Synthesis of New Heterocycles[J]. Journal of Heterocyclic Chemistry 2016, 53, 1214-1221. [50] Abdelhamid, A. O. El-Idreesy, T. T. Abdelriheem, N. A. Dawoud, H. R. M. Green One-Pot Solvent-Free Synthesis of Pyrazolo[1,5-a]pyrimidines, Azolo[3,4-d]pyridiazines, and Thieno[2,3-b]pyridines Containing Triazole Moiety[J]. Journal of Heterocyclic Chemistry 2016, 53, 710-718. [51] Ajeesh Kumar, A. K. Nair, K. B. Bodke, Y. D. Sambasivam, G. Bhat, K. G. Design, synthesis, and evaluation of the anticancer properties of a novel series of carboxamides, sulfonamides, ureas, and thioureas derived from 1,2,4-oxadiazol-3-ylmethyl-piperazin-1-yl substituted with pyrazolo[1,5-a]pyrimidine derivatives[J]. Monatshefte für Chemie - Chemical Monthly 2016, 147, 2221-2234. [52] Elgemeie, G. H. Helal, M. H. El‐Sayed, H. M. Synthesis of and dyeing characteristics of novel pyrazolo[1,5‐a]pyrimidine derivatives containing two arylazo functions[J]. Pigment & Resin Technology 2003, 32, 100-106. [53] Şener, N. Erişkin, S. Yavuz, S. Şener, İ. Synthesis, Characterization, Solvatochromic Properties, and Antimicrobial-radical Scavenging Activities of New Diazo Dyes Derived from Pyrazolo[1,5-a]pyrimidine[J]. Journal of Heterocyclic Chemistry 2017, 54, 3538-3548. [54] Hosny, A. M. Zaki, H. Y. Mokbel, A. W. Abdelhamid, O. A. Synthesis, Characterization, Antimicrobial Activity and Anticancer of Some New Pyrazolo[1,5-a]pyrimidines and Pyrazolo[5,1-c]1,2,4-triazines[J]. Medicinal Chemistry 2020, 16, 750-760. [55] Li, Z. Xie, D. He, J. Du, Y. Yang, J. Synthesis of 7-arylethyl-5-arylpyrazolo[1,5-a]pyrimidines through an aza-Michael addition/nucleophilic addition/1,3-hydrogen transfer cascade[J]. Journal of Chemical Sciences 2017, 129, 1579-1586. [56] Hill, M. D. A Multicomponent Approach to Highly Substituted 1H-Pyrazolo[3,4-b]pyridines[J]. Synthesis 2016, 48, 2201-2204. [57] Patel, A. S. Kapuriya, N. P. Naliapara, Y. T. A Concise [3 + 3] Heteroaromatization Synthetic Strategy Afford Dicarboxamide Functionalized Novel Pyrazolo[1,5-a]Pyrimidines[J]. Journal of Heterocyclic Chemistry 2017, 54, 2635-2643. [58] Safaei, S. Mohammadpoor-Baltork, I. Khosropour, A. R. Moghadam, M. Tangestaninejad, S. & Mirkhani, V. SO3H-functionalized MCM-41 as an efficient catalyst for the combinatorial synthesis of 1 H-pyrazolo-[3, 4-b] pyridines and spiro-pyrazolo-[3, 4-b] pyridines[J]. Journal of the Iranian Chemical Society, 2017, 14, 1583-1589. [59] Lunagariya, M. V. Thakor, K. P. Patel, N. J. & Patel, M. N. Synthesis, characterization and biological application of cyclometalated heteroleptic platinum (II) complexes[J]. Applied Organometallic Chemistry, 2018, 32, e4045. [60] Fadda A A, Rabie R, Etman H A. Synthesis of Thiazolinone, Aminopyrazole, Pyrazolopyrimidine, and Pyrazolotriazine Derivatives Starting from 1‐Naphthyl‐2‐Cyanoacetamide[J]. Journal of Heterocyclic Chemistry, 2017, 54, 1015-1023. [61] Ding, Q. Zhou, X. Pu, S. Cao, B. Rhodium-catalyzed ortho-selective C–H halogenation of 2-arylbenzo[d]thiazoles using N-halosuccinimides as halogen sources[J]. Tetrahedron 2015, 71, 2376-2381. [62] Chen, M.