- 无标题文档
查看论文信息

中文题名:

 利用稳定同位素技术量化玛纳斯河流域不同水体转化关系应用研究    

姓名:

 冉茂林    

学号:

 20212110055    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085902    

学科名称:

 工学 - 土木水利 - 水利工程    

学生类型:

 硕士    

学位:

 工学硕士    

学位类型:

 专业学位    

学位年度:

 2024    

学校:

 石河子大学    

院系:

 水利建筑工程学院    

专业:

 土木水利    

研究方向:

 水文学及水资源    

第一导师姓名:

 杨广    

第一导师单位:

 石河子大学    

完成日期:

 2024-04-30    

答辩日期:

 2024-05-08    

外文题名:

 Study on Quantifying the Transformation Relation of Different Water Bodies in Manas River Basin by Stable Isotope Technology    

中文关键词:

 氢氧稳定同位素 ; 水体转化 ; 水汽来源 ; 植物水分来源 ; MixSIAR模型     

外文关键词:

 Stable isotopes of hydrogen and oxygen ; Water body transformation ; Water vapor source ; Plant water source ; MixSIAR model     

中文摘要:

目的:在气候变化和人类活动影响下,玛纳斯河流域不同水体转化过程发生变化,变化环境下流域尺度水循环过程有待深入研究,采用稳定同位素方法探索流域不同水体转化关系,并提出区域水资源可持续利用的措施,为流域尺度水资源可持续利用提供基础支撑。

方法:本研究于2022年4月至2023年9月在玛纳斯河流域开展样品采集工作,采集大气降水、地表水、土壤水、地下水和植物水的试验样品,利用后向轨迹模型、贝叶斯混合模型,分析不同水体氢氧稳定同位素的时空差异和影响因素,定性和定量分析不同水体的转化关系。

结果:(1)玛纳斯河流域内不同水体氢氧稳定同位素组成时空差异显著。时间变化上,大气降水稳定同位素呈冬季贫化夏季富集的趋势,地表水和芦苇水稳定同位素呈“贫化—富集—贫化”的趋势,土壤水稳定同位素呈逐渐富集的趋势,多枝柽柳水稳定同位素呈逐渐贫化的趋势。空间变化上,大气降水稳定同位素呈绿洲富集,山区和荒漠区贫化的趋势,地下水稳定同位素呈现从山区至荒漠区逐渐贫化的趋势,地表水、土壤水和植物水稳定同位素呈现山区至荒漠区逐渐富集的趋势。

(2)流域内不同水体氢氧稳定同位素主要影响因素具有差异性。气温是影响大气降水、土壤水和地下水同位素变化主要的影响因素,对应的标准化系数分别为0.901、−0.247和1.486。地表水则主要受到地表水水温的影响,标准化系数为0.743。

(3)流域内冬季降水主要是受海洋水汽的影响,夏季降水则受到大陆气团和局地再循环水汽控制,流域内水汽主要来源于局地再循环水汽和大西洋水汽,贡献率分别为49.25%和47.21%。两种植物发生了同位素偏移。山区芦苇主要利用浅层土壤水,利用率为31.6%,绿洲区和荒漠区芦苇主要利用地下水,分别为33.9%和27.8%。山区多枝柽柳主要吸收利用地下水,利用率为28.6%,绿洲区和荒漠区则主要利用地下水,利用率分别为34.4%和39.6%。

(4)利用MixSIAR模型量化了流域内不同水体的转化关系。山区地下水和地表水转化频繁,相互转化比例均在85.0%左右。山区土壤水主要受到地表水的补给,平均补给率为38.0%。绿洲区地表水主要受到山区地表水补给,补给率均值为41.8%。绿洲区地下水主要受到山区地下水的补给,补给率均值为49.3%。荒漠区地表水受绿洲区地表水补给的比例为68.0%,地下水受绿洲区地下水补给的比例为80.2%。荒漠区土壤水主要受到地表水的补给,补给率为36.2%。

