- 无标题文档
查看论文信息

中文题名:

 库尔勒香梨“枝枯病”病原菌的分离及拮抗菌的筛选    

姓名:

 崔泽玲    

学号:

 20202006010    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 071007    

学科名称:

 理学 - 生物学 - 遗传学    

学生类型:

 硕士    

学位:

 理学硕士    

学位类型:

 学术学位    

学位年度:

 2023    

学校:

 石河子大学    

院系:

 生命科学学院    

专业:

 生物学    

研究方向:

 微生物学    

第一导师姓名:

 孙黎    

第一导师单位:

 石河子大学    

完成日期:

 2023-05-19    

答辩日期:

 2023-05-12    

外文题名:

 Isolation and identification of the Korla fragrant pear of branch blight and screening of antagonistic bacteria    

中文关键词:

 生物防治 ; 抗菌活性 ; 巨大芽孢杆菌 ; 细胞外代谢产物 ; “梨枝枯病”     

外文关键词:

   ; Biocontrol ; Antibacterial activity ; Priestia megaterium ; Extracellular metabolites ; Pear branch blight     

中文摘要:

摘要

目的:近年来,在新疆库尔勒地区梨园梨树的嫩梢上观察到黑褐色枯枝,根据发病特点,暂 时将此病害命名为“梨枝枯病”,因此,本课题开展了病原菌的分离和鉴定工作。另外,本研究从健康梨树的根围土壤中筛选出对解淀粉欧文氏菌具有拮抗作用的细菌,并进行了离体杜梨叶、树枝和库尔勒香梨的室内防效测定,研究结果为“梨枝枯病”的生物防治奠定基础。

方法:采用组织分离法从染病的梨树枝条中分离病原菌;采用平板对峙法筛选土壤中的拮抗菌,选取拮抗效果最佳的拮抗菌进行离体梨树组织的室内防效测定;采用薄层层析法(TLC)和高分辨质谱法(HRMS)鉴定拮抗菌甲醇提取物中的活性物质;通过侵染拟南芥种子探究拮抗菌对种子萌发及幼苗生长的促生作用。

结果:

1.本研究从库尔勒香梨染病枝条上分离到一株细菌C1,经形态学、生理生化和分子生物学鉴定为解淀粉欧文氏菌,命名为Erwinia amylovora C1。将分离得到的E. amylovora C1和标准菌株Erwinia amylovora 0017回接到杜梨树枝、叶片和库尔勒香梨的果实,结果表明,接种E. amylovora C1的健康梨树组织产生了与标准菌株在田间“梨枝枯病”相似的症状,进一步证明了C1为解淀粉欧文氏菌。

2.从梨树的根围土壤中分离得到9株拮抗菌,经16S rDNA鉴定,拮抗菌分别为萎缩芽孢杆菌(Bacillus atrophaeus)、巨大芽孢杆菌(Priestia megaterium)和粘质沙雷菌(Serratia marcescens)。平板对峙试验中,巨大芽孢杆菌(Priestia megaterium)KD7的拮抗效果最佳。对P. megaterium KD7进行离体梨树组织的保护性试验和治疗性试验,结果显示,P. megaterium KD7能有效防治“梨枝枯病”对植物的侵染,保护性试验防治效果优于治疗性试验。

3.研究表明,P. megaterium KD7的无细胞上清液和甲醇提取液对E. amylovora C1有较高的抑菌活性。随后采用薄层层析法(TLC)检测甲醇提取物的抗菌成分,其Rf值为0.71,表明甲醇提取物中存在氨基酸类物质。进一步采用高分辨质谱法(HRMS)检测甲醇提取物中的拮抗物质,鉴定得到三种脂肽类抗生素,即C13-surfactin [M+H]+、C15-surfactin [M+H]+和C14-iturin A [M+H]+

4.拮抗菌的促生试验表明,P. megaterium KD7可降解大分子有机物(淀粉和蛋白)促进拟南芥种子萌发和幼苗的生长。

结论:在新疆库尔勒地区梨园染病的梨树枝条上分离出1株“梨枝枯病”的病原菌。从梨园根围土壤中筛选得到9株拮抗菌,其中P. megaterium KD7的拮抗效果最佳,可以有效的保护梨树组织免受“梨枝枯病”的侵害。P. megaterium KD7可能通过向胞外分泌表面活性素和伊枯草菌素A抑制E. amylovora C1的活性。P. megaterium KD7具有蛋白酶和淀粉酶活性,对植物种子萌发和幼苗生长具有一定促生效应。

