| 中文题名: |
新疆优良耐盐促生菌的筛选及其耐盐促生机制的研究
|
| 姓名: |
王琦琦
|
| 学号: |
20192306010
|
| 保密级别: |
公开
|
| 论文语种: |
chi
|
| 学科代码: |
082803
|
| 学科名称: |
工学 - 农业工程 - 农业生物环境与能源工程
|
| 学生类型: |
博士
|
| 学位: |
工学博士
|
| 学位类型: |
学术学位
|
| 学位年度: |
2024
|
| 学校: |
石河子大学
|
| 院系: |
生命科学学院
|
| 专业: |
农业工程
|
| 研究方向: |
祝建波
|
| 第一导师姓名: |
祝建波
|
| 第一导师单位: |
石河子大学
|
| 第二导师姓名: |
林忠平
|
| 完成日期: |
2024-03-01
|
| 答辩日期: |
2024-05-05
|
| 外文题名: |
Screening of Excellent Salt-tolerant and Plant Growth-Promoting Rhizobacteria in Xinjiang and Study of The Salt-tolerant and Plant Growth-Promoting Mechanism
|
| 中文关键词: |
根际耐盐促生菌(Salt-tolerant and plant growth-promoting rhizobacteria ; ST-PGPR)能通过自身活动促进植物对养分的吸收 ; 增强作物抗胁迫能力 ; 促进植物生长 ; 筛选能够适应新疆当地生态环境和作物类型 ; 具有较好的耐盐促生效果的ST-PGPR ; 为开发在新疆适用广泛的微生物菌肥具有重要意义 ; 前期从新疆盐生植物根际筛选获得的耐盐菌株Bacillus pumilus BG-5 ; Glutamicibacter mishrai 1-3-3 ; Staphylococcus succinus 1X1-3以及Enterobacter ludwigii MH-F具有一定的促生效果 ; 但在盐胁迫下促生菌株能产生哪些耐盐促生活性物质 ; 菌株对植物代谢是如何调控的 ; 菌株是否能协助植物塑造有益的根际微生物群落 ; 以及菌株提高植物耐盐性 ; 促进植物生长的作用机制尚不明确 ; 因此 ; 本研究在前期工作的基础上 ; 对其复配组合开展了以下研究工作并得出主要结果如下:
(1)通过盆栽试验 ; 探究4株耐盐促生菌及复配组合F ; G ; H对新疆重要的经济作物玉米 ; 油葵和棉花生长及耐盐性的影响以及对不同土质类型的适应性 ; 结果显示:在盐胁迫下 ; 菌株接种能显著增加玉米 ; 油葵和棉花的地上和地下生物量 ; 促进脯氨酸的积累 ; 提高抗氧化酶活性 ; 但不同菌株对不同作物及土壤类型适应性不同 ; 菌株1-3-3在不同作物间的耐盐促生效果产生了物种差异 ; 对油葵的生长作用更好 ; BG-5促生效果受土壤类型影响较大 ; 更适用于中度盐碱沙壤土 ; 复合接种比单一接种耐盐促生效果更显著 ; 其中1X1-3以及复合处理F ; G的耐盐促生效果最显著且适应性最强 ;
(2)通过3年棉花田间试验 ; 探究菌株及其复配组合与不同施用量(0% ; 60% ; 80%和100%)的化肥联合施用 ; 对棉花整个生长发育期农艺性状及产量的影响 ; 结果显示:菌株接种处理显著增加棉花苗期株高 ; 叶面积 ; 蕾期的蕾数 ; 花铃期的地上鲜重和铃数 ; 增加收获期产量 ; 菌与化肥的联合施用在田间种植的棉花中表现出极显著的生长优势 ; 其中1X1-3和复配组合F增产效果最好 ; 联合60%的化肥时产量就达到了只施用(100%)化肥的效果 ; 三年平均产量为6835.33和6299.95 kg/hm2 ; 分别增加了26.08%和16.77% ; 通过盆栽试验及棉花田间试验 ; 筛选出一株适应性强 ; 作用范围广 ; 且实际应用效果稳定的优良ST-PGPR菌株1X1-3 ; 进行耐盐促生机制的探究 ;
(3)通过非靶向代谢组学 ; 探究盐胁迫下菌株1X1-3对棉花根系分泌物的响应 ; 进而挖掘潜在的耐盐促生活性物质 ; 分析其可能的直接耐盐促生作用 ; 结果显示:盐胁迫下棉花根系分泌物显著诱导了菌株1X1-3产生5-羟基阿魏酸酯 ; 邻苯二甲酸盐 ; 顺式-(高)2-乌头酸酯 ; 它们分别被注释到苯丙烷生物合成 ; 甲烷代谢 ; ABC转运蛋白等代谢途径中 ; 我们推断 ; 菌株1X1-3感应到了盐胁迫下棉花根系分泌物组分的变化 ; 通过5-羟基阿魏酸酯的富集调控了苯丙烷这类抗氧化物质的生物合成 ; 减少了外界活性氧对自身的损伤 ; 增强了对盐胁迫的适应性 ; 通过顺式-(高)2-乌头酸酯的显著富集调控了甲烷代谢 ; 促进了棉花根际养分循环 ; 有利于棉花在盐胁迫下生物量的积累 ; 通过邻苯二甲酸盐的积累调控了ABC转运蛋白活性 ; 促进了菌株1X1-3与棉花之间的物质交流及信号感知 ; 增强了植物与菌株1X1-3之间的协同作用 ;
(4)通过广泛靶向代谢组学 ; 探究菌株1X1-3对棉花根系分泌物的影响 ; 分析该菌株对棉花耐盐促生的直接作用 ; 结果表明:盐胁迫下 ; 菌株1X1-3接种使棉花根系分泌物中黄酮类化合物 ; 精氨酸和脯氨酸生物合成代谢通路显著增强 ; 我们推断 ; 盐胁迫下菌株1X1-3通过增加棉花根系分泌物中3-异丙基-6-亚甲基-1-环己烯等抗菌物质抑制了病原菌的生长 ; 提高了有益微生物的竞争优势 ; 通过高车前素和木犀草素等黄酮类物质积累 ; 激活了棉花体内抗氧化酶活性 ; 减少盐胁迫造成的氧化损伤 ; 通过无水肌酸的积累 ; 调控了棉花精氨酸和脯氨酸代谢 ; 有利于维持了棉花细胞渗透平衡 ; 也为根际微生物提供了营养物质 ; 改善了棉花根际微生态环境 ; 有利于PGPR菌群的塑造 ;
(5)通过宏基因组学方法 ; 探究菌株1X1-3对棉花根际微生物群落结构及功能的影响 ; 分析其耐盐促生的间接作用 ; 结果表明:菌株1X1-3接种显著增加了盐胁迫下棉花根际Deltaproteobacteria_bacterium ; Hyphomicrobiales_bacterium和Myxococcales_bacterium等有益微生物菌群的显著富集 ; 促进了棉花生物量的积累 ; 提高了棉花抗氧化酶活性 ; 菌株1X1-3接种也增加了棉花根际微生物相关网络的复杂性 ; 促进了微生物之间的紧密交流 ; 有利于有益微生物菌群的塑造 ;
(6)通过多组学联合分析 ; 拟构建菌株1X1-3-棉花-根际微生物之间的相互作用模型 ; 分析菌株1X1-3可能的耐盐促生作用机制 ; 结果表明:盐胁迫下 ; 菌株1X1-3特异性产生5-羟基阿魏酸酯 ; 邻苯二甲酸盐等差异代谢物与棉花根系分泌物中&gamma ; -氨基丁酸 ; 氯化胆碱等呈极显著的正相关关系 ; 棉花根系分泌物中这些差异代谢物促进Bradyrhizobium ; Cystobacter ; Myxococcus等有益微生物以及参与双组分系统 ; 群体感应系统相关通路的K00990 ; K02035基因显著富集 ; 增加了植物根际微生物群落之间的相互交流及生态位的竞争 ; 通过与ABC转运蛋白的K02015相关的基因的显著富集 ; 促进了根际微生物之间的物质信息交流与能量交换 ; 有利于形成更稳定的微生物群落结构 ; 通过增加参与抗生素的生物合成相关通路的K01714基因的富集 ; 抑制了病原微生物的生长 ; 增加了有益微生物的竞争优势 ; 因此 ; 我们提出了菌株1X1-3耐盐促生作用模型:盐胁迫下 ; 菌株1X1-3接种 ; 产生的活性代谢物引发了棉花根系分泌物的代谢重编程 ; 微生物感知了这些棉花根系分泌物中这些特性代谢物后 ; 通过群体感应或双组分系统相关的基因选择性的表达 ; 促进了微生物间的信号交流 ; 招募了有益微生物菌群 ; 诱导了盐胁迫下微生物组的选择性“组装” ; 形成彼此有利的生态位及竞争优势 ; 最终塑造了稳定的微生物组 ;
结论:本研究通过探究4株ST-PGPR菌株对不同作物及不同类型土壤的耐盐促生效果的适应性及稳定性 ; 筛选出了一株作用范围广 ; 适应性强 ; 且促生效果稳定的菌株S. succinus 1X1-3 ; 为适应新疆本土的微生物菌剂的开发提供了物质基础 ; 通过多组学联合分析揭示了菌株1X1-3对棉花的耐盐促生的生理生态机制 ; 为深入了解盐胁迫下菌株1X1-3与棉花的耐盐促生机制提供了新见解 ; 为深入挖掘及开发菌株1X1-3潜在的功能提供了理论依据 ;
|
| 外文关键词: |
Salt-tolerant and plant growth-promoting rhizobacteria (ST-PGPR) can promote the absorption of nutrients by plants ; enhance the ability of crops to resist stress ; and promote plant growth through its own activities. It is of great significance to screen ST-PGPR that can adapt to the local ecological environment and crop types in Xinjiang and have good salt tolerance and growth promotion effect ; so as to develop microbial fertilizers that are widely applicable in Xinjiang. The ST-PGPR strains of Bacillus pumilus BG-5 ; Glutamicibacter mishrai 1-3-3 ; Staphylococcus succinus 1X1-3 ; and Enterobacter ludwigii MH-F were obtained through preliminary screening from halophytes rhizosphere in Xinjiang ; and have good salt tolerant and plant growth promoting effects. What salt tolerant and growth promoting substances can PGPR strain produce under salt stress ; how PGPR strains regulated plant metabolism ; whether PGPR strain can assist plants in shaping beneficial rhizosphere microbial-communities ; and the mechanisms by PGPR strain improve plant salt tolerance and promote growth are still unclear. Therefore ; based on the previous work ; this study conducted the following research on its compound combinations ; and the main results are as follows:
(1) Through pot experiments ; The effects of four salt-tolerant growth-promoting bacteria and their compound combinations F ; G and H on the growth and salt tolerance of maize ; oil sunflower and cotton in Xinjiang ; as well as their adaptability to different soil types were investigated. The results showed that under salt stress ; strain inoculation significantly increased the aboveground and underground biomass ; promoted the accumulation of proline ; improved antioxidant enzyme activity ; and enhanced salt tolerance and promoted growth of corn ; oil sunflower ; and cotton. But different strains have different adaptability to different crops and soil types. Strain 1-3-3 showed differences in salt tolerance and growth promotion among different crops species ; resulting in better growth-promoting effects on sunflowers. The growth-promoting effect of BG-5 was greatly affected by soil type ; and it was more suitable for moderate saline-alkali soil. Co-inoculation has a more significant effect on promoting salt tolerance and growth than single inoculation. 1X1-3 and the co-inoculation F and G had the most significant salt tolerance and adaptability.