结论:玛纳斯河流域大气水汽主要来源于局地再循环水汽和西风水汽;山区和绿洲区地表水与地下水转化频繁,土壤水受到降水、地表水和地下水的均匀补给,植物水分来源具有时空差异性,分析了流域不同水体的转化关系。基于此提出了玛纳斯河流域水资源可持续利用措施。研究结果可为玛纳斯河流域水资源可持续利用提供科学依据。

外文摘要:

Objective: Climate change and human activities have led to changes in the transformation processes of different water bodies within a watershed. More research is needed to understand basin-scale water cycles under changing environments. The transformation of different water bodies in the basin was studied using stable isotope methods. Sustainable utilization measures for regional water resources are proposed to provide the necessary support for sustainable utilization of basin-scale water resources.

Methods: Sample collection was conducted in the Manas River Basin from April 2022 to September 2023. The experimental samples collected during this period included precipitation, surface water, soil water, groundwater, and plant water samples. The spatiotemporal differences and influencing factors of hydrogen and oxygen stable isotopes in different water bodies were analyzed using backward trajectory and Bayesian mixed models. Qualitative and quantitative analysis of the transformation relationship between different water bodies.

Results: (1) There were significant spatiotemporal differences in the stable isotopic compositions of hydrogen and oxygen in different water bodies within the Manas River Basin. The stable isotopes of precipitation showed a trend of depletion in winter and enrichment in summer. With regard to temporal fluctuations, the isotopes of surface water, and reed stem water exhibit a pattern of “depletion-enrichment-depletion,” while the isotopes of soil water demonstrate a trend of enrichment. The isotopes of stem water of the multi-branched T. ramosissima show a trend of depletion. In terms of spatial variations, the stable isotopes of hydrogen and oxygen in precipitation revealed a trend of enrichment in oases and impoverishment in mountainous and desert regions. The stable isotopes of hydrogen and oxygen in groundwater exhibit a trend of gradual impoverishment from mountainous regions to desert areas, while the isotopes of surface water, soil water, and plant water show a pattern of enrichment from mountainous to desert regions in the opposite direction of groundwater isotopes.

(2) The main factors influencing the stable isotopes of hydrogen and oxygen in different water bodies within the basin varied. Temperature was the main factor influencing isotopic changes in precipitation, soil water, and groundwater, with corresponding standardized coefficients of 0.901, -0.247, and 1.486, respectively. The surface water was mainly affected by the temperature of the surface water, with a standardized coefficient of 0.743.

(3) Winter precipitation in the basin is mainly influenced by ocean water vapor, whereas summer precipitation is controlled by continental air masses and local recirculating water vapor. Water vapor in the basin mainly originates from local recirculating water vapor and Atlantic water vapor, with contribution rates of 49.25% and 47.21%, respectively. Two types of plants, reed and multibranched T. ramosissimas, have undergone isotopic shifts. Reed in mountainous areas mainly utilizes shallow soil water, with a utilization rate of 31.6%, while Reed in oasis and desert areas mainly utilizes groundwater, with a utilization rate of 33.9% and 27.8%, respectively. In contrast, the multi branched T. ramosissima in mountainous areas mainly absorbs and utilizes groundwater, with a utilization rate of 28.6%, while in oasis and desert areas, groundwater is primary source of water, with utilization rates of 34.4% and 39.6%, respectively.

(4) The MixSIAR model was employed to quantify the transformation relationship between the different water bodies in the basin. In mountainous areas, the conversion of groundwater to surface water is frequent, with a mutual conversion ratio of approximately 85.0%. Soil water in mountainous areas is mainly replenished by surface water, with an average replenishment rate of 38.0%. Surface water in oasis areas was mainly replenished by surface water from mountainous areas, with an average replenishment rate of 41.8%. Groundwater in oasis areas is mainly replenished by groundwater in mountainous areas, with an average replenishment rate of 49.3%. The proportion of surface water in desert areas replenished by surface water in oasis areas was 68.0% and the proportion of groundwater replenished by groundwater from oasis areas was 80.2%. Soil water in desert areas is mainly replenished by surface water, with a replenishment rate of 36.2%.

