- 无标题文档
查看论文信息

中文题名:

 新疆某县儿童先天性心脏病流行特征及预测模型构建    

姓名:

 李涛    

学号:

 20212114187    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 105300    

学科名称:

 医学 - 公共卫生    

学生类型:

 硕士    

学位:

 公共卫生硕士    

学位类型:

 专业学位    

学位年度:

 2024    

学校:

 石河子大学    

院系:

 医学院    

专业:

 公共卫生    

研究方向:

 劳动卫生与环境卫生学    

第一导师姓名:

 杨成新    

第一导师单位:

 .新疆维吾尔自治区第三人民医院    

完成日期:

 2024-05-01    

答辩日期:

 2024-04-29    

外文题名:

 Prevalence characteristics and prediction model construction of congenital heart disease among children in a county of Xinjiang    

中文关键词:

 先天性心脏病 ; 危险因素 ; 机器学习     

外文关键词:

 Congenital heart disease ; Risk factors ; Machine learning     

中文摘要:

目的:

了解新疆儿童先天性心脏病(Congenital Heart Disease,CHD)发病现状及其分布特征,探讨新疆某县发生儿童先天性心脏病的影响因素,基于全面的流行病学数据开发有效的先天性心脏病预测模型作为初步筛查工具,用于识别妊娠早期先天性心脏病高危孕妇,有助于产前保健提供者指导产前管理和预防,为该地区儿童先天性心脏病的预防提供重要理论依据。

方法:

本研究为1:1.8匹配病例对照研究,选择2023年8月1日至2023年12月21日在新疆某人口大县1-14岁儿童进行现场先天性心脏病筛查,将确诊的196例先天性心脏病为病例组,同一时期接受健康体检的判断为健康的同班同学360例为对照组。对纳入的研究对象进行《新疆维吾尔族自治区儿童先天性心脏病患病状况及相关危险因素调查表》问卷调查。采用单因素分析和多因素logistic回归分析的方法进行统计分析,通过病例组与对照进行比较,探索先天性心脏病与影响因素的相关性。进一步通过方差膨胀因子去除共线性变量筛选预测因子,并构建四个机器学习(Machine Learning,ML)模型进行预测,对四个机器学习模型评估,进而比较模型的性能。假设检验水准a=0.05,采用双侧检验P<0.05,差异具有统计学意义。

结果:

先天性心脏病筛查结果及分布情况:共筛查13268名儿童,其中筛检阳性196人,阳性率为14.77‰;各型先天性心脏病中卵圆孔未闭125例(63.78%)占比最高。

母亲一般人口学特征:CHD病例组与对照组母亲在年龄、生育时年龄、BMI、民族、职业、居住地、文化程度方面存在差异(P<0.05)。

先天性心脏病卡方分析:CHD病例组与对照组在关于母亲是否足月产、分娩方式、是否近亲结婚、孕次、产次、孕期患病史、孕期叶酸摄入情况、孕期不良环境接触史、孕期生活负性事件、烟草接触史的因素分析中,两组均在统计学上存在差异(P<0.05);而在是否多胎妊娠的因素分析中,两组在统计学上没有差异(P>0.05)。

先天性心脏病单因素logistic回归分析:筛选了11个危险因素和7个保护因素,其中年龄、分娩时年龄、文化程度大学本科及以上、剖宫产分娩孕期前后三个月一直服用叶酸为先天性心脏病的独立保护因素(OR<1.0),此外每月1-3次饮酒的OR值也小于1.0;职业为农民、非足月产、近亲结婚、其他家族出生缺陷史、孕次≥2次、产次≥2次、孕期患病、孕期接触有机溶剂、孕期生活负性事件、被动吸烟为先天性心脏病的独立危险因素(OR>1.0)。

先天性心脏病多因素logistic回归分析:BMI(OR=0.66,95%CI:0.55-0.79)生育时年龄(OR=0.79,95%CI:0.74-0.85)文化程度为大学专科(OR=0.002,95%CI:0.001-0.09)孕期一直服用叶酸(OR=0.02,95%CI:0.01-0.06)是儿童先天性心脏病发生的保护因素;近亲结婚(OR=7.23,95%CI:2.54-20.60)非足月产(OR=3.56,95%CI:1.20-10.57)孕期患病(OR=3.40,95%CI:1.29-8.97)孕期生活负性事件(OR=4.64,95%CI:1.90-11.31)是儿童先天性心脏病发生的危险因素。

BMI、生育时年龄与先天性心脏病的剂量反应关系:根据剂量反应关系,BMI、生育时年龄与CHD呈非线性关系(overall<0.01,nonlinear<0.01),当BMI、生育时年龄分别大于21.8kg/m2、26岁时风险趋于平稳。

机器学习模型的开发与验证:构建GBM、Random Forest、SMoteRf和KNN模型测试集中验证了4个预测模型的稳定性和泛化能力。通过准确率、精确率、召回率、F1分数、AUC五个维度评估四个模型。GBM模型的五个指标均高于其他模型,其中训练集的AUC0.986,(0.978-0.986)、测试集的AUC(0.975,0.957-0.975)。

结论:

新疆某县儿童 CHD 的患病率高于全国平均水平,生育时年龄、BMI、文化程度为大学专科、孕期坚持服用叶酸是后代儿童患先天性心脏病的保护因素,近亲结婚、非足月产、孕期患病史、孕期生活负性事件是后代儿童患先天性心脏病的危险因素,GBM模型在训练集和测试集中展示了较好的临床预测值且具有分类模型的良好效率和稳定性,能有效地辅助医生进行先天性心脏病的诊断。因此,可以定期对目标人群进行科普,普及先天性心脏病相关知识以及危险因素。对于孕期妇女,尤其要保证孕早期定量服用叶酸,合理控制BMI值,同时也要保持健康的生活方式和心情都可以在一定程度上降低先天性心脏病的发生。

外文摘要:

Objective:

To understand the current status of the incidence of childhood congenital heart disease (CHD) and its distribution characteristics in Xinjiang, to explore the influencing factors for the occurrence of CHD in Xinjiang, and to develop an effective prediction model for CHD as a preliminary screening tool based on comprehensive epidemiological data for identifying pregnant women at high risk for CHD in early pregnancy, which can help prenatal care providers to guide prenatal management and prevention, and provide an important theoretical basis for the prevention of congenital heart disease in children in the region.

Methods:

This study was a 1:1.8 matched case-control study in which children aged 1-14 years were selected for on-site congenital heart disease screening from 1 August 2023 to 21 December 2023 in a populous county in Xinjiang, and 196 cases of congenital heart disease diagnosed as the case group, and 360 cases of the same class of students judged to be healthy who underwent a health check-up during the same period of time, as the control group. The questionnaire "Questionnaire on the Prevalence Status of Congenital Heart Disease in Children and Related Risk Factors in Xinjiang Uygur Autonomous Region" was administered to the included study subjects. Statistical analyses were performed by using univariate and multifactorial logistic regression analyses to explore the correlation between congenital heart disease and the influencing factors by comparing the case group with the control. Further the predictors were screened by removing the covariate variables through variance inflation factor and four Machine Learning (ML) models were constructed for prediction, the four machine learning models were evaluated and thus the performance of the models were compared.The hypothesis was tested at level=0.05, and the difference was statistically significant by using a two sided test P<0.05.

Results:

congenital heart disease screening results and distribution: a total of 13,268 children were screened, of which 196 were screen positive, with a positive rate of 14.77 per thousand; 125 cases (63.78%) of all types of congenital heart disease had the highest percentage of oval foramen not closed.

2. General demographic characteristics of the mothers: there were differences between mothers in the CHD case group and the control group in terms of age, age at birth, BMI, ethnicity, occupation, place of residence, and educational level (P<0.05).

3. analysis of factors related to congenital heart disease: mothers in the CHD case group and control group differed statistically (P<0.05) in whether they had a full-term birth, mode of delivery, whether they were consanguineous or not, the number of pregnancies, the number of births, history of illnesses during pregnancy, folic acid intake during pregnancy, history of adverse environmental exposures during pregnancy, negative life events during pregnancy, history of exposure to tobacco, and history of exposure to tobacco; and whether they were multiparous, there was no difference (P<0.05); and whether they were multiparous or not, there was no difference (P<0.05). were not statistically different (P>0.05).

4. Single-factor logistic regression analysis of congenital heart disease: 11 risk factors and 7 protective factors were screened, of which age, age at delivery, education level of bachelor's degree or above, taking folic acid before and after cesarean section delivery in the first and second trimesters of pregnancy, and consuming alcohol 1-3 times a month were the independent protective factors of congenital heart disease (OR<1.0); occupation of farmer, parturition, consanguineous marriage, other family history of birth defects, pregnancy history of birth defects, and other family history of birth defects. other family history of birth defects, ≥2 pregnancies, ≥2 deliveries, illness during pregnancy, exposure to organic solvents during pregnancy, negative life events during pregnancy, and passive smoking were independent risk factors for congenital heart disease (OR>1.0).

5. Multifactorial logistic regression analysis of congenital heart disease: BMI (OR=0.66, 95% CI: 0.55-0.79), age at childbearing (OR=0.79, 95% CI: 0.74-0.85), education as a university college (OR=0.002, 95% CI: 0.001-0.09), and having taken folic acid all the way through pregnancy ( OR=0.02, 95% CI: 0.01 to 0.06) were negatively associated with the occurrence of congenital heart disease in children; consanguineous marriage (OR=7.23, 95% CI: 2.54-20.60), parturition (OR=3.56, 95% CI: 1.20-10.57), illness during pregnancy (OR=3.40, 95% CI: 1.29- 8.97), negative life events during pregnancy (OR=4.64, 95% CI: 1.90-11.31) were positively associated with the occurrence of congenital heart disease in children.

6. Dose-response relationship between BMI, age at childbearing and congenital heart disease: According to the dose-response relationship, BMI, age at childbearing and CHD showed a non-linear relationship (overall<0.01, nonlinear<0.01), and the risk levelled off when the BMI and age at childbearing were greater than 21.8kg/m2, and 26 years old, respectively.