(2) Through a 3-year cotton field experiment ; we combined the salt-tolerant strains with different application amounts of chemical fertilizers (0% ; 60% ; 80% ; and 100%) to investigate the effects of 4 salt-tolerant bacteria and their combination on the agronomic traits and yield throughout cotton growth and development period. The results showed: the bacteria strain inoculation treatment significantly increased the plant height ; leaf area during the seedling stage ; number of buds during the budding stage ; aboveground fresh weight and number of bolls during the flowering and bolling stage ; and increased the yield during the bolls opening period. The combined application of bacteria and chem-fertilizers has shown significant growth advantages in cotton grown in the field. Among them ; 1X1-3 and co-inoculation F have the best yield increasing effect ; and the yield of only (100%) chemical fertilizer was achieved when 60% chemical fertilizer was combined ; and the three-year average yield was 6835.33 and 6299.95 kg/hm2 ; an increase of 26.08% and 16.77% ; respectively. Therefore ; we selected strain 1X1-3 as an excellent ST-PGPR for subsequent mechanisms research on salt tolerant and plant growth promoting. Through pot experiments and cotton field experiments ; an excellent ST-PGPR strain 1X1-3 with strong adaptability ; wide range of action and stable practical application effect was screened out to explore the mechanism of salt tolerance and growth promotion.
(3) Through non-targeted metabolomics ; we investigate the response of 1X1-3 to cotton root exudates under salt stress ; and then explore the potential functional metabolites for salt tolerant and plant growth-promoting. The results showed: under salt stress ; cotton root exudates significantly induce strain 1X1-3 to produce 5-hydroxyferulic acid esters ; phthalates ; and cis-(Homo)-2-aconitate ; which are annotated into metabolic pathways such as linoleic acid metabolism ; ABC transporters ; methane metabolism ; and phenylpropanoid biosynthesis. We infer that strain 1X1-3 sensed changes in the composition of cotton root exudates under salt stress and regulated phenylpropanoid biosynthesis through the enrichment of 5-hydroxyferulic acid esters ; clears the reactive oxygen species in the cotton rhizosphere ; and also reduces the damage of external reactive oxygen species to itself ; The significant enrichment of cis-(Homo)-2-aconitate regulated methane metabolism and improved the absorption of nutrients by cotton under salt stress ; The accumulation of phthalates regulates the activity of ABC transporters ; promoted material exchange and signal perception between strain 1X1-3 and cotton ; and enhanced the synergistic effect between cotton and strain 1X1-3.
(4) Through wide target metabolomics ; the effect of strain 1X1-3 on cotton root exudates was explored ; and the direct effect of this strain on salt tolerance and growth promotion of cotton was analyzed. The results showed: inoculation with strain 1X1-3 significantly promoted the accumulation of flavonoids in cotton root exudates and enhanced the biosynthetic metabolic pathways of arginine and proline metabolism. We speculated that strain 1X1-3 inhibits the growth of pathogens by increasing the secretion of 3-isopropyl-6-methyl-1-cyclohexene in cotton roots under salt stress ; reducing the niche competitiveness of harmful microorganisms with PGPR ; enhancing the competitive advantage of beneficial microbe ; Strain 1X1-3 activated the antioxidant enzyme activity in cotton ; reduces oxidative damage caused by salt stress through accumulating flavonoids such as resveratrol and luteolin ; Through the accumulation of creatine ; the metabolism of arginine and proline in cotton is regulated ; which is conducive to maintaining the osmotic balance of cotton cells ; providing nutrients for rhizosphere microorganisms ; improving the microecological environment of cotton rhizosphere ; shaping the PGPR microbial community.
(5) Through metagenomics ; we investigated the effect of 1X1-3 inoculation on the microbial community structure and function of cotton rhizosphere under salt stress. The results showed: inoculation of strain 1X1-3 significantly increased the enrichment of beneficial microbial communities in the cotton rhizosphere under salt stress ; such as Deltaproteobacteria_bacterium ; Hypomicrobiales_bacterium and Myxococces_bacterium ; it promoted the accumulation of cotton biomass and increased the activity of antioxidant enzymes in cotton. At the same time ; it also increased the complexity of the common linear network of cotton rhizosphere microorganisms ; promoted close communication between microorganisms ; and facilitated the shaping of beneficial microbial communities.
(6) Through multi omics joint analysis ; we construct an interaction model between strain 1X1-3-cotton-rhizosphere microorganisms to analyze the possible mechanism of salt tolerance and growth promotion of strain 1X1-3. The results showed: the specific metabolites produced by strain 1X1-3 (5-hydroxyferulicr ; phthalate ; cis - (Homo) 2-aconitic acid ester) were significant positive correlated with root exudates of cotton under salt stress ; such as &gamma ; -aminobutyric acid ; Choline (Bitartrate) ; Choline (Chloride) and 1-oleoyl-SN-glycerol-3-phosphatecholine. The changed of metabolites of cotton root exudates significantly increased the enrichment of beneficial microbial communities such as Bradyrhizobium ; Cytoactor ; Myxococcus ; Ramlibactor ; and also led to the significant enrichment of K00990 and K02035 genes involved in the two-component system and quorum sensing system related pathways ; that increased mutual communication and competition for ecological niches between microbial communities in cotton rhizosphere ; The significant enrichment of K02015 genes related to ABC transporter promotes material information communication and energy exchange among rhizosphere microorganisms ; which is conducive to the formation of a more stable and beneficial community structure of PGPR ; The increasing of the enrichment of K01714 gene involved in the biosynthesis pathway of antibiotics ; that inhibited the growth of pathogenic microorganisms ; and increased the competitive advantage of beneficial microorganisms. Therefore ; we propose an interaction model for strain 1X1-3 to enhance plant salt tolerance and promote growth: the inoculation of strain 1X1-3 produces active metabolites that trigger metabolic reprogramming of cotton root exudates. Microorganisms perceive these characteristic metabolites in cotton root exudates and promote signal exchange between microorganisms through gene selectivity expression related to quorum sensing or two-component systems ; recruiting beneficial microbial communities and inducing selective " ; assembly" ; of microbial communities under salt stress ; forming mutually advantageous ecological niches and competitive advantages ; shapes a stable microbial community ultimately.