Conclusion: The primary sources of water vapor in the Manas River Basin are locally recycled water vapor and westerly water vapor. In mountainous and oasis areas, the conversion of surface water to groundwater is frequent, and soil water is uniformly replenished by precipitation, surface water, and groundwater. The source of plant water exhibits spatiotemporal differences, and this study analyzed the transformation relationship between different water bodies in the basin. Based on these findings, suggestions for the sustainable utilization of water resources in the Manas River Basin have been put forth. These results serve as a scientific foundation for the sustainable utilization of water resources in the Manas River Basin.

参考文献:

[1]刘昌明,刘璇,杨亚锋,等.水文地理研究发展若干问题商榷[J].地理学报,2022,77(1):13.

[2]陈亚宁,李玉朋,李稚,等.全球气候变化对干旱区影响分析[J].地球科学进展,2022, 37(2):111-119.

[3]Piao S, Ciais P, Huang Y, et al. The impacts of climate change on water resources and agriculture in China[J]. Nature,2017,467:43–51.

[4]D Pumo, E Arnone, A Francipane, et al. Potential implications of climate change and urbanization on watershed hydrology[J]. Journal of Hydrology,2017,554:80-99.

[5]Shaozhong Kang, Xiaoling Su, Ling Tong, et al. The impacts of human activities on the water–land environment of the Shiyang River basin, an arid region in northwest China[J]. Hydrological Sciences Journal,2004,49:3:413-427,

[6]Sabater S, Bregoli F, Acuña V, et al. Effects of human-driven water stress on river ecosystems:a meta-analysis[J]. Science reports,2018,8:11462.

[7]顾慰祖,庞忠和,王全九,等.同位素水文学[M].北京:科学出版社,2011.

[8]宋献方,夏军,于静洁,等.应用环境同位素技术研究华北典型流域水循环机理的展望[J].地理科学进展,2002,(06):527-537.

[9]章新平,姚檀栋,田立德,等.乌鲁木齐河流域不同水体中的氧稳定同位素[J].水科学进展,2003,(01):50-56.

[10]张应华,仵彦卿,温小虎,等.环境同位素在水循环研究中的应用[J].水科学进展,2006,(05):738-747.

[11]程维明,周成虎,刘海江,等.玛纳斯河流域50年绿洲扩张及生态环境演变研究[J].中国科学:D 辑,2005,35(11):1074-1186.

[12]赵南.近40年玛纳斯河流域湿地变化对冰川消融的响应关系研究[D].江西:江西师范大学,2019.

[13]汤奇成.天山径流特征分析[J].地理学报,1979,(02):118-128.

[14]张鸿义.玛纳斯河—金沟河流域第四纪古冰川作用探讨——兼与王志超同志商榷[J].新疆地理,1981,(02):48-60.

[15]张明.新疆玛纳斯河流域的环境问题及其对策[J].新疆环境保护,1988,(03):16-26.

[16]陈东生.玛纳斯河沙量变化初步分析[J].干旱区地理,1986,(03):20-24.

[17]南峰,李有利,史兴民.新疆玛纳斯河水量波动与气候变化之间的关系[J].水土保持研究,2003,(03):59-61.

[18]徐素宁,杨景春,李有利.近50a来玛纳斯河流量变化及对气候变化的响应[J].地理与地理信息科学,2004,(06):65-68.

[19]吕博,倪娟,王文科,等.水资源开发利用引起的环境负效应——以玛纳斯河流域为例[J].地球科学与环境学报,2006,(03):53-56.

[20]刘志明,刘少玉,陈德华,等.新疆玛纳斯河流域平原区水资源组成和水循环[J].水利学报,2006,(09):1102-1107.