7.Development and validation of machine learning models: construct GBM, Random Forest, SMoteRf and KNN model test set to validate the stability and generalisation ability of the 4 prediction models. The four models were evaluated by five dimensions: accuracy, precision, recall, F1 score, and AUC.The five indexes of the GBM model were higher than the other models, including the AUC of the training set (0.986, 0.978-0.9860), and the AUC of the test set (0.975, 0.957-0.975).

Conclusion:

The incidence of CHD in children in a county of Xinjiang is higher than the national average, age at birth, BMI, education level of university college, and adherence to folic acid during pregnancy are the protective factors for congenital heart disease in offspring, consanguineous marriage, parturition, history of illnesses during pregnancy, and negative life events during pregnancy are the risk factors for congenital heart disease in offspring, and the GBM model has demonstrated a better clinical predictive value and good efficiency and stability of classification models, which can effectively assist physicians in the diagnosis of congenital heart disease. Therefore, the target population can be regularly educated to popularise the knowledge about congenital heart disease and the risk factors. For pregnant women, especially to ensure that early pregnancy folic acid dosage, reasonable control of BMI, but also to maintain a healthy lifestyle and mood can reduce the occurrence of congenital heart disease to a certain extent.

 

参考文献:

[1]Stout KK, Daniels CJ, Aboulhosn JA, et al. 2018 AHA/ACC Guideline for the Management of Adults With Congenital Heart Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines [J]. Circulation. 2019 Apr 2;139(14):e698-e800.

[2]van der Linde D, Konings EE, Slager MA, et al. Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis [J]. J Am Coll Cardiol. 2011 Nov 15;58(21):2241-7.

[3]Roth GA, Mensah GA, Johnson CO, et al.GBD-NHLBI-JACC Global Burden of Cardiovascular Diseases Writing Group. Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update From the GBD 2019 Study [J]. J Am Coll Cardiol. 2020 Dec 22;76(25):2982-3021.

[4]胡盛寿,高润霖,刘力生,等.《中国心血管病报告2018》概要[J].中国循环杂志,2019,34(03):209-220.

[5]Zhao L, Chen L, Yang T, et al. Birth prevalence of congenital heart disease in China, 1980-2019: a systematic review and meta- analysis of 617 studies [J]. Eur J Epidemiol 35, 631-642 (2020)

[6]GBD 2017 Congenital Heart Disease Collaborators. Global, regional, and national burden of congenital heart disease, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017 [J]. Lancet Child Adolesc Health. 2020 Mar;4(3):185-200.

[7]Delaney AE, Fu MR, McTernan ML, et al. The associations between resilience and socio-demographic factors in parents who care for their children with congenital heart disease [J]. Int J Nurs Sci. 2022 Jun 17;9(3):321-327.

[8]Liu Y, Chen S, Zühlke L, et al. Global birth prevalence of congenital heart defects 1970-2017: updated systematic review and meta-analysis of 260 studies [J]. Int J Epidemiol. 2019 Apr 1;48(2):455-463.

[9]Mamasoula C, Addor MC, Carbonell CC, et al. Prevalence of congenital heart defects in Europe, 2008-2015: A registry-based study. Birth Defects Res [J]. 2022 Dec 1;114(20):1404-1416.

[10]Wilkes JK, Whitehead WE, Wang Y, et al. Congenital Heart Disease and Myelomeningocele in the Newborn: Prevalence and Mortality [J]. Pediatr Cardiol. 2021 Jun;42(5):1026-1032.

[11]Giang KW, Mandalenakis Z, Fedchenko M, et al. Congenital heart disease: changes in recorded birth prevalence and cardiac interventions over the past half-century in Sweden [J]. Eur J Prev Cardiol. 2023 Jan 24;30(2):169-176.

[12]Zhao L, Chen L, Yang T, et al. Birth prevalence of congenital heart disease in China, 1980-2019: a systematic review and meta-analysis of 617 studies [J]. Eur J Epidemiol. 2020 Jul;35(7):631-642.

[13]Zhao QM, Liu F, Wu L, et al. Prevalence of Congenital Heart Disease at Live Birth in China [J]. J Pediatr. 2019 Jan;204:53-58.

[14]He S, Zhao F, Liu X, et al. Prevalence of congenital heart disease among school children in Qinghai Province [J/OL]. BMC Pediatr. 2022 Jun 8;22(1):331.[2024-02-28]. https://doi.org/10.1186/s12887-022-03364-5

[15]Han S, Wei CY, Hou ZL, et al. Prevalence of Congenital Heart Disease Amongst Schoolchildren in Southwest China [J]. Indian Pediatr. 2020 Feb 15;57(2):138-141. PMID: 32060241.

[16]Liu F, Yang YN, Xie X, et al. Prevalence of Congenital Heart Disease in Xinjiang Multi-Ethnic Region of China [J]. PLoS One. 2015 Aug 28;10(8):e0133961.

[17]Huhta J, Linask KK. Environmental origins of congenital heart disease: the heart-placenta connection [J]. Semin Fetal Neonatal Med. 2013 Oct;18(5):245-50.