-Y. Pannecoucke, X. Jubault, P. Besset, T. Pd-Catalyzed Selective Chlorination of Acrylamides at Room Temperature[J]. Organic Letters 2020, 22, 7556-7561. [63] Maddox, S. M. Nalbandian, C. J. Smith, D. E. Gustafson, J. L. A Practical Lewis Base Catalyzed Electrophilic Chlorination of Arenes and Heterocycles[J]. Organic Letters 2015, 17, 1042-1045. [64] Song, S. Sun, X. Li, X. Yuan, Y. Jiao, N. Efficient and Practical Oxidative Bromination and Iodination of Arenes and Heteroarenes with DMSO and Hydrogen Halide: A Mild Protocol for Late-Stage Functionalization[J]. Organic Letters 2015, 17, 2886-2889. [65] Samanta, R. C. Yamamoto, H. Selective Halogenation Using an Aniline Catalyst[J]. Chemistry – A European Journal 2015, 21, 11976-11979. [66] Barmaki, S. Ali, A. Desaulniers, J.-P. Bolshan, Y. Bromination of codeine and its derivatives: Revisiting a 95 year old process[J]. Tetrahedron Letters 2020, 61, 152234. [67] Kalyani, D. Dick, A. R. Anani, W. Q. Sanford, M. S. A Simple Catalytic Method for the Regioselective Halogenation of Arenes[J]. Organic Letters 2006, 8, 2523-2526. [68] Kalyani, D. Dick, A. R. Anani, W. Q. Sanford, M. S. Scope and selectivity in palladium-catalyzed directed C–H bond halogenation reactions[J]. Tetrahedron 2006, 62, 11483-11498. [69] Xu, J. Zhu, X. Zhou, G. Ying, B. Ye, P. Su, L. Shen, C. Zhang, P. Copper(II)-catalyzed C5 and C7 halogenation of quinolines using sodium halides under mild conditions[J]. Organic & Biomolecular Chemistry 2016, 14, 3016-3021. [70] Tian, Q. Chen, X. Liu, W. Wang, Z. Shi, S. Kuang, C. Regioselective halogenation of 2-substituted-1,2,3-triazoles via sp2 C–H activation[J]. Organic & Biomolecular Chemistry 2013, 11, 7830-7833. [71] Sadhu, P. Alla, S. K. Punniyamurthy, T. Pd(II)-Catalyzed Aminotetrazole-Directed Ortho-Selective Halogenation of Arenes[J]. The Journal of Organic Chemistry 2013, 78, 6104-6111. [72] Gao, D. W. Gu, Q. You, S. L. Pd(II)-Catalyzed Intermolecular Direct C–H Bond Iodination: An Efficient Approach toward the Synthesis of Axially Chiral Compounds via Kinetic Resolution[J]. ACS Catalysis 2014, 4, 2741-2745. [73] Kramer, J. J. P. Yildiz, C. Nieger, M. Bräse, S. Direct Access to 4,5-Disubstituted [2.2]Paracyclophanes by Selective ortho-Halogenation with Pd-Catalyzed C–H Activation[J]. European Journal of Organic Chemistry 2014, 2014, 1287-1295. [75] Dey, A. Singsardar, M. Sarkar, R. Hajra, A. Environment-Friendly Protocol for the Chlorination of Imidazoheterocycles by Chloramine-T[J]. ACS Omega 2018, 3, 3513-3521. [76] Qiu C, Yu H, Qiu C, Fangyi Li , Tongchuan Suo, Chunhua Wang, Songtao Bie, Zheng Li. Metal-free halogenation of N-substituted enaminoesters and enaminones: A facile access to functionalized α, α-dihaloimines[J]. Synthesis, 2020, 52, 1301-1314. [77] Lu, C. Zhang, S.