[21]杨广,李小龙,陈思,等.基于18O同位素的玛纳斯河流域典型荒漠植被水分利用来源研究[J].中国农村水利水电,2017,(11):94-97+103.

[22]闫珂,杨广,何新林,等.准噶尔盆地南缘梭梭水分来源与传输规律分析[J].干旱区资源与环境,2020,34(05):201-208.

[23]李雅琴.天山北坡典型关键带土壤水盐养分运移与管理[D].新疆:石河子大学,2023.

[24]Glibert P M, Middelburg J J, McClelland J W, et al. Stable isotope tracers:Enriching our perspectives and questions on sources, fates, rates, and pathways of major elements in aquatic systems[J]. Limnol Oceanogr,2019,64:950-981.

[25]Wang S, M Zhang, Y Che, et al. Contribution of recycled moisture to precipitation in oases of arid central Asia:A stable isotope approach[J]. Water Resource Research,2016,52:3246-3257.

[26]Congjian Sun, Xingong Li, Wei Chen, et al. Climate change and runoff response based on isotope analysis in an arid mountain watershed of the western Kunlun Mountains[J]. Hydrological Sciences Journal,2017,62:319-330.

[27]Gautam M K, Lee K S, Song B Y. Characterizing groundwater recharge using oxygen and hydrogen isotopes:a case study in a temperate forested region, South Korea[J]. Environment Earth Science,2018,77:110-118.

[28]Harvey F E, Welker J M. Stable isotopic composition of precipitation in the semi-arid north-central portion of the US Great Plains[J]. Journal of Hydrology,2000,238(1-2):1-10

[29]Craig H. Isotopic Variations in Meteoric Waters[J]. Science,1961,133(3465):2-17

[30]S Epstein, T Mayeda. Variation of 18O content of waters from natural sources[J]. Geochimica et Cosmochimica Acta,1953,4:213-224.

[31]郑淑蕙,侯发高,倪葆龄.我国大气降水的氢氧稳定同位素研究[J].科学通报,1983,(13):801-806.

[32]宋献方,柳鉴容,孙晓敏,等.基于CERN的中国大气降水同位素观测网络[J].地球科学进展,2007,(07):738-747.

[33]Gourcy L, Groening M, Aggarwal P. Stable Oxygen and Hydrogen Isotopes in Precipitation[M]. (eds) Isotopes in the Water Cycle,2015,Springer,Dordrecht.

[34]Wang S, Zhang M, Hughes C E, et al. Factors controlling stable isotope composition of precipitation in arid conditions:an observation network in the Tianshan Mountains, central Asia[J]. Tellus B:Chemical and Physical Meteorology,2016,68:1-14.

[35]王圣杰,王立伟,张明军,等.降水氢氧稳定同位素景观图谱方法与应用[J].应用生态学报,2023,34(02):566-576.

[36]ellars S L, Kawzenuk B, Nguyen P, et al. Genesis, pathways, and terminations of intense global water vapor transport in association with large-scale climate patterns[J]. Geophysical Research Letters,2017,44,12:465-12.

[37]Yao J, Liu X, Hu W. Stable isotope compositions of precipitation over Central Asia[J]. PeerJ,2021,9:e11312.

[38]张林梅,苏亚乔,庄晓翠.天山北坡暴雪过程水汽特征分析[J].冰川冻土,2023,45(01):94-107.

[39]Dansgaard W.Stable isotopes in precipitation[J].Tellus, 1964, 16(4):436-468.

[40]张炎炎,辛存林,郭小燕,等.西北内陆区降水稳定同位素时空分布特征及其水汽来源[J/OL].环境科学,1-25[2024-03-08].https://doi.org/10.13227/j.hjkx.202304089.

[41]刘洁遥,张福平,冯起,等.西北地区降水稳定同位素的云下二次蒸发效应[J].应用生态学报,2018,29(05):1479-1488.