[18]Liu S, Joseph KS, Lisonkova S, et al. Association between maternal chronic conditions and congenital heart defects: a population-based cohort study [J]. Circulation. 2013 Aug 6;128(6):583-9.

[19]Liang Q, Gong W, Zheng D, et al. The influence of maternal exposure history to virus and medicine during pregnancy on congenital heart defects of fetus [J]. Environ Sci Pollut Res Int. 2017 Feb;24(6):5628-5632.

[20]Botto LD, Khoury MJ, Mulinare J, et al. Periconceptional multivitamin use and the occurrence of conotruncal heart defects: results from a population-based, case-control study [J]. Pediatrics. 1996 Nov;98(5):911-7.

[21]Botto LD, Mulinare J, Erickson JD. Occurrence of congenital heart defects in relation to maternal mulitivitamin use [J]. Am J Epidemiol. 2000 May 1;151(9):878-84.

[22]Botto LD, Mulinare J, Erickson JD. Do multivitamin or folic acid supplements reduce the risk for congenital heart defects? Evidence and gaps [J]. Am J Med Genet A. 2003 Aug 30;121A(2):95-101.

[23]Wu L, Li N, Liu Y. Association Between Maternal Factors and Risk of Congenital Heart Disease in Offspring: A Systematic Review and Meta-Analysis [J]. Matern Child Health J. 2023 Jan;27(1):29-48.

[24]Feng L, Fang-Biao T. Research on the Correlation between Maternal Negative Major Life Events and Congenital Heart Disease during Early Pregnancy [J]. Journal of Applied Clinical Pediatrics, 2008.

[25]Holzinger A. Trends in interactive knowledge discovery for personalized medicine: cognitive science meets machine learning [EB/OL]. IEEE Intell Inform Bull 2014; 15: 6–14.[2024-02-28].https://api.semanticscholar.org/CorpusID:15000624.

[26]Dilsizian SE, Siegel EL. Artificial intelligence in medicine and cardiac imaging: harnessing big data and advanced computing to provide personalized medical diagnosis and treatment [J]. Curr Cardiol Rep 2013; 16: 441.

[27]Cruz JA, Wishart DS. Applications of machine learning in cancer prediction and prognosis [J]. Cancer Inform 2006; 2: 59–77.

[28]Menden MP, Iorio F, Garnett M, et al. Machine learning prediction of cancer cell sensitivity to drugs based on genomic and chemical properties [J]. PLoS ONE 2013; 8: e61318.

[29]廖华龙, 曾小茜, 李华凤, 等. 机器学习在疾病预测中的应用[J]. 生物医学工程研究, 2021,40(02):203-209.

[30]Ting DSW, Peng L, Varadarajan AV, et al. Deep learning in ophthalmology: The technical and clinical considerations [J]. Prog Retin Eye Res. 2019 Sep;72:100759.

[31]Wu X, Yuan X, Wang W, et al. Value of a Machine Learning Approach for Predicting Clinical Outcomes in Young Patients With Hypertension [J]. Hypertension. 2020 May;75(5):1271-1278.

[32]Li CX, Shen CB, Xue K, et al. Artificial intelligence in dermatology: past, present, and future [J]. Chin Med J (Engl). 2019 Sep 5;132(17):2017-2020.

[33]Li H, Luo M, Zheng J, et al. An artificial neural network prediction model of congenital heart disease based on risk factors: A hospital-based case-control study [J]. Medicine (Baltimore). 2017 Feb;96(6):e6090.

[34]Nakamura M, Kajiwara Y, Otsuka A, et al. LVQ-SMOTE - Learning Vector Quantization based Synthetic Minority Over-sampling Technique for biomedical data [J]. BioData Min. 2013 Oct 2;6(1):16.

[35]Asadi S, Roshan S, Kattan MW. Random forest swarm optimization-based for heart diseases diagnosis [J]. J Biomed Inform. 2021 Mar;115:103690.

[36]Ay Ş, Ekinci E, Garip Z. A comparative analysis of meta-heuristic optimization algorithms for feature selection on ML-based classification of heart-related diseases [J]. J Supercomput. 2023;79(11):11797-11826.

[37]Li J, Liu S, Hu Y, et al. Predicting Mortality in Intensive Care Unit Patients With Heart Failure Using an Interpretable Machine Learning Model: Retrospective Cohort Study [J]. J Med Internet Res. 2022 Aug 9;24(8):e38082.

[38]McComb M, Bies R, Ramanathan M. Machine learning in pharmacometrics: Opportunities and challenges [J]. Br J Clin Pharmacol. 2022 Feb;88(4):1482-1499.

[39]王卫平,孙锟,常立文.儿科学:第八版[J].人民卫生出版社,2019.

[40]夏焙.小儿超声诊断学[M].人民卫生出版社,2013.

[41]Chawla N V , Bowyer K W , Hall L O , et al. SMOTE: Synthetic Minority Over-sampling Technique [J]. Journal of Artificial Intelligence Research. 2002, 16(1):321-357.

[42]Blagus R, Lusa L. SMOTE for high-dimensional class-imbalanced data [J/OL]. BMC Bioinformatics 14, 106 (2013). https://doi.org/10.1186/1471-2105-14-106.