Conclusion: our study explored the adaptability and stability of 4 ST-PGPR strains to salt tolerance and plant growth-promotion effects on different crops and different types of soils through potting experiments ; and combine with practical application in cotton fields ; S. succinus 1X1-3 we screened out because of it&rsquo ; s wide range of effect ; strong adaptability ; and stable growth promotion effects. We provided a material basis for the development of microbial agents adapted to the local conditions of Xinjiang. The physiological and ecological mechanisms of strain 1X1-3 in promoting salt tolerance and growth of cotton were revealed through multi omics joint analysis ; providing new insights into the salt tolerance and growth promoting mechanisms of strain 1X1-3 in cotton under salt stress ; and providing theoretical basis for further exploring and developing the potential functions of strain 1X1-3.
|
| 中文摘要: |
︿
关键词:耐盐促生菌;植物耐盐性;根系分泌物;根际微生物;生理生态机制
﹀
|
| 外文摘要: |
︿
Keywords: Plant growth-promoting rhizobacteria; plant salt tolerance; root exudates; rhizosphere microorganisms; physiological and ecological mechanisms
﹀
|
| 参考文献: |
︿
[1]Allbed A, Kumar, L. Soil salinity mapping and monitoring in arid and semi-arid regions using remote sensing technology: A Review [J]. Advances in Remote Sensing, 2013, 2: 373-385. [2]Sahbeni G, Ngabire M, Peter K. Musyimi, et al. Challenges and Opportunities in Remote Sensing for Soil Salinization Mapping and Monitoring: A Review [J]. Remote Sensing, 2023, 15(10): 2540. [3]Shereif H. Mahmoud J. Adamowski A, et al. Rainwater harvesting for the management of agricultural droughts in arid and semi-arid regions [J]. Paddy and Water Environment, 2016, 14(1): 231-246. [4]Nachshon U. Cropland soil salinization and associated hydrology: Trends, processes and examples [J]. Water, 2018, 10 (8): 1030. [5]Wichelns D, Qadir M. Achieving sustainable irrigation requires effective management of salts, soil salinity, and shallow groundwater [J]. Agricultural Water Management, 2015, 157: 31-38. [6]商振芳,谢思绮,罗旺,等.我国盐碱地现状及其改良技术研究进展[C].中国环境科学学会2019年学术年会,西安:中国环境科学学会,2019:10. [7]Rajput V D, Chen Y, Ayup M. Effects of high salinity on physiological and anatomical indices in the early stages of Populus euphratica growth [J]. Russian Journal of Plant Physiology, 2015, 62(2): 229-236. [8]Abuelgasim A, Ammad R. Mapping soil salinity in arid and semi-arid regions using Landsat 8 OLI satellite data [J]. Remote Sensing Applications: Society and Environment, 2019, 13: 415-425. [9]张方硕.南疆棉田盐渍化土壤分区管理研究-以阿拉尔垦区为例[D].新疆:塔里木大学,2023. [10]王娜,罗玉虎.盐碱地可持续利用及改良技术研究进展[J].环境保护前沿,2021, 11(3): 589-594. [11]Bulgari R, Franzoni G, Ferrante A. Biostimulants application in horticultural crops under abiotic stress conditions [J]. Agronomy, 2019, 9(6): 306. [12]Su J, Qiu Y, Yang X, et al. Dose–effect relationship of water salinity levels on osmotic regulators, nutrient uptake, and growth of transplanting vetiver [Vetiveria zizanioides (L.) Nash] [J]. Plants, 2021, 10(3): 562. [13]Saddiq M S, Iqbal S, Hafeez M B, et al. Effect of salinity stress on physiological changes in winter and spring wheat [J]. Agronomy, 2021, 11(6): 1193. [14]Etesami H, Glick B R. Halotolerant plant growth–promoting bacteria: Prospects for alleviating salinity stress in plants [J]. Environmental and Experimental Botany, 2020, 178: 104124. [15]Zelm E, Zhang Y, Testerink C. Salt tolerance mechanisms of plants [J]. Annual Review of Plant Biology, 2020, 71: 403-433. [16]南楠.盐胁迫对水稻粮食安全影响的研究进展[J].粮食问题研究,2022,(05):9-11+43. [17]赵梦娟.耐盐促生菌的筛选及其对盐胁迫下紫花苜蓿幼苗的促生研究[D].山东:青岛大学,2023. [18]Munns R. Tester M. Mechanisms of salinity tolerance [J]. Annual Review of Plant Biology, 2008, 59: 651-681. [19]Isayenkov S V, Dabravolski S A, Pan T, et al. Phylogenetic diversity and physiological roles of plant monovalent cation/H(+) antiporters [J]. Frontiers in Plant Science, 2020, 11: 573564. [20]Slama I, Abdelly C, Bouchereau A, et al. Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress [J]. Annals of Botany, 2015, 115(3): 433-447. [21]朱生堡,乌尔古丽·托尔逊,唐光木,等.新疆盐碱地变化及其治理措施研究进展[J].山东农业科学,2023,55(03):158-165. [22]刘庚炜,高雅琪,邵泽璇,等.土壤盐渍化修复技术研究进展[J].黑龙江农业科学,2024,(01):99-107. [23]王健,李傲瑞.我国盐碱地改良技术综述[J].现代农业科技,2019,(21):182-183+185. [24]张国增.辽西半干旱地区石质山客土袋造林技术研究[J].农业开发与装备,2019,(01):218. [25]许璇,何新林,衡通,等.干旱区膜下滴灌配合暗管与竖井排水对棉田土壤盐分的影响[J].干旱地区农业研究,2021,39(06):95-104. [26]耿其明,闫慧慧,杨金泽,等.明沟与暗管排水工程对盐碱地开发的土壤改良效果评价[J].土壤通报,2019,50(03):617-624. [27]张翼夫,李问盈,胡红,等.盐碱地改良研究现状及展望[J].江苏农业科学,2017,45(18):7-10. [28]李立功,张燕修,聂存侠,等.生物技术在冬小麦种植中的化肥减施增效作用[J].农业科学,2022,5(6):10-12. [29]Agegnehu G, Amede T. Integrated soil fertility and plant nutrient management in tropical agro-ecosystems: A Review [J]. Pedosphere, 2017, 27(4): 662-680. [30]Rahman M M, Mostofa M G, Keya S S, et al. Adaptive mechanisms of halophytes and their potential in improving salinity tolerance in plants [J]. International Journal of Molecular Sciences, 2021, 22(19):10733. [31]Nikalje G C, Srivastava A K, Pandey G K, et al. Halophytes in biosaline agriculture: Mechanism, utilization, and value addition [J]. Land Degradation and Development, 2018, 29(4): 1081-1095. [32]Yucel C, Farhan M J, Khairo A M, et al. Evaluating salicornia as a potential forage crop to remediate high groundwater-table saline soil under continental climates [J]. International Journal of Plant and Soil Science, 2017, 16(6): 1-10. [33]Wang L, Wang X, Jiang L, et al. Reclamation of saline soil by planting annual euhalophyte Suaeda salsa with drip irrigation: A three-year field experiment in arid northwestern China [J]. Ecological Engineering, 2020, 159: 16090. [34]Chen R, Huang J W, Chen Zh K, et al. Effect of root density of wheat and okra on hydraulic properties of an unsaturated compacted loam [J]. European Journal of Soil Science, 2019, 70(3): 493-506. [35]Zhang W, Gao W, Whalley W R, et al. Physical properties of a sandy soil as affected by incubation with a synthetic root exudate: Strength, thermal and hydraulic conductivity, and evaporation [J]. European Journal of Soil Science, 2021, 72(2): 782-792. [36]Sasse J, Martinoia E, Northen T. Feed your friends: Do plant exudates shape the root microbiome? [J]. Trends in Plant Science, 2018, 23(1): 25-41. [37]Han X, Qu Y, Li D, et al. Remediation of saline-sodic soil by plant microbial desalination cell [J]. Chemosphere, 2021, 277: 130275. [38]Prasad H, Parmar Y S, Sajwan P, et al. Effect of organic manures and biofertilizer on plant growth, yield and quality of horticultural crop: A review [J]. 2017, 5(1): 217-221. [39]沙月霞,李明洋,伍顺华,等.微生物菌剂拌土对盐碱地玉米茎基腐病的预防及促生效果[J]. 中国农学通报,2021,37(05):75-82. [40]杨劲松,姚荣江,王相平,等.中国盐渍土研究:历程,现状与展望[J].土壤学报,2022,59(1):18. [41]王巍琦,杨磊,程志博,等.干旱区不同类型盐碱地土壤微生物碳源代谢活性研究[J].干旱区资源与环境,2019,(6):9. [42]Li Z, Liu Z, Wang Y, et al. Improving soil phosphorus availability in saline areas by marine bacterium Bacillus paramycoides [J]. Environmental Science and Pollution Research, 2023, 30(52): 112385-112396. [43]刘干.耐盐碱微生物的筛选及对盐渍土的改良试验[D].江苏:中国矿业大学,2023. [44]王启尧,赵庚星,赵永昶,等.微生物菌肥的降盐效果及对冬小麦生长的影响[J].