外文摘要:

Abstract

Objective: In recent years, black-brown dead branches were observed on the shoots of pear trees in the orchard in Korla, Xinjiang, which was similar to the symptoms of pear branch blight. The pathogenic bacteria from infected from Korla fragrant pear was isolated and identified in this study. Then, bacteria with antagonistic activity against E. amylovora were screened from the rhizosphere soil of healthy pear trees, and the indoor control effect of antagonism was determined using isolated leaves and twigs of Pyrus betulifolia Bunge and fuits from Korla fragrant pear. These results help search for potential and effective biocontrol agents to control pear branch blight.

Methods: In this study, the pathogenic bacteria were isolated from infected Korla fragrant pear twigs by tissue isolation method. The gradient dilution method was used to screen the antagonistic bacteria in the soil, and the most effective antagonistic bacteria were selected for the indoor control effect test using pear tissues in vitro. Then thin layer chromatography (TLC) and high resolution mass spectrum (HRMS) mass spectrometry were used to analyze the active components in the methanol extract of antagonistic bacteria P. megaterium KD7. Finally, the germination rate and seedling growth of Arabidopsis thaliana seeds treated with antagonistic bacteria were observed to evaluate the promoting effect.

Result:

1. In this study, a bacterial strain C1 was isolated from the infected branches of Korla fragrant pear, which was identified as Erwinia amylovora C1 by morphology, physiology, biochemistry and molecular biology method. Strain C1 and the standard Erwinia amylovora 0017 were return inoculated with pear branches and leaves of Pyrus betulifolia Bunge and fruits of Korla fragrant pear. The results showed that the healthy pear tree tissue produced symptoms similar to that of the standard strain in the field of pear branch blight, which further confirmed that C1 was E. amylovora.

2. Nine antagonistic bacteria were isolated from the rhizosphere soil of Korla fragrant pear trees. According to 16S rDNA identification, the antagonistic bacteria belonged to Bacillus, Priestia and Serratia respectively. Among them, Priestia megaterium KD7 has the best antagonistic effect on E. amylovora. Next, the P. megaterium KD7 was used to carry out protective and therapeutic tests on pear tree tissue in vitro. The result showed that P. megaterium KD7 can effectively control the infection of pear branch blight on pear leaves, branches and fruits, and the protective test was better than the therapeutic test.

3. The cell-free supernatant and methanol extract from P. megaterium KD7 showed antibacterial effect against E. amylovora C1. the antibacterial substances of the methanol extract were detected by TLC method, and the Rf was 0.71, indicating that amino acids were existed in the methanol extract. Furthermore, the antibacterial components from methanol extract were identified by HRMS method and three lipopeptides were identified, which were C13-surfactin [M+H]+、C15-surfactin [M+H]+ and C14-iturin A [M+H]+

4. P. megaterium KD7 degrades macromolecular organic substances (starch and protein) to promote the germination of Arabidopsis thaliana seeds and the growth of seedlings.

Conclusion: A pathogen of pear branch blight was isolated from the pear orchard in Korla, Xinjiang. Nine strains of antagonistic bacteria were screened from the soil, among which the antagonistic effect of P. megaterium KD7 was the best, which can effectively protect the pear tissue from the infection of pear branch blight. P. megaterium KD7 secretes surfactin and iturin A into the extracellular space to inhibit the activity of E. amylovora C1. P. megaterium KD7 also has protease and amylase activities to promote the decomposition of macromolecular substances in soil to promote plant growth.

参考文献:

参考文献

[1] 陈卫东. 库尔勒香梨起源的探讨[J]. 新疆林业,1999,(1):37-38.

[2] 陈斐. 库尔勒香梨外部缺陷在线检测研究[D]. 阿拉尔:塔里木大学,2021.

[3] 陈佳佳,王静. 新疆库尔勒香梨产业集群数字化转型研究[J]. 现代商贸工业,2023,44(01):28-30.

[4] 王武官,邹礼义. 梨树常见病害防治技术[J]. 现代园艺,2017,(7):141-142.

[5] EPPO. Diagnostics PM 7/20 (2) Erwinia amylovora[J]. EPPO Bull. 2013, 43: 21-45.