[43]Jeatrakul P, Wong K W, Fung C C. (2010). Classification of Imbalanced Data by Combining the Complementary Neural Network and SMOTE Algorithm [C]. In Wong K W, Mendis B S U, Bouzerdoum A, (eds) Neural Information Processing. Models and Applications: Lecture Notes in Computer Science, 2010:152-159.

[44]Wang J, Xu M, Wang H, et al. Classification of imbalanced data by using the SMOTE algorithm and locally linear embedding [C]. In Proceedings of the International Conference on Signal Processing. New York: Institute of Electrical and Electronics Engineers, vol. 3,2006.

[45]R Blagus , L Lusa. Evaluation of SMOTE for High-Dimensional Class-Imbalanced Microarray Data [C]. 2012 11th International Conference on Machine Learning and Applications. Boca Raton: Institute of Electrical and Electronics Engineers, 2012:89-94.

[46]Suryaprakash S, Surendran S, Sharavanee DP, et al. A Novel Engine Oil Health Classification using Physical Properties and DWKNN Algorithm [C]. In: 2021 International Conference on Computer Communication and Informatics (ICCCI). Coimbatore: Institute of Electrical and Electronics Engineers, 2021:1-5.

[47]Saranya N, Samyuktha MS, Isaac S, et al. Diagnosing Chronic Kidney Disease using KNN Algorithm [C]. In: 2021 7th International Conference on Advanced Computing and Communication Systems (ICACCS) (2021). Coimbatore: Institute of Electrical and Electronics Engineers, 2021:2038-2041.

[48]Sammut C, Webb G, Abdallah ZS, et al. Encyclopedia of Machine Learning and Data Mining [M]. Berlin: SpringerLink, 2017:1054-1054.

[49]Tennant PW, Pearce MS, Bythell M, et al. 20-year survival of children born with congenital anomalies: a population-based study [J]. Lancet. 2010 Feb 20;375(9715):649-56.

[50]Dastgiri S, Stone DH, Le-Ha C, et al. Prevalence and secular trend of congenital anomalies in Glasgow, UK [J]. Arch Dis Child. 2002 Apr;86(4):257-63.

[51]Samánek M. Children with congenital heart disease: probability of natural survival [J]. Pediatr Cardiol. 1992 Jul;13(3):152-8.

[52]Said SM, Driscoll DJ, Dearani JA. Transition of care in congenital heart disease from pediatrics to adulthood [J]. Semin Pediatr Surg. 2015 Apr;24(2):69-72.

[53]Nora JJ, Nora A, Berg K. Cardiovascular Diseases: Genetics, Epidemiology and Prevention [M].New York: Oxford University Press, 1991:188.

[54]Vis JC, Duffels MG, Winter MM, et al. Down syndrome: a cardiovascular perspective [J]. J Intellect Disabil Res. 2009 May;53(5):419-25.

[55]Williams K, Carson J, Lo C. Genetics of Congenital Heart Disease [J]. Biomolecules. 2019 Dec 16;9(12):879.

[56]王冀. 新疆5-14岁维吾尔族与柯尔克孜族儿童先天性心脏病患病率调查[D].乌鲁木齐: 新疆医科大学, 2012.

[57]玛依拉·吐尔逊. 新疆维、汉、哈族儿童先心病患病率及其生长发育分析[D].乌鲁木齐: 新疆医科大学, 2012.

[58]方家煜,朵林,付宏晨等.昭通市幼托机构和中小学校学生先天性心脏病患病及影响因素分析[J].中国学校卫生,2022,43(11):1733-1736.

[59]张蕾,安美玉,朱冰等.重庆乡镇0~3岁儿童先天性心脏病筛查与随访[J].中国当代儿科杂志,2017,19(07):748-753.

[60]中华人民共和国国家卫生健康委员会.中国出生缺陷防治报告(2012)[R/OL].(2012-09-07)[2024.02.08].https://www.gov.cn/gzdt/2012-09/12/content_2223373.htm.

[61]Boyd R, McMullen H, Beqaj H, et al. Environmental Exposures and Congenital Heart Disease [J]. Pediatrics. 2022 Jan 1;149(1):e2021052151.

[62]Best KE, Rankin J. Is advanced maternal age a risk factor for congenital heart disease [J]. Birth Defects Res A Clin Mol Teratol. 2016 Jun;106(6):461-7.

[63]王睁,李利,雷雪丫,等. 产妇高龄对新生儿出生缺陷及生后并发症的影响[J].中国当代儿科杂志,2016,18(11):1084-1089.

[64]Liu X, Liu G, Wang P, et al. Prevalence of congenital heart disease and its related risk indicators among 90, 796 Chinese infants aged less than 6 months in Tianjin [J]. Int J Epidemiol, 2015, 44(3): 884– 893.

[65]Taylor K, Wootton RE, Yang Q, et al. The effect of maternal BMI, smoking and alcohol on congenital heart diseases: a Mendelian randomisation study [J/OL]. BMC Med. 2023 Feb 1;21(1):35.