北方农业学报,2021,49(05):63-68. [45]You Y, Chi Y, Chen X, et al. A sustainable approach for bioremediation of secondary salinized soils: Studying remediation efficiency and soil nitrate transformation by bioaugmentation [J]. Chemosphere, 2022, 300: 134580. [46]Arora N K, Fatima T, Mishra J, et al. Halo-tolerant plant growth promoting rhizobacteria for improving productivity and remediation of saline soils [J]. Journal of Advanced Research, 2020, 26: 69-82. [47]Kapadia C, Patel N, Rana A, et al. Evaluation of plant growth-promoting and salinity ameliorating potential of halophilic bacteria isolated from saline soil [J]. Frontiers in Plant Science, 2022, 13: 946217. [48]Albdaiwi R N, Hala K H, Ayad J Y, et al. Isolation and characterization of halotolerant plant growth promoting rhizobacteria from durum wheat (Triticum turgidum subsp. durum) cultivated in saline areas of the dead sea region [J]. Frontiers in Microbiology, 2019, 10: 01639. [49]Hassan Etesami, Dinesh K. Maheshwari. Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects [J]. Ecotoxicology and Environmental Safety, 2018, 156: 225-246. [50]Wang K, Hou J, Zhang S, et al. Preparation of a new biochar-based microbial fertilizer: Nutrient release patterns and synergistic mechanisms to improve soil fertility [J]. Science of The Total Environment, 2023, 860: 160478. [51]Xue L, Sun B, Yang Y, et al. Efficiency and mechanism of reducing ammonia volatilization in alkaline farmland soil using Bacillus amyloliquefaciens biofertilizer [J]. Environmental Research, 2021, 202: 111672. [52]Zhao S, Wang H, Wang J. Synthesis and application of a compound microbial inoculant for effective soil remediation [J]. Environmental Science and Pollution Research, 2023, 30(57): 120915-120929. [53]Singh U B, Malviya D, Singh S, et al. Salt-tolerant compatible microbial inoculants modulate physio-biochemical responses enhance plant growth, Zn biofortification and yield of wheat grown in saline-sodic soil [J]. International Journal of Environmental Research and Public Health, 2021, 18(18): 9936. [54]Hiltner L. U ¨ber neuere erfahrungen und probleme auf dem gebiete der bodenbakteriologie unter besonderer beru¨cksichtigung der gru ¨ndu¨ngung und brache [J]. Arbeitender Deutschen Landwirtschaftlichen Gesellschaft, 1904, 98:59–78. [55]Egamberdieva D, Wirth S, Bellingrath-Kimura S D, et al. Salt-tolerant plant growth promoting rhizobacteria for enhancing crop productivity of saline soils [J]. Frontiers in Microbiology, 2019, 10: 02791. [56]Hirendra K D. Chapter One - Azotobacters as biofertilizer [M]. UNITED STATES: Advances in Applied Microbiology Press, 2019: 1-43. [57]Rasheeda S M, Mary Isabella Sonali J, P. Senthil Kumar, et al. Rhizobium mayense sp. Nov., an efficient plant growth-promoting nitrogen-fixing bacteria isolated from rhizosphere soil [J]. Environmental Research, 2023, 220: 115200. [58]Mahmud F M A, Islam M A, Rubel M H, et al. Effects of halotolerant rhizobacteria on rice seedlings under salinity stress [J]. Science of The Total Environment, 2023, 892: 163774. [59]Gobinda D, Banerjee P, Sharma R K, et al. Management of phosphorus in salinity-stressed agriculture for sustainable crop production by salt-tolerant phosphate-solubilizing bacteria—A Review [J]. Agronomy, 2021, 11(8): 1552. [60]Wang Z, Zhang H, Liu L, et al. Screening of phosphate-solubilizing bacteria and their abilities of phosphorus solubilization and wheat growth promotion [J]. BMC Microbiology, 2022, 22(1): 296. [61]Ullah A, Nisar M, Ali H, et al. Drought tolerance improvement in plants: An endophytic bacterial approach [J]. Applied Microbiology and Biotechnology, 2019, 103: 548246. [62]Wang Y, Zhang G, Huang Y, et al. A potential biofertilizer—siderophilic bacteria isolated from the rhizosphere of Paris polyphylla var. yunnanensis [J]. Frontiers in Microbiology, 2022, 13: 870413. [63]Deb C R, Tatung M. Siderophore producing bacteria as biocontrol agent against phytopathogens for a better environment: A review [J]. South African Journal of Botany, 2024, 165: 153-162. [64]Gupta R, Khan F, Alqahtani F M, et al. Plant growth–promoting rhizobacteria (PGPR) assisted bioremediation of heavy metal toxicity [J]. Applied Biochemistry and Biotechnology, 2023: 29. [65]Sheng M M, Jia H K, Zhang G Y, et al. Siderophore Production by rhizosphere biological control bacteria Brevibacillus brevis GZDF3 of Pinellia ternata and its antifungal effects on Candida albicans [J]. Journal of Microbiology and Biotechnology, 2020, 30(5): 689-699. [66]Betoudji F, Rahman T A E, Miller M J, et al. A siderophore analog of fimsbactin from Acinetobacter hinders growth of the phytopathogen Pseudomonas syringae and induces systemic priming of immunity in Arabidopsis thaliana [J]. Pathogens, 2020, 9(10): 806. [67]Gouda S, Kerry R G, Das G, et al. Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture [J]. Microbiological Research, 2018, 206: 131-140. [68]Azarmi F, Mozaffari V, Hamidpour M, et al. Interactive effect of fluorescent pseudomonads rhizobacteria and Zn on the growth, chemical composition, and water relations of pistachio (Pistacia vera L.) seedlings under nacl stress [J]. Communications in Soil Science and Plant Analysis, 2016, 47(8): 955-972. [69]Bhat M A, Kumar V, Bhat M A, et al. Mechanistic insights of the interaction of plant growth-promoting rhizobacteria (PGPR) with plant roots toward enhancing plant productivity by alleviating salinity stress [J]. Frontiers in Microbiology, 2020, 11: 01952. [70]Feng L, Li Q, Zhou D, et al. B. subtilis CNBG-PGPR-1 induces methionine to regulate ethylene pathway and ROS scavenging for improving salt tolerance of tomato [J]. The Plant Journal, 2024, 117(1): 193-211. [71]Bharti N, Pandey S S, Barnawal D, et al. Plant growth promoting rhizobacteria Dietzia natronolimnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress [J]. Scientific Reports, 2016, 6(1): 34768. [72]Huang Z, Wang C, Feng Q, et al. The mechanisms of sodium chloride stress mitigation by salt-tolerant plant growth promoting rhizobacteria in wheat [J]. Agronomy, 2022, 12(3): 543. [73]Urooj N, Bano A, Riaz A. Role of PGPR on the physiology of sunflower irrigated with produced water containing high total dissolved solids (TDS) and its residual effects on soil fertility [J]. International Journal of Phytoremediation, 2022, 24(6): 567-579. [74]Ghosh D, Sen S, Mohapatra S. Modulation of proline metabolic gene expression in Arabidopsis thaliana under water-stressed conditions by a drought-mitigating Pseudomonas putida strain [J]. Annals of Microbiology, 2017, 67(10): 655-668. [75]Khan M H U, Khattak J Z K, Jamil M, et al. Bacillus safensis with plant-derived smoke stimulates rice growth under saline conditions [J]. Environmental Science and Pollution Research, 2017, 24(30): 23850-23863. [76]李海峰.一株碱蓬耐盐菌的分离鉴定及对盐胁迫下玉米生长的影响[D].山东:山东农业大学,2019. [77]张银翠.莫哈韦芽孢杆菌(Bacillus mojavensis)对燕麦盐胁迫的缓解效应及机理研究[D].甘肃:甘肃农业大学,2023. [78]李星志.小麦内生耐盐细菌分离鉴定及成团泛菌YN1增强小麦耐盐分析[D].山东:山东农业大学,2021. [79]Dodd I C, Zinovkina N Y, Safronova V I, et al. Rhizobacterial mediation of plant hormone status [J]. Annals of Applied Biology, 2010, 157(3): 361-379. [80]Ilangumaran, Smith D L. Plant growth promoting rhizobacteria in amelioration of salinity stress: A systems biology perspective [J]. Frontiers in Plant Science, 2017, 8: 01768. [81]Patel T, Saraf M. Biosynthesis of phytohormones from novel rhizobacterial isolates and their in vitro plant growth-promoting efficacy [J]. Journal of Plant Interactions, 2017, 12(1): 480-487. [82]EgamberdievaZulfiya D, Kucharova Z. Selection for root colonising bacteria stimulating wheat growth in saline soils [J]. Biology and Fertility of Soils, 2009, 45: 563-570. [83]Belimov, A A, Dodd I C, Safronova V I, et al. Abscisic acid metabolizing rhizobacteria decrease ABA concentrations in planta and alter plant growth [J]. Plant Physiology and Biochemistry, 2014, 2014, 74: 84-91. [84]孙庆培,樊永红,李佩琪,等.