[6] Bereswill S, Pahl A, Bellemann P, et al. Sensitive and species-specific detection of Erwinia amylovora by polymerase chain reaction analysis[J]. Applied and Environmental Microbiology, 1992, 58(11): 3522-3526.

[7] Malnoy M, Martens S, Norelli J L, et al. Fire blight: applied genomic insights of the pathogen and host[J]. Annual Review of Phytopathology, 2012, 50: 475-494.

[8] Medhioub I, Cheffi M, Tounsi S, et al. Study of Bacillus velezensis OEE1 potentialities in the biocontrol against Erwinia amylovora, causal agent of fire blight disease of rosaceous plants[J]. Biological Control, 2022, 167: 104842.

[9] Dagher F, Nickzad A, Zheng J, et al. Characterization of the biocontrol activity of three bacterial isolates against the phytopathogen Erwinia amylovora[J]. MicrobiologyOpen, 2021, 10(3): e1202.

[10] Roselló G, Bonaterra A, Francés J, et al. Biological control of fire blight of apple and pear with antagonistic Lactobacillus plantarum[J]. European Journal of Plant Pathology, 2013, 137: 621-633.

[11] Ngugi H K, Lehman B L, Madden L V. Multiple treatment meta-analysis of products evaluated for control of fire blight in the eastern United States[J]. Phytopathology, 2011, 101(5): 512-522.

[12] Bahadou S A, Ouijja A, Boukhari M A, et al. Development of field strategies for fire blight control integrating biocontrol agents and plant defense activators in Morocco[J]. Journal of Plant Pathology, 2017, 99: 51-58.

[13] Yakkou L, Houida S, Bilen S, et al. Assessment of earthworm (Aporrectodea molleri)'s coelomic fluid-associated bacteria on different plant growth-promoting traits and maize germination and seedling growth[J]. Biocatalysis and Agricultural Biotechnology, 2022, 42: 102341.

[14] Chakraborty N, Chakraborty N, Acharyya P, et al. Isolation, characterization and identification of novel broad spectrum bacterial antagonist (s) to control Fusarium wilt of eggplant[J]. Physiological and Molecular Plant Pathology, 2021, 116: 101711.

[15] Zurn J D, Norelli J L, Montanari, S, et al. Dissecting genetic resistance to fire blight in three pear populations[J]. Phytopathology, 2020, 110(7): 1305-1311.

[16] Zhao Y, Tian Y, Wang L, et al. Fire blight disease, a fast-approaching threat to apple and pear production in China[J]. Journal of Integrative Agriculture, 2019, 18(4): 815-820.

[17] 王俊,高建诚,巴音克西克,等. 利用蜜蜂传播生防菌防治梨火疫病[J]. 植物检疫,2022,36(01):9-12.

[18] 韩丽丽,荆珺,王杰花,等. 杏树梨火疫病在中国首次发生[J]. 植物检疫,2022,36(06):46-49.

[19] 中华人民共和国农业农村部. 全国农业植物检疫性有害生物分布行政区目录. 2022.

[20] Beer S V, Shabi E, Zutra D. Fireblight in Israel-1985. Observations and recommendations[J]. EPPO Bulletin, 1986, 16(4): 639-646.

[21] Zutra D, Shabi E, Lazarovits G. Fire blight on pear, a new disease in Israel[J]. Plant Dis, 1986, 70: 1071-1073.

[22] Van der Zwet T, Orolaza-Halbrendt N, Zeller W. Fire blight: history, biology, and management[M]. American Phytopathological Society (APS Press), 2012.

[23] Santander R D, Catala-Senent J F, Marco-Noales E, et al. In planta recovery of Erwinia amylovora viable but nonculturable cells[J]. Trees, 2012, 26: 75-82.

[24] Mansfield J, Genin S, Magori S, et al. Top 10 plant pathogenic bacteria in molecular plant pathology[J]. Molecular Plant Pathology, 2012, 13(6): 614-629.

[25] Vanneste J L. Honey bees and epiphytic bacteria to control fire blight, a bacterial disease of apple and pear[J]. Biocontrol News and Information, 1996, 17: 67N-78N.

[26] Slama H B, Cherif-Silini H, Chenari Bouket A, et al. Screening for Fusarium antagonistic bacteria from contrasting niches designated the endophyte Bacillus halotolerans as plant warden against Fusarium[J]. Frontiers in Microbiology, 2019, 9: 3236.