[66]Persson M, Cnattingius S, Villamor E, et al. Risk of major congenital malformations in relation to maternal overweight and obesity severity: cohort study of 1.2 million singletons [J/OL]. BMJ. 2017 Jun 14;357:j2563.

[67]Tran M, Miner A, Merkel C, et al. Sociodemographic profile associated with congenital heart disease among infants <1 year old [J]. J Pediatr Nurs. 2023 Nov-Dec;73:e618-e623.

[68]Gendler Y, Birk E, Tabak N, et al. Factors That Influence Parents’ Decision-Making Regarding Termination of Pregnancy After Prenatal Diagnosis of Fetal Congenital Heart Disease [J]. Journal of Obstetric, Gynecologic & Neonatal Nursing. 2021;50(4):475-84.

[69]Schechtman KB, Gray DL, Baty JD, et al. Decision-making for termination of pregnancies with fetal anomalies: analysis of 53,000 pregnancies [J]. Obstetrics & Gynecology. 2002;99(2):216-22.

[70]Adiyaman D, Atakul BK, Kuyucu M, et al. Termination of pregnancy following a Down Syndrome diagnosis: decision-making process and influential factors in a Muslim but secular country, Turkey [J]. J Perinat Med. 2021;49(2):170-7. Epub 20200914.

[71]Phillippi JC. Women's Perceptions of Access to Prenatal Care in the United States: A Literature Review [J]. Journal of Midwifery & Women's Health. 2009;54(3):219-25.

[72]van Beynum IM, Kapusta L, Bakker MK, et al. Protective effect of periconceptional folic acid supplements on the risk of congenital heart defects: a registry-based case-control study in the northern Netherlands [J]. Eur Heart J. 2010 Feb;31(4):464-71.

[73]Ionescu-Ittu R, Marelli AJ, Mackie AS, et al. Prevalence of severe congenital heart disease after folic acid fortification of grain products: time trend analysis in Quebec, Canada [J/OL]. BMJ. 2009 May 12;338:b1673.

[74]Wang D, Jin L, Zhang J, et al. Maternal Periconceptional Folic Acid Supplementation and Risk for Fetal Congenital Heart Defects [J]. J Pediatr. 2022 Jan;240:72-78.

[75]Chen H, Zhang Y, Wang D, et al. Periconception Red Blood Cell Folate and Offspring Congenital Heart Disease : Nested Case-Control and Mendelian Randomization Studies [J]. Ann Intern Med. 2022 Sep;175(9):1212-1220.

[76]Modell B, Darr A. Science and society: genetic counselling and customary consanguineous marriage [J]. Nat Rev Genet. 2002 Mar;3(3):225-9.

[77]Bittles AH. A community genetics perspective on consanguineous marriage [J]. Community Genet. 2008;11(6):324-30.

[78]Yunis K, Mumtaz G, Bitar F, et al. Consanguineous marriage and congenital heart defects: a case-control study in the neonatal period [J]. Am J Med Genet A. 2006 Jul 15;140(14):1524-30.

[79]Badaruddoza, Afzal M, Akhtaruzzaman. Inbreeding and congenital heart diseases in a north Indian population [J]. Clin Genet. 1994 Jun;45(6):288-91.

[80]Bassili A, Mokhtar SA, Dabous NI, et al. Risk factors for congenital heart diseases in Alexandria, Egypt [J]. Eur J Epidemiol. 2000;16(9):805-14.

[81]芈静. 蚌埠地区0~5岁儿童出生缺陷的流行病学研究[D].安徽:安徽医科大学,2009.

[82]国家卫生健康委办公厅.出生缺陷防治能力提升计划(2023-2027年)[R/OL]. (2023-0817)[2024.02.08].https://www.gov.cn/zhengce/zhengceku/202308/content_6900320.htm.

[83]Chawanpaiboon S, Vogel JP, Moller AB, et al. Global, regional, and national estimates of levels of preterm birth in 2014: a systematic review and modelling analysis [J]. Lancet Glob Health. 2019 Jan;7(1):e37-e46.

[84]Palma A, Morais S, Silva PV, et al. Congenital heart defects and preterm birth: Outcomes from a referral center. Rev Port Cardiol [J]. 2023 May;42(5):403-410. English, Portuguese.

[85]Cnota JF, Gupta R, Michelfelder EC, et al. Congenital heart disease infant death rates decrease as gestational age advances from 34 to 40 weeks [J]. J Pediatr. 2011 Nov;159(5):761-5.

[86]Mátrai Á, Teutsch B, Váradi A, et al. First-Trimester Influenza Infection Increases the Odds of Non-Chromosomal Birth Defects: A Systematic Review and Meta-Analysis [J]. Viruses. 2022 Dec 2;14(12):2708.

[87]Maduro C, Castro LF, Moleiro ML, et al. Pregestational Diabetes and Congenital Heart Defects [J]. Rev Bras Ginecol Obstet. 2022 Oct;44(10):953-961.

[88]Zhu JL, Olsen J, Sørensen HT, et al. Prenatal maternal bereavement and congenital heart defects in offspring: a registry-based study [J]. Pediatrics. 2013 Apr;131(4):e1225-30.