三株产ACC脱氨酶的植物根际促生菌产酶条件优化及促生作用研究[J].中国土壤与肥料,2023,(2):234-241. [85]Singh R P, Ma Y, Shadan A. Perspective of ACC-deaminase producing bacteria in stress agriculture [J]. Journal of Biotechnology, 2022, (352-): 352. [86]李明源,王继莲,田世梅.盐爪爪根际产ACC脱氨酶菌株筛选及促生特性研究 [J].核农学报,2023,37(11):2151-2157. [87]晋婷婷,曹永清,李云玲,等.一株连香树根际促生细菌LWK2的分离鉴定及其全基因组序列分析[J].微生物学通报,2023,50(5):1917-1940. [88]李丽艳,谭海霞,李婧,等.耐盐促生芽孢杆菌的筛选及其对盐胁迫下燕麦生长的影响[J].浙江农业学报,2022,34(6):9. [89]陈小娟,刘铠鸣,宣明刚,等.增强作物耐盐胁迫能力的根际促生菌筛选,鉴定及田间应用效果[J].南京农业大学学报,2020,43(3):8. [90]雷凌云,钟巧芳,熊子璇,等.药用野生稻拮抗稻瘟病内生细菌的筛选、鉴定及发酵条件优化[J].微生物学通报,2023,50(10):4499-4509. [91]梅凤珍.根结线虫生防细菌Y26发酵条件优化及其防治效果初评[D].河北:河北科技师范学院,2023. [92]李赛,高翔宇,苏飞鸿,等.短小芽孢杆菌KX-33做种衣剂对棉花枯萎病的田间防效[J].新疆农业科技,2022,(03):39-43. [93]Dobrzyński J, Jakubowska Z, Kulkova I, et al. Biocontrol of fungal phytopathogens by Bacillus pumilus [J]. Frontiers in Microbiology, 2023, 14: 1194606. [94]Hajiabadi A A, Arani A M, Etesami H. Salt-tolerant genotypes and halotolerant rhizobacteria: A potential synergistic alliance to endure high salinity conditions in wheat [J]. Environmental and Experimental Botany, 2022, 202: 105033. [95]Wang G, Zhang L, Zhang S, et al. The combined use of a plant growth promoting Bacillus sp. strain and GABA promotes the growth of rice under salt stress by regulating antioxidant enzyme system, enhancing photosynthesis and improving soil enzyme activities [J]. Microbiological Research, 2023, 266: 127225. [96]Zilaie M N, Arani A M, Etesami H, et al. Halotolerant rhizobacteria enhance the tolerance of the desert halophyte Nitraria schoberi to salinity and dust pollution by improving its physiological and nutritional status [J]. Applied Soil Ecology, 2022, 179: 104578. [97]王国栋,张星,李恒,等.微生物菌剂包膜无机肥料的制备[J].磷肥与复肥,2022,37(01):15-17. [98]Das L, Deb S, Das S K. Glutamicibacter mishrai sp. nov., isolated from the coral Favia veroni from Andaman sea [J]. Archives of Microbiology, 2020, 202(4): 733-745. [99]连丹.Glutamicibacter mishrai NJAU-1菌株产外切菊粉酶发酵条件的优化及其外切菊粉酶的酶学性质分析[D].江苏:南京农业大学,2021. [100]Lian D, Zhuang S, Shui C, et al. Characterization of inulolytic enzymes from the Jerusalem artichoke–derived Glutamicibacter mishrai NJAU-1 [J]. Applied Microbiology and Biotechnology, 2022, 106(17): 5525-5538. [101]Luo H, Yang C, Pang M, et al. Efficient removal of heavy metals by endophytic bacteria Staphylococcus succinus H3 [J]. Journal of Applied Microbiology, 2022, 134(1): 040. [102]Jeong D, Heo S, Lee B, et al. Effects of the predominant bacteria from meju and doenjang on the production of volatile compounds during soybean fermentation [J]. International Journal of Food Microbiology, 2017, 262: 8-13. [103]Li Y, Luo X, Guo H, et al. Metabolomics and metatranscriptomics reveal the influence mechanism of endogenous microbe (Staphylococcus succinus) inoculation on the flavor of fermented chili pepper [J]. International Journal of Food Microbiology, 2023, 406: 110371. [104]韩雪娇.杨树根际土壤解磷细菌的筛选,解磷特性及其油菜促生效应研究[D].江苏:淮阴工学院,2021. [105]Li Q, Sun X, Yu K, et al. Enterobacter ludwigii protects DSS-induced colitis through choline-mediated immune tolerance [J]. Cell Reports, 2022, 40(9): 111308. [106]Pan X, Wang S, Shi N, et al. Biodegradation and detoxification of chlorimuron-ethyl by Enterobacter ludwigii sp. CE-1 [J]. Ecotoxicology and Environmental Safety, 2018, 150: 34-39. [107]Magdalena P, Byrski A, Chlebek D, et al. A deeper insight into the phytoremediation of soil polluted with petroleum hydrocarbons supported by the Enterobacter ludwigii ZCR5 strain [J]. Applied Soil Ecology, 2023, 181: 104651. [108]Adhikari A, Lee K, Khan M A, et al. Effect of silicate and phosphate solubilizing rhizobacterium Enterobacter ludwigii GAK2 on Oryza sativa L. under cadmium stress [J]. Journal of Microbiology and Biotechnology, 2020, 30(1): 118-126. [109]Pan Q, Shikano I, Hoover K, et al. Enterobacter ludwigii, isolated from the gut microbiota of Helicoverpa zea, promotes tomato plant growth and yield without compromising anti-herbivore defenses [J]. Arthropod-Plant Interactions, 2019, 13(2): 271-278. [110]Swapnil S, Iti G, Sharad T. Plant growth-promoting rhizobacteria ameliorates salinity stress in pea (Pisum sativum) [J]. Journal of Plant Growth Regulation, 2022, 41(2): 647-656. [111]Haque M M, Biswas M S, Mosharaf M K, et al. Halotolerant biofilm-producing rhizobacteria mitigate seawater-induced salt stress and promote growth of tomato [J]. Scientific Reports, 2022, 12(1): 5599. [112]Wei H, He W, Li, et al. Salt-tolerant endophytic bacterium Enterobacter ludwigii B30 enhance bermudagrass growth under salt stress by modulating plant physiology and changing rhizosphere and root bacterial community [J]. Frontiers in Plant Science, 2022, 13: 959427. [113]姜雪敏,陈向前,李红燕,等.小麦盐胁迫响应的代谢组学分析[J].中国农业科技导报,2023,25(09):43-56. [114]Lin Y, Watts D B, Kloepper J W, et al. Effect of plant growth-promoting rhizobacteria at various nitrogen rates on corn growth [J]. Agriculture Science (English), 2019, 10(12): 24. [115]Mellidou I, Ainalidou A, Papadopoulou A, et al. Comparative transcriptomics and metabolomics reveal an intricate priming mechanism involved in PGPR-mediated salt tolerance in tomato [J]. Frontiers in Plant Science, 2021, 12: 713984. [116]Mashabela M D, Tugizimana , Steenkamp P A, et al. Untargeted metabolite profiling to elucidate rhizosphere and leaf metabolome changes of wheat cultivars (Triticum aestivum L.) treated with the plant growth-promoting rhizobacteria Paenibacillus alvei (T22) and Bacillus subtilis [J]. Frontiers in Microbiology, 2022, 13: 971836. [117]Pétriacq P, Williams A, Cotton A, et al. Metabolite profiling of non-sterile rhizosphere soil [J]. The Plant Journal, 2017, 92(1): 147-162. [118]李春霞,吴兴彪,靳亚忠.根系代谢物介导的植物-微生物互作的研究进展[J].微生物学报,2022,62(09):3318-3328. [119]Mashabela M D, Piater L A, Dubery I A, et al. Rhizosphere tripartite interactions and PGPR-mediated metabolic reprogramming towards ISR and plant priming: A metabolomics review [J]. Biology (Basel), 2022, 11(3): 346. [120]Kumar N, Haldar S, Saikia R. Root exudation as a strategy for plants to deal with salt stress: An updated review [J]. Environmental and Experimental Botany, 2023, 216: 105518. [121]Feng H, Fu R, Luo J, et al. Listening to plant's Esperanto via root exudates: reprogramming the functional expression of plant growth-promoting rhizobacteria [J]. New Phytologist, 2023, 239(6): 2307-2319. [122]Kong H G, Song G C, Sim H, et al. Achieving similar root microbiota composition in neighbouring plants through airborne signalling [J]. The ISME Journal, 2020, 15(2): 397-408. [123]Santoyo G. How plants recruit their microbiome? New insights into beneficial interactions [J]. Journal of Advanced Research, 2022, 40: 45-58. [124]Liu Y, Chen L, Wu G, et al. Identification of root secreted compounds involved in the communication between soil-borne pathogen-cucumber-Bacillus amyloliquefaciens SQR9 [J]. Molecular plant-microbe interactions: MPMI, 2016, 30(1): 53-62. [125]Chagas F Q, Pessotti R C, Caraballo-Rodríguez A M, et al. Chemical signaling involved in plant–microbe interactions [J]. Chemical Society Reviews, 2018, 47(5): 1652-1704. [126]Rudrappa T, Czymmek K J, Pare P W, ey al. Root-secreted malic acid recruits beneficial soil bacteria [J]. Plant Physiology, 2008, 148(3): 1547-1556. [127]Jin C W, Li G X, Yu X H, et al. Plant Fe status affects the composition of siderophore-secreting microbes in the rhizosphere [J]. Annals of Botany, 2010, 2010, 105(5): 835-841. [128]顾怀应,胡诗钦,赵晴,等.