-Y. He, G. Nack, W. A. Chen, G. Palladium-catalyzed picolinamide-directed halogenation of ortho C–H bonds of benzylamine substrates[J]. Tetrahedron 2014, 70, 4197-4203. [78] Du, Z. Gao, L. Lin, Y. Cu-catalyzed aryl C-H halogenation using N-halosuccinimides via assistance of benzoic acid[J]. Chemical Research in Chinese Universities 2015, 31, 167-170. [79] Singh, H. Sen, C. Sahoo, T. Ghosh, S. C. A Visible Light-Mediated Regioselective Halogenation of Anilides and Quinolines by Using a Heterogeneous Cu-MnO Catalyst[J]. European Journal of Organic Chemistry 2018, 2018, 4748-4753. [80] Yang, X. Yang, Q. L. Wang, X. Y. Xu, H. H. Mei, T. S. Huang, Y. Fang, P. Copper-Catalyzed Electrochemical Selective Bromination of 8-Aminoquinoline Amide Using NH4Br as the Brominating Reagent[J]. The Journal of Organic Chemistry 2020, 85, 3497-3507. [81] Shu, Q. Li, Y. Liu, T. Zhang, S. Jiang, L. Jin, K. Zhang, R. Duan, C. Visible light induced regioselective C5 halogenation of 8-aminoquinolines with 1,3-dihalo-5,5-dimethylhydantoin in continuous flow[J]. Tetrahedron 2019, 75, 3636-3642. [82] Ma, B. Lu, F. Yang, H. Gu, X. Li, Z. Li, R. Pei, H. Luo, D. Zhang, H. Lei, A. Visible Light Mediated External Oxidant Free Selective C5 Bromination of 8-Aminoquinoline Amides under Ambient Conditions[J]. Asian Journal of Organic Chemistry 2019, 8, 1136-1140. [83] Luo, R. Q. Guo, S. P. Xiao, H. L. Li, Q. H. Cross-coupling reaction of organoalane reagents with 2-mercaptobenzo-5-membered heterocycles for efficient synthesis of benzo-5-membered heterocycle sulfides[J]. Tetrahedron 2022, 103, 132564. [84] Gao, Y. C. Huang, Z. H. Zhang, Z. S. Xie, J. X. Cui, Z. N. Tang, R. Y. Sulfite-Promoted C–H Fluoroalkyl Sulfuration of Imidazoheterocycles with Bromofluoroacetate and Elemental Sulfur[J]. Synthesis, 2020, 52, 2541-2550. [85] Le Bescont, J. Breton-Patient, C. Piguel, S. Unconventional Reactivity with DABCO-Bis(sulfur dioxide): C–H Bond Sulfenylation of Imidazopyridines[J]. European Journal of Organic Chemistry 2020, 2020, 2101-2109. [86] Zhao, X. Zhang, L. Li, T. Liu, G. Wang, H. Lu, K. p-Toluenesulphonic acid-promoted, I2-catalysed sulphenylation of pyrazolones with aryl sulphonyl hydrazides[J]. Chemical Communications 2014, 50, 13121-13123. [87] Benchawan, T. Saeeng, R. Controllable Synthesis of Mono- and Bis-sulfenylindoles from Indoles and Various Sulfenylation Agents Using KI/SeO2 System[J]. European Journal of Organic Chemistry 2022, 2022, e202200752. [88] Jia, X. Ma, X. Feng, W. Zhang, J.