[42]Yanlong Kong, Zhonghe Pang, Klaus Froehlich.Quantifying recycled moisture fraction in precipitation of an arid region using deuterium excess[J].Tellus B:Chemical and Physical Meteorology, 2013, 65:1-8.

[43]李学礼,刘金辉,史维浚,等.新疆准噶尔盆地北部天然水的同位素研究及其应用[J].地球学报,2000(04):401-406.

[44]朱艺文.西安黑河流域汇水区不同水体稳定同位素和水化学特征研究[D].西安:陕西师范大学,2017

[45]Ramesh R, Sarin M M.Stable isotope study of the Ganga (Ganges) river system[J].Journal of Hydrology, 1992, 139(1-4):49-62.

[46]丁悌平,高建飞,石国钰,等.长江水氢、氧同位素组成的时空变化及其环境意义[J].地质学报,2013,87(5):661-676

[47]郝帅,李发东,李艳红,等.艾比湖流域降水、地表水和地下水稳定同位素特征[J].干旱区地理,2021,44(04):934-942.

[48]Shi Y, Jia W X, Zhu G F, et al. Hydrogen and Oxygen Isotope Characteristics of Water and the Recharge Sources in Subalpine of Qilian Mountains, China[J].Polish Journal of Environmental Studies.2021, 30(3):2325-2339.

[49]范百龄,张东,陶正华,等.黄河水氢、氧同位素组成特征及其气候变化响应[J].中国环境科学,2017,37(05):1906-1914.

[50]丁悌平,高建飞,石国钰,等.长江水氢、氧同位素组成的时空变化及其环境意义[J].地质学报,2013,87(05):661-676.

[51]Mook WG. Stable Carbon and Oxygen lsotopes of Natural Waters in the Netherlands[C]. Vienna: IAEA,1970,163-189.

[52]徐庆,左海军.稳定同位素在流域生态系统水文过程研究中的应用[J].世界林业研究,2020,33(01):8-13.

[53]马雪宁,张明军,李亚举,等.土壤水稳定同位素研究进展[J].土壤,2012,44(04):554-561.

[54]姜鹏举,吴华武,闵雷雷,等.华北平原典型土地利用类型下包气带土壤水稳定同位素变化特征[J].土壤学报,2023,60(06):1626-1636.

[55]李雅琴,李发东,张秋英,等.玛纳斯河流域土壤水稳定同位素特征及运移机制[J].农业资源与环境学报,2022,39(04):690-697.

[56]Wei Xiang, Bingcheng Si, Min Li, et al. Stable isotopes of deep soil water retain long-term evaporation loss on China's Loess Plateau[J]. Science of The Total Environment,2021,784, 147153.

[57]Hongbing Tan, Zihao Liu, Wenbo Rao, et al. Stable isotopes of soil water:Implications for soil water and shallow groundwater recharge in hill and gully regions of the Loess Plateau, China[J]. Agriculture,Ecosystems & Environment,2017,243:1-9.

[58]Cao R, Jia X., Huang L, et al. Deep soil water storage varies with vegetation type and rainfall amount in the Loess Plateau of China[J]. Science Reports,2018,8:12346.

[59]Yunqiang Wang, Wei Hu, Yuanjun Zhu, et al. Vertical distribution and temporal stability of soil water in 21-m profiles under different land uses on the Loess Plateau in China[J]. Journal of Hydrology,2015,527:543-554.

[60]Yuanchun Zou, Sijian Zhang, Xiaofei Yu, et al. Isotopic evidence for soil water sources and reciprocal movement in a semi-arid degraded wetland:Implications for wetland restoration[J]. Fundamental Research,2023,3:861-867.

[61]Yuhong Liu, Fude Liu, Zhen Xu, et al. Variations of soil water isotopes and effective contribution times of precipitation and throughfall to alpine soil water, in Wolong Nature Reserve, China[J]. CATENA,2015,126:201-208.