根际微生物增强水稻耐盐性研究进展[J].作物杂志,2023:1-8. [129]Kloepper J, Schroth M N. Plant growth-promoting rhizobacteria and plant growth under grotobiotic conditions [J]. Phytopathology, 1981, 71(6): 642-644. [130]Stéphane C, Clément C, Sessitsch A. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization [J]. Soil Biology and Biochemistry, 2010, 42(5): 669-678. [131]王琦琦.新疆碱蓬根际耐盐促生菌的筛选及鉴定[D].新疆:石河子大学,2019. [132]Abrol I P, Yadav J S P, Massoud F I. Salt-affected soils and their management [M]. New York: Food and Agriculture Organization of the United Nations, 1988. [133]Wang Q, Wang C, Wei Y, et al. Soil microbes drive the flourishing growth of plants from Leucocalocybe mongolica fairy ring [J]. Frontiers in Microbiology, 2022, 13: 893370. [134]王学奎.植物生理生化实验原理和技术.第2版[M].北京:高等教育出版社出版,2006. [135]Patani A, Prajapati D, Daoud A, et al. Evaluation of the growth-inducing efficacy of various Bacillus species on the salt-stressed tomato (Lycopersicon esculentum Mill.) [J]. Frontiers in Plant Science, 2023, 14: 1168155. [136]Nawaz A, Shahbaz M, Asadullah, et al. Potential of salt tolerant PGPR in growth and yield augmentation of wheat (Triticum aestivum L.) under saline conditions [J]. Frontiers in Microbiology, 2020, 11: 02019. [137]Akbar A, Han B, Khan A H, et al. A transcriptomic study reveals salt stress alleviation in cotton plants upon salt tolerant PGPR inoculation [J]. Environmental and Experimental Botany, 2022, 200: 104928. [138]Sapre S, Gontia-Mishra I, Tiwari S. Plant growth-promoting rhizobacteria ameliorates salinity stress in pea (Pisum sativum) [J]. Journal of Plant Growth Regulation, 2021, 41: 1-10. [139]Akram M S, Shahid M, Tariq M, et al. Deciphering Staphylococcus sciuri SAT-17 mediated anti-oxidative defense mechanisms and growth modulations in salt stressed maize (Zea mays L.) [J]. Frontiers in Microbiology, 2016, 7: 00867. [140]Khalilpour M, Mozafari V, Abbaszadeh-Dahaji P. Tolerance to salinity and drought stresses in pistachio (Pistacia vera L.) seedlings inoculated with indigenous stress-tolerant PGPR isolates [J]. Scientia Horticulturae, 2021, 289: 110440. [141]Lalay G, Ullah S, Ahmed I. Physiological and biochemical responses of Brassica napus L. to drought-induced stress by the application of biochar and plant growth promoting rhizobacteria [J]. Microscopy research and technique, 2021, 85(4): 1267-1281. [142]John J E, Maheswari M, Kalaiselvi T, et al. Biomining Sesuvium portulacastrum for halotolerant PGPR and endophytes for promotion of salt tolerance in Vigna mungo L [J]. Frontiers in Microbiology, 2023, 14: 1085787. [143]Hidri R, Mahmoud O M, Zorrig W, et al. Plant growth-promoting rhizobacteria alleviate high salinity impact on the halophyte Suaeda fruticosa by modulating antioxidant defense and soil biological activity [J]. Frontiers in Plant Science, 2022, 13: 821475. [144]Ji J, Dong J, Wang C, et al. Enhancement of growth and salt tolerance of rice seedlings (Oryza sativa L.) by regulating ethylene production with a novel halotolerant PGPR strain Glutamicibacter sp. YD01 containing ACC deaminase activity [J]. Acta Physiologiae Plantarum, 2020, 42(4): 42. [145]Xiong Y W, Gong Y, Li X W, et al. Enhancement of growth and salt tolerance of tomato seedlings by a natural halotolerant actinobacterium Glutamicibacter halophytocola KLBMP 5180 isolated from a coastal halophyte [J]. Plant and Soil, 2019, (1/2): 445. [146]许芳芳.荒漠植物耐盐碱PGPR的分离筛选及其对盐胁迫下三种植物的促生效应和机理[D].内蒙古:内蒙古农业大学,硕士,2018. [147]李冰.不同植物根际促生菌对小麦、水稻、棉花的促生效果评价[D].安徽:安徽农业大学,2016. [148]Thokchom E, Thakuria D, Kalita M C, et al. Root colonization by host-specific rhizobacteria alters indigenous root endophyte and rhizosphere soil bacterial communities and promotes the growth of mandarin orange [J]. European Journal of Soil Biology, 2017, 79: 48-56. [149]Lin Y, Mei L, Wei Q, et al. Leymus chinensis resists degraded soil stress by modulating root exudate components to attract beneficial microorganisms [J]. Frontiers in Microbiology, 2022, 13: 951838. [150]Niraj K, Saikat H, Ratul S. Root exudation as a strategy for plants to deal with salt stress: An updated review [J]. Environmental and Experimental Botany, 2023, 216: 105518. [151]Peng M, Jiang Z, Zhou F, et al. From salty to thriving: plant growth promoting bacteria as nature’s allies in overcoming salinity stress in plants [J]. Frontiers in Microbiology, 2023, 14: 1169809. [152]Ma J, Ibekwe A M, Yang C, et al. Bacterial diversity and composition in major fresh produce growing soils affected by physiochemical properties and geographic locations [J]. Science of The Total Environment, 2016, 563-564: 199-209. [153]Wang Q, He D, Zhang X, et al. Insight into bacterial and archaeal community structure of Suaeda altissima and Suaeda dendroides rhizosphere in response to different salinity level [J]. Microbiology Spectrum, 2023, 12: e01649-23. [154]Liu F, Mo X, Kong W, et al. Soil bacterial diversity, structure, and function of Suaeda salsa in rhizosphere and non-rhizosphere soils in various habitats in the Yellow River Delta, China [J]. Science of The Total Environment, 2020, 740: 140144. [155]Obayomi O, Seyoum M M, Ghazaryan L, et al. Soil texture and properties rather than irrigation water type shape the diversity and composition of soil microbial communities [J]. Applied Soil Ecology, 2021, 161: 103834. [156]Kogbara R B, Ayotamuno D C., Fau I W, et al. A case study of petroleum degradation in different soil textural classes [J]. Recent Patents on Biotechnology, 2016, 9(2): 108-115. [157]Michaelis J, Diekmann M. Effects of soil types and bacteria inoculum on the cultivation and reintroduction success of rare plant species [J]. Plant Ecology, 2018, 219(4): 441-453. [158]唐江华,苏丽丽,徐文修,等.氮肥减施对棉花产量,干物质生产与氮素吸收利用的影响[J].干旱地区农业研究,2023,41(2):86-95. [159]王赫.陆地棉产量相关性状通径分析[J].农业科技通讯,2023,(04):79-82. [160]陈显磊,王剑峰,王丽,等.根际微生物增强植物对非生物和生物胁迫耐受机制[J].江苏农业科学, 2024:1-10. [161]Ge J, Li D, Ding J, et al. Microbial coexistence in the rhizosphere and the promotion of plant stress resistance: A review [J]. Environmental Research, 2023, 222: 115298. [162]宋琪,周杨,朱红惠,等.微生物肥料研究领域发展现状与趋势[J].应用与环境生物学报,2023,29(03):783-792. [163]曹巍,高惠嫣,王鑫鑫,等.不同配施肥措施对滨海盐碱地大豆生长和产量的影响[J].江苏农业科学,2023,51(22):53-60. [164]肖占文,赵致禧,赵芸晨,等.化肥减量下有机肥配施土壤调理剂和生物菌肥对玉米连作土壤的生态修复效应[J].中国土壤与肥料,2023,(10):48-54. [165]夏木凤,陈婷婷.复合微生物菌剂对水稻生长及产量的影响[J].特种经济动植物,2023,26(09):38-40. [166]李青璞,白建海,姚拓,等.微生物菌剂与氮肥配施对紫花苜蓿生长及土壤性质的影响[J].草地学报,2023,32(1): 314-321. [167]韩雪.放线菌生物肥料对作物生长及根际微生物群落调控的影响[D].陕西:西北农林科技大学,2021. [168]贺善睦,姚拓,雷杨,等.微生物菌剂与化肥减量配施对猫尾草生长的影响[J].草业科学, 2023:1-12. [169]Sun K, Niu J R, Wang C X, et al. Effects of different irrigation modes on the growth, physiology, farmland microclimate characteristics, and yield of cotton in an oasis [J]. Water, 2022, 14(10): 1579. [170]Yilmaz A, Karik Ü. AMF and PGPR enhance yield and secondary metabolite profile of basil (Ocimum basilicum L.) [J]. Industrial Crops and Products, 2022, 176: 114327. [171]Bangash N, Mahmood S, Akhtar S, et al. Formulation of biofertilizer for improving growth and yield of wheat in rain dependent farming system [J]. Environmental Technology and Innovation, 2021, 24: 101806. [172]Hamed S A, Zewail R, Abdalrahman H, et al. Promotion of growth, yield and fiber quality attributes of Egyptian cotton by Bacillus strains in combination with mineral fertilizers [J]. Journal of Plant Nutrition, 2019, 42(18): 2337-2348. [173]Su Q, Cang B, Ullah R, et al. Interaction of the coupled effects of irrigation mode and nitrogen fertilizer timing on rice yield in different regions [J]. Irrigation and Drainage, 2023, 72(4): 999-1012. [174]陈灿,冯锐,张宗琼,等.