[89]Gu J, Guan HB. Maternal psychological stress during pregnancy and risk of congenital heart disease in offspring: A systematic review and meta-analysis [J]. J Affect Disord. 2021 Aug 1;291:32-38.

[90]Li J, Du Y, Liu Y, et al. Maternal exposure to life events during pregnancy and congenital heart disease in offspring: a case-control study in a Chinese population [J/OL]. BMC Pregnancy Childbirth. 2021 Oct 6;21(1):677.

[91]de Weerth C, Buitelaar JK. Physiological stress reactivity in human pregnancy-a review [J]. Neurosci Biobehav Rev. 2005 Apr;29(2):295-312.

[92]Wadhwa PD, Dunkel-Schetter C, Chicz-DeMet A, et al. Prenatal psychosocial factors and the neuroendocrine axis in human pregnancy [J]. Psychosom Med. 1996 Sep-Oct;58(5):432-46.

[93]Wadhwa PD. Psychoneuroendocrine processes in human pregnancy influence fetal development and health [J]. Psychoneuroendocrinology. 2005 Sep;30(8):724-43.

[94]Wadhwa PD, Culhane JF, Rauh V, Barve SS. Stress and preterm birth: neuroendocrine, immune/inflammatory, and vascular mechanisms. Matern Child Health J. 2001 Jun;5(2):119-25. Reynolds RM. Glucocorticoid excess and the developmental origins of disease: two decades of testing the hypothesis-2012 Curt Richter Award Winner [J]. Psychoneuroendocrinology. 2013 Jan;38(1):1-11.

[95]Weinstock M. The potential influence of maternal stress hormones on development and mental health of the offspring [J]. Brain Behav Immun. 2005;19(4):296–308.

[96]Biddle FG, Fraser FC. Genetics of cortisone-induced cleft palate in the mouse-embryonic and maternal effects [J]. Genetics. 1976;84(4):743–54.

[97]Fraser FC, Fainstat TD. Production of congenital defects in the off-spring of pregnant mice treated with cortisone; progress report [J]. Pediatrics. 1951;8(4):527–33.

[98]McComb M, Bies R, Ramanathan M. Machine learning in pharmacometrics: Opportunities and challenges [J]. Br J Clin Pharmacol. 2022 Feb;88(4):1482-1499.

[99]Choi RY, Coyner AS, Kalpathy-Cramer J, et al. Introduction to Machine Learning, Neural Networks, and Deep Learning [J]. Transl Vis Sci Technol. 2020 Feb 27;9(2):14.

[100]Li H, Luo M, Zheng J, et al. An artificial neural network prediction model of congenital heart disease based on risk factors: A hospital-based case-control study [J]. Medicine (Baltimore). 2017 Feb;96(6):e6090.

[101]Luo Y, Li Z, Guo H, et al. Predicting congenital heart defects: A comparison of three data mining methods [J]. PLoS One. 2017 May 24;12(5):e0177811.

[102]李喆.基于机器学习的新冠疫情预测模型研究[D].长沙:中南大学,2022.

[103]尹畅.基于机器学习的癌症辅助诊断应用研究[D].成都:电子科技大学,2020.

[104]黄国英.先天性心脏病筛查指标及其临床价值[J].中国实用儿科杂志,2013,28(07):503-504.

[105]Yan F, Liu H, Zhang H,et al. Association between maternal exposure to gaseous pollutants and atrial septal defect in China: A nationwide population-based study. Environ Res. 2021 Sep;200:111472.

[106]刘珍,刘芯如,何春花,等.2010—2016年中国5岁以下儿童死亡率及主要死因分析[J].中华预防医学杂志,2019,53(04):411-414.

[107]陈英耀,张洁,李军,等.先天性心脏病的疾病经济负担研究[J].中华医院管理杂志,2007(11):740-744.

[108]商伟静,叶健莉,潘晓平.2004—2018年中国0~1岁儿童先天性心脏病死亡变化与趋势分析[J].中华预防医学杂志,2020,54(11):1249-1254.

[109]周天津,何琳坤,赵梓伶,等.2010至2018年四川省出生缺陷发生情况分析[J].重庆医科大学学报,2021,46(10):1206-1210.

[110]李文先,杜莉,李旻明,等.2016—2018年上海市不同监测时段出生缺陷发病率比较[J].中华疾病控制杂志,2021,25(10):1226-1230.

[111]Wei J, Xia F, Miao J, et al. The risk of congenital heart defects associated with corticosteroids use during the first trimester of pregnancy: a systematic review and meta-analysis. Eur J Clin Pharmacol. 2023 Jan;79(1):1-11.

[112]Rodrigues, M.G., Rodrigues, J.D., Soares, M.M. et al. Improving the quality of life of parents of patients with congenital abnormalities using psychoeducational interventions: a systematic review. Qual Life Res 32, 3027–3037 (2023).

[113]Wang S, He L, Liu S,et al. Comparing the impact of comprehensive care with conventional care in children with congenital heart disease: a systematic review and meta-analysis. Transl Pediatr. 2023 Mar 31;12(3):417-428.