[62]Carey Gazis, Xiahong Feng. A stable isotope study of soil water:evidence for mixing and preferential flow paths[J]. Geoderma,2004,119:97-111.

[63]孙芳强,尹立河,马洪云,等.准噶尔盆地南缘土壤水运移特征及其补给来源识别[J].干旱区研究,2017,34(06):1271-1277.

[64]Katrin Erdlenbruch, Mabel Tidball, Georges Zaccour.Q uantity–quality management of a groundwater resource by a water agency[J]. Environmental Science & Policy,2014,44:201-214.

[65]Milad Ebrahimi, Hamidreza Kazemi, Majid Ehtashemi. Assessment of groundwater quantity and quality and saltwater intrusion in the Damghan basin[J]. Iran, Geochemistry,2016,76:227-241.

[66]Yeh H F, Lee J W. Stable Hydrogen and Oxygen Isotopes for Groundwater Sources of Penghu Islands Taiwan[J]. Geosciences,2018,8:84-92.

[67]Kumar M G ,Sik K L ,Yeol B S. Characterizing groundwater recharge using oxygen and hydrogen isotopes:a case study in a temperate forested region, South Korea[J]. Environment Earth Science,2018,77(3):1-8.

[68]孟令华.基于水化学和氢氧同位素的泰安城区岩溶地下水补给来源及演化过程[J/OL].环境科学,1-13[2024-03-08].https://doi.org/10.13227/j.hjkx.202305012.

[69]Han Z, Shi X, Jia K. Determining the Discharge and Recharge Relationships between Lake and Groundwater in Lake Hulun Using Hydrogen and Oxygen Isotopes and Chloride Ions[J]. Water,2019,11:264-278.

[70]Yeh HF, Lee CH, Hsu KC. Oxygen and hydrogen isotopes for the characteristics of groundwater recharge:a case study from the Chih-Pen Creek basin, Taiwan[J]. Environ Earth Sci,2011,62:393-402.

[71]Mao H, Wang G, Shi Z. Spatiotemporal variation of groundwater recharge in the lower reaches of the Poyang Lake Basin, China:Insights from stable hydrogen and oxygen isotopes[J]. Journal of Geophysical Research:Atmospheres,2021,126:1-6.

[72]向伟.基于稳定同位素的黄土高原区域尺度土壤蒸发和地下水补给研究[D].陕西:西北农林科技大学,2022.

[73]Broers P H, Sültenfuß J, Aeschbach W, et al. Paleoclimate Signals and Groundwater Age Distributions From 39 Public Water Works in the Netherlands; Insights From Noble Gases and Carbon, Hydrogen and Oxygen Isotope Tracers[J]. Water Resources Research,2021,57(7):e2020WR029058-e2020WR029058.

[74]孙晓悦,曹文庚,韩政,等.基于地下水更新能力的黄河下游豫北平原地下水脆弱性研究[J].干旱区资源与环境,2023,37(06):192-200.

[75]王杰.天山北麓水环境同位素研究[D].陕西:长安大学,2007.

[76]苏鹏燕,张明军,王圣杰,等.基于氢氧稳定同位素的黄河兰州段河岸植物水分来源[J].应用生态学报,2020,31(06):1835-1843.

[77]Javaux M, Rothfuss Y, Vanderborght J, et al. Isotopic composition of plant water sources[J]. Nature,2016,536,1-3.

[78]HOLLAND K L, CHARLES A H, JOLLY I D, et al. Effectiveness of artificial watering of a semi‐arid saline wetland for managing riparian vegetation health[J]. Hydrological Processes:An International Journal,2009,23(24):74-84.

[79]Huawu W, Guoqin Z, Xiao-Yan L, et al. Identifying water sources used by alpine riparian plants in a restoration zone on the Qinghai-Tibet Plateau:Evidence from stable isotopes[J]. Science of The Total Environment,2019,697134092.