代谢组学揭示水稻—稻瘿蚊互作的潜在生化标识物[J].南方农业学报, 2021,52(10):9. [175]Wang J, Zhang T, Shen X, et al. Serum metabolomics for early diagnosis of esophageal squamous cell carcinoma by UHPLC-QTOF/MS [J]. Metabolomics, 2016, 12(7): 116. [176]Cook D, Gardner D R, Pfister J A. Swainsonine-containing plants and their relationship to endophytic fungi [J]. Journal of Agricultural and Food Chemistry, 2014, 62(30): 7326-7334. [177]Liu P, Tan Y, Yang J, et al. Bioactive secondary metabolites from endophytic strains of Neocamarosporium betae collected from desert plants [J]. Frontiers in Plant Science, 2023, 14: 1142212. [178]刘嘉欣,陶越攀,周兴旺,等.薄荷精油对黄曲霉生长的抑制作用研究[J].食品安全质量检测学报,2023,14(24):152-158. [179]Wang C, Wang R, Hu L, et al. Metabolites and metabolic pathways associated with allelochemical effects of linoleic acid on Karenia mikimotoi [J]. Journal of Hazardous Materials, 2023, 447: 130815. [180]Lv H, Ren D, Yan W, et al. Linoleic acid inhibits Lactobacillus activity by destroying cell membrane and affecting normal metabolism [J]. Journal of the Science of Food and Agriculture, 2020, 100(5): 2057-2064. [181]Gao H, BoStanton, CatherineRoss, PaulZhang R, et al. Linoleic acid induces different metabolic modes in two Bifidobacterium breve strains with different conjugated linoleic acid-producing abilities [J]. LWT-Food Science and Technology, 2021, 142(1): 110974. [182]Deng Y, Lu S. Biosynthesis and regulation of phenylpropanoids in plants [J]. Critical Reviews in Plant Sciences, 2017, 36(4): 257-290. [183]Cuong D M, Ha T W, Park C H, et al. Effects of LED lights on expression of genes involved in phenylpropanoid biosynthesis and accumulation of phenylpropanoids in wheat sprout [J]. Agronomy, 2019, 9(6): 307. [184]Pham D N, Mai D H A, Nguyen A D, et al. Development of an engineered methanotroph-based microbial platform for biocatalytic conversion of methane to phytohormone for sustainable agriculture [J]. Chemical Engineering Journal, 2022, 429: 132522. [185]Yu J, Ge J, Heuveling J, et al. Structural basis for substrate specificity of an amino acid ABC transporter [J]. Proceedings of the National Academy of Sciences, 2015, 112(16): 5243-5248. [186]Cheng N, Paris V, Rao X, et al. A conserved oxaly-coenzyme a decarboxylase in oxalate catabolism [J]. Plant Signaling and Behavior, 2022, 17(1): 2062555. [187]孙天骅,赵亚楠,王利峰,等.油松抗性相关激素与代谢物对油松毛虫取食与剪叶刺激的响应[J].南京林业大学学报(自然科学版),2024,48(1):219-226. [188]Oliva G, Vigliotta G, Terzaghi M, et al. Counteracting action of Bacillus stratosphericus and Staphylococcus succinus strains against deleterious salt effects on Zea mays L [J]. Frontiers in Microbiology, 2023, 14: 1171980. [189]Castiglione S, Oliva G, Vigliotta G, et al. Effects of compost amendment on glycophyte and halophyte crops grown on saline soils: isolation and characterization of rhizobacteria with plant growth promoting features and high salt resistance [J]. Applied Sciences, 2021, 11(5): 2125. [190]Yang Y, Gu M, Lu J, et al. Metabolomic analysis of key metabolites and their pathways revealed the response of alfalfa (Medicago sativa L.) root exudates to rac-GR24 under drought stress [J]. Plants, 2023, 12(5): 1163. [191]Lucini L, Colla G, Moreno M B M, et al. Inoculation of Rhizoglomus irregulare or Trichoderma atroviride differentially modulates metabolite profiling of wheat root exudates [J]. Phytochemistry, 2019, 157: 158-167. [192]Badalamenti N, Bruno M, Candela R G, et al. Chemical composition of the essential oil of Elaeoselinum asclepium (L.) Bertol subsp. meoides (Desf.) Fiori (Umbelliferae) collected wild in Central Sicily and its antimicrobial activity[J]. Natural Product Research, 2022, 36(3): 789-797. [193]宁眺,樊建庭,方宇凌,等.不同危害状态下寄主萜烯挥发物含量的变化及松墨天牛对其组分的触角电位反应[J].昆虫学报,2006(02):179-188. [194]Kamelia M G, Maria G, Maria P, et al. Effect of creatine and creatine lysinate on the in vitro cultivation and antioxidant potential of Stevia rebaudiana Bertoni and Leontopodium alpinum Cass [J]. Research Journal of Biotechnology, 2022, 17(12): 148-158. [195]田洁,周倩怡,铁原毓,等.干旱胁迫下大蒜幼苗的代谢组学分析[J].园艺学报,2024,51(01):133-144. [196]林芷淇,朱红波,周堂,等.昆明山海棠的苯丙素类成分研究[J].药学学报2024:1-21. [197]屠玲艳,吴学谦,许海顺.水分胁迫对三叶青叶绿体超微结构及黄酮合成关键酶的影响[J].浙江农林大学学报,2021,38(03):577-586. [198]Aguilar-Veloz L M, Montserrat C S, Yuliana V G, et al. Application of essential oils and polyphenols as natural antimicrobial agents in postharvest treatments: Advances and challenges [J]. Food Science and Nutrition, 2020, 8(6): 2555-2568. [199]陈咸吉.盐胁迫对绿竹、毛竹实生苗转录组及代谢组的影响[D].湖南:湖南农业大学,2021. [200]王改利,魏忠,贺少轩,等.土壤干旱胁迫对酸枣叶片黄酮类代谢及某些生长和生理指标的影响[J].植物资源与环境学报,2011,20(03):1-8. [201]Parasar B J, Sharma I, Agarwala N. Root exudation drives abiotic stress tolerance in plants by recruiting beneficial microbes [J]. Applied Soil Ecology, 2024, 198: 105351. [202]Coskun D, Britto D T, Shi W, et al. How plant root exudates shape the nitrogen cycle [J]. Trends in Plant Science, 2017, 22(8): 661-673. [203]Karl Compton K, Hildreth S B, Helm Richard F, et al. An updated perspective on Sinorhizobium meliloti chemotaxis to alfalfa flavonoids [J]. Frontiers in Microbiology, 2020, 11: 581482. [204]王暄,陈海霞.植物ABCB转运蛋白研究进展[J].生物技术通报,2020,36(06):223-229. [205]Guo Z, Yuan X, Li L, et al. Genome-wide analysis of the ATP-binding cassette (ABC) transporter family in Zea mays L. and its response to heavy metal stresses [J]. International Journal of Molecular Sciences, 2022, 23(4): 2109. [206]Dahuja A, Kumar R R, Sakhare A, et al. Role of ATP-binding cassette transporters in maintaining plant homeostasis under abiotic and biotic stresses [J]. Physiologia Plantarum, 2021, 171(4): 785-801. [207]An L, Ma Q, Du J, et al. Preliminary classification of the ABC transporter Family in Betula halophila and expression patterns in response to exogenous phytohormones and abiotic stresses [J]. Forests, 2019, 10(9): 722. [208]Lee K E. Binding of sulfonylurea by AtMRP5, an Arabidopsis multidrug resistance-related protein that functions in salt tolerance [J]. Plant Physiology, 2004, 134(1): 528-538. [209]Yang W, Liu X, Yu S, et al. The maize ATP-binding cassette (ABC) transporter ZmMRPA6 confers cold and salt stress tolerance in plants [J]. Plant Cell Reports, 2023, 43(1): 13. [210]王彤彤.土壤干旱对半夏次生代谢物积累及其生长的影响[D].浙江:浙江理工大学,2018. [211]Winter G, Todd C D, Trovato M, et al. Physiological implications of arginine metabolism in plants [J]. Frontiers in Plant Science, 2015, 6: 534. [212]齐玉玺.盐碱胁迫下人参地微杆菌S4对水稻幼苗生长及其代谢的影响[D].宁夏:北方民族大学,2023. [213]Ahmad P, Abdel Latef A A, Hashem A, et al. Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea[J]. Frontiers in Plant Science, 2016, 7: 00347. [214]Liu C, Mao B, Yuan D, et al. Salt tolerance in rice: Physiological responses and molecular mechanisms [J]. The Crop Journal, 2022, 10(1): 13-25. [215]Lin Q, Li M, Wang Y, et al. Root exudates and chemotactic strains mediate bacterial community assembly in the rhizosphere soil of Casuarina equisetifolia L [J]. Frontiers in Plant Science, 2022, 13: 988442. [216]Feng H, Zhang N, Du W, et al. Identification of chemotaxis compounds in root exudates and their sensing chemoreceptors in plant-growth-promoting rhizobacteria Bacillus amyloliquefaciens SQR9 [J]. Molecular Plant-Microbe Interactions, 2018, 31(10): 995-1005. [217]刘建新,刘瑞瑞,刘秀丽,等.盐碱胁迫下外源硫化氢对裸燕麦叶片氨基酸代谢过程的影响[J].草业学报,2023,32(02):119-130. [218]刘俊仙,熊发前,刘菁,等.