[114]Shrestha O, Thapa N, Karki S,et al. Spectrum of congenital heart disease in Nepal from 2002-2022: A systematic review and meta-analysis. Health Sci Rep. 2023 Mar 13;6(3):e1147.

[115]Derridj N, Ghanchi A, Bonnet D, et al. Early Mortality in Infants Born with Neonatally Operated Congenital Heart Defects and Low or Very-Low Birthweight: A Systematic Review and Meta-Analysis. J Cardiovasc Dev Dis. 2023 Jan 27;10(2):47.

[116]Mires S, Caputo M, Overton T, et al. Maternal micronutrient deficiency and congenital heart disease risk: A systematic review of observational studies. Birth Defects Res. 2022 Oct 15;114(17):1079-1091.

[117]Pan Z, Zhu T, Zhu J, et al. Association between Maternal Selenium Exposure and Congenital Heart Defects in Offspring: A Systematic Review and Meta-Analysis. Iran J Public Health. 2022 Oct;51(10):2149-2158.

[118]Cocomello L, Taylor K, Caputo M, et al. Health and Well-Being in Surviving Congenital Heart Disease Patients: An Umbrella Review With Synthesis of Best Evidence. Front Cardiovasc Med. 2022 Jun 10;9:870474.

[119]Finkel GG, Sun LS, Jackson WM. Children with Congenital Heart Disease Show Increased Behavioral Problems Compared to Healthy Peers: A Systematic Review and Meta-Analysis. Pediatr Cardiol. 2023 Jan;44(1):116-123.

[120]Matthew E. Oster, Lazaros Kochilas, Screening for Critical Congenital Heart Disease[J]. ClinPerinatol. 2016 Mar; 43(1):73-80.

[121]胡晓静,黄国英.新生儿先天性心脏病筛查的研究进展[J].国际儿科学杂志,2014,411(2):120-123.

[122]Pawan Singh, Prabhat Singh Kourav, Shaurya Mohapatra, et al.Human heart health prediction using GAIT parameters and machine learning model,Biomedical Signal Processing and Control,Volume 88, Part A,2024,105696,ISSN 1746-8094

[123]Shelby Kutty, Ling Li, Amanda Polak, et al. Echocardiographic Knowledge-Based Reconstruction for Quantification of the Systemic Right Ventricle in Young Adults With Repaired D-Transposition of Great Arteries,The American Journal of Cardiology,Volume 109, Issue 6,2012,Pages 881-888,ISSN 0002-9149

[124]Theodoros D. Karamitsos, Alexandra Arvanitaki, et al.Myocardial Tissue Characterization and Fibrosis by Imaging,JACC: Cardiovascular Imaging,Volume 13, Issue 5,2020,Pages 1221-1234,ISSN 1936-878X

[125]Gerhard-Paul Diller, Alexandra Arvanitaki, Alexander R. et al.,Lifespan Perspective on Congenital Heart Disease Research: JACC State-of-the-Art Review,Journal of the American College of Cardiology,Volume 77, Issue 17,2021,Pages 2219-2235,ISSN 0735-1097

[126]Surendranath R. Veeram Reddy, Yousef Arar, et al. Invasive cardiovascular magnetic resonance (iCMR) for diagnostic right and left heart catheterization using an MR-conditional guidewire and passive visualization in congenital heart disease,Journal of Cardiovascular Magnetic Resonance,Volume 22, Issue 1,2020,20,ISSN 1097-6647

[127]Yan Li, Ying Hu, Feng Jiang, et al.Combining WGCNA and machine learning to identify mechanisms and biomarkers of ischemic heart failure development after acute myocardial infarction,Heliyon,Volume 10, Issue 5,2024,e27165,ISSN 2405-8440

[128]Naima Vahab, Tarun Bonu, Levin Kuhlmann, et al.Uncovering co-regulatory modules and gene regulatory networks in the heart through machine learning-based analysis of large-scale epigenomic data,Computers in Biology and Medicine,Volume 171,2024,108068,ISSN 0010-4825

[129]Banerjee A, Dashtban A, Chen S, et al. Identifying subtypes of heart failure from three electronic health record sources with machine learning: an external, prognostic, and genetic validation study. Lancet Digit Health. 2023 Jun;5(6):e370-e379.

[130]Leran Chen, Ping Ji, Yongsheng Ma,et al. Custom machine learning algorithm for large-scale disease screening - taking heart disease data as an example,Artificial Intelligence in Medicine,Volume 146,2023,102688,ISSN 0933-3657

[131]Sun Hwa Kwon, Lin Dong.Flexible sensors and machine learning for heart monitoring,Nano Energy,Volume 102,2022,107632,ISSN 2211-2855

[132]Huru Hasanova, Muhammad Tufail, Ui-Jun Baek, et al.A novel blockchain-enabled heart disease prediction mechanism using machine learning,Computers and Electrical Engineering,Volume 101,2022,108086,ISSN 0045-7906

[133]陈训艺,夏焙,陈伟玲.深度学习在儿科先天性心脏病超声心动图诊断的研究进展[J/OL].广东医学:1-5[2024-03-06].

中图分类号:

 R17    

开放日期:

 2024-05-20    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式