-Q. Zhao, Y. Guo, B. Tang, L. Yang, Y.-Y. DBU-Catalyzed Aerobic CDC Reaction of Thiophenols[J]. The Journal of Organic Chemistry 2022, 87, 16492-16505. [89] Gairola, D. Peddinti, R. K. Metal-Free Rapid Sulfonylation of para-Quinone Methides and N-Arylmaleimides with Sulfonyl Hydrazides via a Free-Radical Pathway[J]. Asian Journal of Organic Chemistry 2022, 11, e202200517. [90] Zhang, L. Y. Wu, Y. H. Wang, N. X. Gao, X. W. Yan, Z. Xu, B. C. Liu, N. Wang, B.-Z. Xing, Y. Methylthiolation for Electron-Rich Heteroarenes with DMSO-TsCl[J]. European Journal of Organic Chemistry 2021, 2021, 1446-1451. [91] Kadam, S. N. Ambhore, A. N. Kamble, R. D. Wakhradkar, M. G. Gavhane, P. D. Gaikwad, M. V. Gunturu, K. C. Dawane, B. S. Metal-free efficient thiolation of C(sp2) functionalization via in situ-generated NHTS for the synthesis of novel sulfenylated 2-aminothiazole and imidazothiazole[J]. New Journal of Chemistry 2021, 45, 4632-4637. [92] Yang, C. Y. Li, X. Liu, B. Huang, G. L. I2-Promoted Direct C−H Sulfenylation of Isoquinolin-1(2H)-ones with Sulfonyl Chlorides[J]. European Journal of Organic Chemistry 2021, 2021, 117-124. [93] Kittikool, T. Yotphan, S. Metal-Free Direct C–H Thiolation and Thiocyanation of Pyrazolones[J]. European Journal of Organic Chemistry 2020, 2020, 961-970. [94] Singh, M. Awasthi, P. Singh, V. Iodine Catalysed Synthesis of Luminescent β-Carboline Tethered Thiazolo[4,5-c]carbazole and Naphtho[2,1-d]thiazole Derivatives and Estimation of their Light Emitting Properties[J]. European Journal of Organic Chemistry 2020, 2020, 1023-1041. [95] Jiang, X. Zhao, Z. Shen, Z. Chen, K. Fang, L. Yu, C. Flavin/I2-Catalyzed Aerobic Oxidative C–H Sulfenylation of Aryl-Fused Cyclic Amines[J]. European Journal of Organic Chemistry 2020, 2020, 3889-3895. [96] Luz, E. Q. Seckler, D. Araújo, J. S. Angst, L. Lima, D. B. Maluf Rios, E. A. Ribeiro, R. R. Rampon, D. S. Fe(III)-Catalyzed direct C3 chalcogenylation of indole: The effect of iodide ions[J]. Tetrahedron 2019, 75, 1258-1266. [97] Yao, H. F. Wang, D. L. Li, F. H. Wu, B. Cai, Z. J. Ji, S. J. Synthesis of organoselenyl isoquinolinium imides via iron(iii) chloride-mediated tandem cyclization/selenation of N′-(2-alkynylbenzylidene)hydrazides and diselenides[J]. Organic & Biomolecular Chemistry 2020, 18, 7577-7584. [98] Gao, X. Tang, L. Huang, L. Huang, Z. S. Ma, Y. Wu, G. Oxidative Aminoarylselenation of Maleimides via Copper-Catalyzed Four-Component Cross-Coupling[J]. Organic Letters 2019, 21, 745-748. [99] Gao, C. Wu, G. Min, L. Liu, M. Gao, W. Ding, J. Chen, J. Huang, X. Wu, H. Copper-Catalyzed Three-Component Coupling Reaction of Azoles, Se Powder, and Aryl Iodides[J]. The Journal of Organic Chemistry 2017, 82, 250-255. [100] Ren, Y. Xu, B. Zhong, Z. Pittman, C. U. Zhou, A. Using SeO2 as a selenium source to make