用于克隆及分子标记分析的甘蔗高质量基因组DNA提取方法[J].分子植物育种,2019,17(02):545-552. [219]Chen S, Zhou Y, Chen Y, et al. Fastp: an ultra-fast all-in-one FASTQ preprocessor [J]. Bioinformatics, 2018, 34(17): 884-890. [220]Langmead B, Salzberg S L. Fast gapped-read alignment with Bowtie 2 [J]. Nature Methods, 2012, 9(4): 357-359. [221]Li D, Liu C M, Luo R, et al. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph [J]. Bioinformatics, 2015, 31(10): 1674-1676. [222]Yang L, Chang Y, Chen S, et al. SQUAT: a Sequencing Quality Assessment Tool for data quality assessments of genome assemblies [J]. BMC Genomics, 2019, 19(9): 238. [223]Zhu W, Lomsadze A, Borodovsky M. Ab initio gene identification in metagenomic sequences [J]. Nucleic Acids Research, 2010, 38(12): e132-e132. [224]Mirdita M, Steinegger M, Söding J. MMseqs2 desktop and local web server app for fast, interactive sequence searches [J]. Bioinformatics, 2019, 35(16): 2856-2858. [225]Leveau J H J. The magic and menace of metagenomics: prospects for the study of plant growth-promoting rhizobacteria [J]. European Journal of Plant Pathology, 2007, 119(3): 279-300. [226]Horn D J V, Okie J G, Buelow H N, et al. Soil microbial responses to increased moisture and organic resources along a salinity gradient in a polar desert [J]. Applied and Environment Microbiology, 2014, 80(10): 3034-3043. [227]Kristin M. Rath, Noah Fierer, Daniel V. Murphy, et al. Linking bacterial community composition to soil salinity along environmental gradients [J]. The ISME Journal, 2019, 13(3): 836-846. [228]Yohda M, Ikegami K, Aita Y, et al. Isolation and genomic characterization of a Dehalococcoides strain suggests genomic rearrangement during culture [J]. Scientific Reports, 2017, 7(1): 2230. [229]Palevich N, Kelly W J, Leahy S C, et al. The complete genome sequence of the rumen bacterium Butyrivibrio hungatei MB2003 [J]. Standards in Genomic Sciences, 2017, 12(1): 72. [230]Duong T T, Nguyen T T L, Dinh T H V, et al. Auxin production of the filamentous cyanobacterial Planktothricoides strain isolated from a polluted river in Vietnam [J]. Chemosphere, 2021, 284: 131242. [231]Pinhassi J, Pujalte M, Pascual J, et al. Bermanella marisrubri gen. nov., sp. nov., a genome-sequenced Gammaproteobacterium from the Red Sea [J]. International Journal of Systematic and Evolutionary Microbiology, 2009, 59(2): 373-377. [232]Méheust R, Castelle C J, Matheus Carnevali P B, et al. Groundwater Elusimicrobia are metabolically diverse compared to gut microbiome Elusimicrobia and some have a novel nitrogenase paralog [J]. The ISME Journal, 2020, 14(12): 2907-2922. [233]Xing P, Zhao Y, Guan D, et al. Effects of Bradyrhizobium co-Inoculated with Bacillus and Paenibacillus on the structure and functional genes of soybean rhizobacteria community [J]. Genes, 2022, 13(11): 1922. [234]Ricardo P, Eva B, Jesús F, et al. Coenzyme B12-dependent and independent photoregulation of carotenogenesis across Myxococcales [J]. Environmental Microbiology, 2022, 24(4): 1865-1886. [235]Fannin L, Aryal M, Stock K, et al. Characterization of bacterial arginine kinases in species from the order Myxococcales [J]. The FASEB Journal, 2018, 32(S1): 655.10-655.10. [236]Zhang N, Meng X, Jiang H, et al. Restoration of energy homeostasis under oxidative stress: Duo synergistic AMPK pathways regulating arginine kinases [J]. PLOS Genetics, 2023, 19(8): e1010843. [237]Masuda Y, Mise K, Xu Z, et al. Global soil metagenomics reveals ubiquitous yet previously-hidden predominance of Deltaproteobacter in nitrogen-fixing microbiome [J]. bioRxiv, 2022: 519847. [238]Camila G V, Fernando H S, Adriana A, et al. Genomic metrics applied to Rhizobiales (Hyphomicrobiales): Species reclassification, identification of unauthentic genomes and false type strains [J]. Frontiers in Microbiology, 2021, 12: 614957. [239]段见阳,胡青,杜春花,等.基于宏基因组学研究施肥对花椒园土壤微生物的影响[J].分子植物育种,2024:1-16. [240]Li J, Gao X, Chen X, et al. Comparative transcriptome responses of leaf and root tissues to salt stress in wheat strains with different salinity tolerances [J]. Frontiers in Genetics, 2023, 14: 1015599. [241]史本慧.甲硫氨酸介导植物抗盐与根生长平衡机制的研究[D].山东:山东大学,2024. [242]Khan S.外源L-甲硫氨酸对水培生菜生长,生理和抗氧化系统的影响[D].北京:中国农业科学院,2019. [243]曹晟阳.高盐胁迫下翅碱蓬的全转录组研究 [D].辽宁:大连海洋大学,2019. [244]王琳琳.黄河三角洲滨海湿地甲烷代谢菌群生物及非生物驱动机制研究[D].山东:山东大学,2023. [245]Azeem M, Hayat R, Hussain Q, et al. Biochar improves soil quality and N2-fixation and reduces net ecosystem CO2 exchange in a dryland legume-cereal cropping system [J]. Soil and Tillage Research, 2019, 186: 172-182. [246]Muhammad S K, Florian H H, Arman A S, et al. Sulfite reductase defines a newly discovered bottleneck for assimilatory sulfate reduction and is essential for growth and development in Arabidopsis thaliana [J]. The Plant Cell, 2010, 22(4): 1216-1231. [247]Zhao M, Zhao J, Yuan J, et al. Root exudates drive soil-microbe-nutrient feedbacks in response to plant growth [J]. Plant, Cell and Environment, 2021, 44(2): 613-628. [248]Wei X, Chen J, Zhang C, et al. Differential gene expression in Rhododendron fortunei roots colonized by an ericoid mycorrhizal fungus and increased nitrogen absorption and plant growth [J]. Frontiers in Plant Science, 2016, 7: 01594. [249]毕银丽,宋雅宁,白雪蕊,等.AMF和DSE对紫花苜蓿生长发育及叶片代谢组分的影响[J].菌物学报:1-20. [250]王雨晴,马子奇,侯嘉欣,等.盐胁迫下植物根系分泌物的成分分析与生态功能研究进展[J].生物技术通报,2024,40(01):12-23. [251]Mashabela M D, Piater L A, Steenkamp P A, et al. Comparative metabolite profiling of wheat cultivars (Triticum aestivum) reveals signatory markers for resistance and susceptibility to stripe rust and aluminium (Al3+) toxicity [J]. Metabolites, 2022, 12(2): 98. [252]Liu Y, Zhang H, Wang J, et al. Nonpathogenic Pseudomonas syringae derivatives and its metabolites trigger the plant “cry for help” response to assemble disease suppressing and growth promoting rhizomicrobiome [J]. Nature Communications, 2024, 15(1): 1907. [253]Leite J, Passos S R, Simões-Araújo J L, et al. Genomic identification and characterization of the elite strains Bradyrhizobium yuanmingense BR 3267 and Bradyrhizobium pachyrhizi BR 3262 recommended for cowpea inoculation in Brazil [J]. Brazilian Journal of Microbiology, 2018, 49(4): 703-713. [254]Minakata C, Wasai-Hara S, Fujioka S, et al. Unique rhizobial communities dominated by Bradyrhizobium liaoningense and Bradyrhizobium ottawaense were found in vegetable soybean nodules in Osaka Prefecture, Japan [J]. Microbes and Environments, 2023, 38(2): ME22081. [255]Kunze B, Reichenbach H, Augustiniak H, et al. Isolation and identification of althiomycin from Cystobacter fuscus (myxobacterales) [J]. The Journal of antibiotics, 1982, 35 5: 635-636. [256]Goes A, Vidakovic L, Drescher K, et al. Interaction of myxobacteria-derived outer membrane vesicles with biofilms: antiadhesive and antibacterial effects [J]. Nanoscale, 2021, 13(34): 14287-14296. [257]Khan S A, Kim H M, Baek J H, et al. Ramlibacter terrae sp. nov. and Ramlibacter montanisoli sp. nov., isolated from soil [J]. Journal of Microbiology and Biotechnology, 2021, 31(9): 1210-1217. [258]Fériel S P, Karim B, Julie C, et al. In vitro and in silico evidence of phosphatase diversity in the biomineralizing bacterium Ramlibacter tataouinensis [J]. Frontiers in Microbiology, 2018, 8: 02592. [259]Trivedi P, Leach J E, Tringe S G, et al. Plant–microbiome interactions: from community assembly to plant health [J]. Nature Reviews Microbiology, 2020, 18(11): 607-621.
﹀
|
| 中图分类号: |
S21
|
| 开放日期: |
2024-07-01
|