[80]RAO W, CHEN X, MEREDITH K T, et al. Water uptake of riparian plants in the lower Lhasa River Basin, South Tibetan Plateau using stable water isotopes[J]. Hydrological Processes,2020,34(16):492-505.

[81]LI Y, MA Y, SONG X, et al. Contrasting water use characteristics of riparian trees under different water tables along a losing river[J]. Journal of Hydrology,2022,611:128017.

[82]SI J, FENG Q, CAO S, et al. Water use sources of desert riparian Populus euphratica forests[J]. Environmental Monitoring Assessment,2014,186(9):69-77.

[83]WANG P, LIU W, ZHANG J, et al. Seasonal and spatial variations of water use among riparian vegetation in tropical monsoon region of SW China[J]. Ecohydrology,2019,12(4):e2085.

[84]SMITH S D, WELLINGTON A B, NACHLINGER J L, et al. Functional responses of riparian vegetation to streamflow diversion in the eastern Sierra Nevada[J]. Ecological Applications,1991,1(1):89-97.

[85]吴旭,牛耀彬,荀梦瑶,等.黄土丘陵区优势造林树种水分来源对季节性干旱的响应[J].生态学报,2022,42(10):4101-4112.

[86]于晓雯,刘华民,王立新,等.基于稳定同位素技术的黄河支流河岸植被水分来源解析[J].水土保持通报,2021,41(5):75-82,91.

[87]Liu J, Gao Z , Wang M, et al. Stable isotope characteristics of different water bodies in the Lhasa River Basin[J]. Environmental Earth Sciences,2019,78(3):71.

[88]Zhi Li, Xueqing Lin, Anna E, et al. Catchment-scale surface water-groundwater connectivity on China's Loess Plateau[J]. CATENA,2017,152:268-276.

[89]胡立春,刘国东,李世钰,等.基于带约束最小二乘法的海螺沟冰川区同位素三水源径流分割[J].四川大学学报(工程科学版),2016,48(05):50-57.

[90]于璐,郑天元,郑西来.地下水硝酸盐污染源解析及氮同位素分馏效应研究进展[J].现代地质,2022,36(02):563-573.

[91]Smith J A, Mazumder D, Suthers IM, et al. To fit or not to fit:evaluating stable isotope mixing models using simulated mixing polygons[J].Methods of Ecology and Evolution, 2013, 4:612-618.

[92]李嘉洁,章新平,肖雄,等.亚热带季风区典型土壤-植物-大气连续体中水体平均滞留时间[J].应用生态学报,2023,34(12):3184-3194.

[93]Stock BC, Jackson AL, Ward EJ, et al .Analyzing mixing systems using a new generation of Bayesian tracer mixing models[J]. PeerJ,2018,6:e5096.

[94]孙龙,刘廷玺,段利民,等.矿区流域不同水体同位素时空特征及水循环指示意义[J].水科学进展,2022,33(05):805-815.

[95]裴森森,段利民,苗平,等.黄河流域内蒙古段水化学同位素特征及水体转化关系[J].环境科学,2023,44(09):4863-4873.

[96]汪少勇,何晓波,丁永建,等.长江源多年冻土区地下水氢氧稳定同位素特征及其影响因素[J].环境科学,2020,41(01):166-172.

[97]袁瑞丰,李宗省,蔡玉琴,等.干旱内陆河流域降水稳定同位素的时空特征及环境意义[J].环境科学,2019,40(05):2122-2131.

[98]曾康康,杨余辉,胡义成,等.喀什河流域降水同位素特征及水汽来源分析[J].干旱区研究,2021,38(05):1263-1273.

[99]Wang W, Tian H, Yang G, et al. Dynamic variation of groundwater level and its influencing factors in typical oasis irrigated areas in Northwest China[J]. Open Geosciences,2023,15(1), 20220493.

[100]孙利忠.古尔班通古特沙漠梭梭大面积衰退的机理研究[D].新疆:石河子大学,2018.

中图分类号:

 TV21    

开放日期:

 2024-05-27    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式