RSe-substituted aniline and imidazo[1,2-a]pyridine derivatives[J]. Organic Chemistry Frontiers 2019, 6, 2023-2027. [101] Lu, F. Hu, L. Zhang, J. Feng, Y. Electrochemical Oxidative Cross-Coupling of Pyrazolones and Diselenides to Construct C-Se Bonds[J]. Asian Journal of Organic Chemistry 2023, e202200719. [102] Gao, Q. Sun, Z. Xia, Q. Li, R. Wang, W. Ma, S. Chai, Y. Wu, M. Hu, W. Ábrányi-Balogh, P. Keserű, G. M. Han, X. Vinylation of α-Aminoazoles with Triethylamine: A General Strategy to Construct Azolo[1,5-a]pyrimidines with a Nonsubstituted Ethylidene Fragment[J]. Organic Letters 2021, 23, 2664-2669. [103] Neubauer, D. N. Indiplon: the development of a new hypnotic[J]. Expert Opinion on Investigational Drugs 2005, 14, 1269-1276. [104] Cherukupalli, S. Karpoormath, R. Chandrasekaran, B. Hampannavar, G. A. Thapliyal, N. Palakollu, V. N. An insight on synthetic and medicinal aspects of pyrazolo[1,5-a]pyrimidine scaffold[J]. European Journal of Medicinal Chemistry 2017, 126, 298-352. [105] Barsy, M. A. El-Rady, E. A. Intermolecular aza-wittig reaction: One-step synthesis of pyrazolo[1,5-a]pyrimidine and imidazo[1,2-b]pyrazole derivatives[J]. Journal of Heterocyclic Chemistry 2006, 43, 523-526. [106] Aggarwal, R. Kumar, V. Singh, G. Sanz, D. Claramunt, R. M. Alkorta, I. Sánchez-Sanz, G. Elguero, J. An NMR and Computational Study of Azolo[a]pyrimidines with Special Emphasis on Pyrazolo[1,5-a]pyrimidines[J]. Journal of Heterocyclic Chemistry 2015, 52, 336-345. [107] Senadi, G. C. Hu, W. P. Lu, T. Y. Garkhedkar, A. M. Vandavasi, J. K. Wang, J. J. I2–TBHP-Catalyzed Oxidative Cross-Coupling of N-Sulfonyl Hydrazones and Isocyanides to 5-Aminopyrazoles[J]. Organic Letters 2015, 17, 1521-1524. [108] Aggarwal, R. Singh, G. Kaushik, P. Kaushik, D. Paliwal, D. Kumar, A. Molecular docking design and one-pot expeditious synthesis of novel 2,5-diarylpyrazolo[1,5-a]pyrimidin-7-amines as anti-inflammatory agents[J]. European Journal of Medicinal Chemistry 2015, 101, 326-333. [109] Fomum, Z. T. Asobo, P. F. Ifeadike, P. N. Heterocycles of biological importance. Part 1. Novel synthesis and biological activity study of 5-Alkyl and 5-Aryl-7-aminopyrazolo[1,5-a]-pyrimidines from allenic or acetylenic nitriles and 3-aminopyrazole[J]. Journal of Heterocyclic Chemistry 1984, 21, 1125-1128. [110] Kaplan, F. S. Zeitlin, L. Dunn, S. P. Benor, S. Hagin, D. Al Mukaddam, M. Pignolo, R. J. Acute and chronic rapamycin use in patients with Fibrodysplasia Ossificans Progressiva: A report of two cases[J]. Bone 2018, 109, 281-284. [111] Williamson, D. S. Parratt, M. J. Bower, J. F. Moore, J. D. Richardson, C. M. Dokurno, P. Cansfield, A. D. Francis, G. L. Hebdon, R. J. Howes, R. Jackson, P. S. Lockie, A. M. Murray, J. B. Nunns, C. L. Powles, J. Robertson, A. Surgenor, A. E. Torrance, C. J. Structure-guided design of pyrazolo[1,5-a]pyrimidines as inhibitors of human cyclin-dependent kinase 2[J]. Bioorganic & Medicinal Chemistry Letters 2005, 15, 863-867. [112] Hill, M. D. Fang, H. King, H. D. Iwuagwu, C. I. McDonald, I. M. Cook, J. Zusi, F. C. Mate, R. A. Knox, R. J. Post-Munson, D. Easton, A. Miller, R. Lentz, K. Clarke, W. Benitex, Y. Lodge, N. Zaczek, R. Denton, R. Morgan, D. Bristow, L. Macor, J. E. Olson, R. Development of 4-Heteroarylamino-1′-azaspiro[oxazole-5,3′-bicyclo[2.2.2]octanes] as α7 Nicotinic Receptor Agonists[J]. ACS Medicinal Chemistry Letters 2017, 8, 133-137. [113] Ivachtchenko, A. V. Golovina, E. S. Kadieva, M. G. Kysil, V. M. Mitkin, O. D. Tkachenko, S. E. Okun, I. M. Synthesis and Structure–Activity Relationship (SAR) of (5,7-Disubstituted 3-phenylsulfonyl-pyrazolo[1,5-a]pyrimidin-2-yl)-methylamines as Potent Serotonin 5-HT6 Receptor (5-HT6R) Antagonists[J]. Journal of Medicinal Chemistry 2011, 54, 8161-8173. [114] Ivachtchenko, A. V. Golovina, E. S. Kadieva, M. G. Kysil, V. M. Mitkin, O. D. Vorobiev, A. A. Okun, I. Antagonists of 5-HT6 receptors. Substituted 3-(phenylsulfonyl)pyrazolo[1,5-a]pyrido[3,4-e]pyrimidines and 3-(phenylsulfonyl)pyrazolo[1,5-a]pyrido[4,3-d]pyrimidines—Synthesis and ‘structure–activity’ relationship[J]. Bioorganic & Medicinal Chemistry Letters 2012, 22, 4273-4280. [115] Ivachtchenko, A. V. Golovina, E. S. Kadieva, M. G. Kysil, V. M. Mitkin, O. D. Tkachenko, S. E. Okun, I. Synthesis and SAR of 3-arylsulfonyl-pyrazolo[1,5-a]pyrimidines as potent serotonin 5-HT6 receptor antagonists[J]. Bioorganic & Medicinal Chemistry 2011, 19, 1482-1491.1. [116] Şenkardeş, S. Han, M. İ. Kulabaş, N. Abbak, M. Çevik, Ö. Küçükgüzel, İ. Küçükgüzel, Ş. G. Synthesis, molecular docking and evaluation of novel sulfonyl hydrazones as anticancer agents and COX-2 inhibitors[J]. Molecular Diversity 2020, 24, 673-689. [117] Yang, F. L. Tian, S. K. Iodine-Catalyzed Regioselective Sulfenylation of Indoles with Sulfonyl Hydrazides[J]. Angewandte Chemie International Edition 2013, 52, 4929-4932. [118] Saini, V. Khungar, B. Recyclable imidazolium ion-tagged nickel catalyst for microwave-assisted C–S cross-coupling in water using sulfonyl hydrazide as the sulfur source[J]. New Journal of Chemistry 2018, 42, 12796-12801. [119] Lu, M. Zhang, R. J. Zhu, C. M. Xiao, Y. Chen, J. R. Zhao, L. M. Tong, Q. X. Zhong, J.-J. HFIP-Induced Allylation Reaction of Tertiary Allylic Alcohols with Thiols or Sulfonyl Hydrazines to Access Allylic Organosulfurs[J]. Synlett 2022, 33, 1745-1750. [120] Qi, L. Li, R. Yao, X. Zhen, Q. Ye, P. Shao, Y. Chen, J. Syntheses of pyrroles, pyridines, and ketonitriles via catalytic carbopalladation of dinitriles[J]. The Journal of Organic Chemistry 2019, 85, 1097-1108.
﹀
|
| 中图分类号: |
R91
|
| 开放日期: |
2023-05-24
|