[27] Sharifazizi M, Harighi B, Sadeghi A. Evaluation of biological control of Erwinia amylovora, causal agent of fire blight disease of pear by antagonistic bacteria[J]. Biological Control, 2017, 104: 28-34.

[28] McManus P S, Stockwell V O, Sundin G W, et al. Antibiotic use in plant agriculture[J]. Annual Review of Phytopathology, 2002, 40(1): 443-465.

[29] Lindow S E, McGourty G, Elkins R. Interactions of antibiotics with Pseudomonas fluorescens strain A506 in the control of fire blight and frost injury to pear[J]. Phytopathology, 1996, 86(8): 841-848.

[30] Aldwinckle H S, Bhaskara Reddy M V, Norelli J L. Evaluation of control of fire blight infection of apple blossoms and shoots with SAR inducers, biological agents, a growth regulator, copper compounds, and other materials[J]. Acta Horticulturae, 2002, 590: 325-331.

[31] Chen X H, Scholz R, Borriss M, et al. Difficidin and bacilysin produced by plant-associated Bacillus amyloliquefaciens are efficient in controlling fire blight disease[J]. Journal of Biotechnology, 2009, 140(1-2): 38-44.

[32] 鲁晏宏,郝金辉,罗明,等. 梨火疫病拮抗菌筛选及温室防效测定[J]. 微生物学通报,2021,48(10):3690-3699.

[33] 徐琳赟,古丽孜热·曼合木提,韩剑,等. 香梨内生拮抗细菌的筛选及对梨火疫病的生防潜力[J]. 西北植物学报,2021,41(01):132-141.

[34] 吕天宇,贺旭,罗明,等. 梨火疫病菌拮抗细菌FX1培养基及摇瓶发酵条件优化[J].中国生物防治学报,2022,38(06):1553-1565.

[35] Doukkali L, Radouane N, Ezrari S, et al. Lessons learnt from the fire blight epidemics: a mini review[J]. Indian Phytopathology, 2022, 75(3): 611-625.

[36] Griffith C S, Sutton T B, Peterson P D. Fire blight: the foundation of phytobacteriology[M]. American Phytopathological Society (APS Press), 2003.

[37] Steiner P W. Integrated orchard and nursery management for the control of fire blight[M]. Cabi Publishing, 2000.

[38] Kharadi R R, Schachterle J K, Yuan X, et al. Genetic dissection of the Erwinia amylovora disease cycle[J]. Annual Review of Phytopathology, 2021, 59: 191-212.

[39] Thomson S V. Epidemiology of fire blight. Fire blight, the disease and its causative agent, Erwinia amylovora (Vanneste JL, ed)[J]. Wallingford, United Kingdom: CABI Publishing, 2000: 9-36.

[40] Blachinsky D, Shtienberg D, Zamski E, et al. Effects of pear tree physiology on fire blight progression in perennial branches and on expression of pathogenicity genes in Erwinia amylovora[J]. European Journal of Plant Pathology, 2006, 116: 315-324.

[41] Loescher W H. Physiology and metabolism of sugar alcohols in higher plants[J]. Physiologia Plantarum, 1987, 70(3): 553-557.

[42] Van Der Zwet T, Keil H L. Fire blight: a bacterial disease of rosaceous plants[M]. US Department of Agriculture, 1979.

[43] Momol M T, Aldwinckle H S. Genetic diversity and host range of Erwinia amylovora[J]. Cabi Publishing, 2000: 55-72.

[44] Bennett R A, BILLING E V E. Capsulation and virulence in Erwinia amylovora[J]. Annals of Applied Biology, 1978, 89(1): 41-45.

[45] Sebaihia M, Bocsanczy A M, Biehl B S, et al. Complete genome sequence of the plant pathogen Erwinia amylovora strain ATCC 49946[J]. Journal of Bacteriology, 2010, 192(7): 2020-2021.

[46] Dale C, Jones T, Pontes M. Degenerative evolution and functional diversification of type-III secretion systems in the insect endosymbiont Sodalis glossinidius[J]. Molecular Biology and Evolution, 2005, 22(3): 758-766.

[47] Piqué N, Miñana-Galbis D, Merino S, et al. Virulence factors of Erwinia amylovora: a review[J]. International Journal of Molecular Sciences, 2015, 16(6): 12836-12854.

[48] Zeng Q, Sundin G W. Genome-wide identification of Hfq-regulated small RNAs in the fire blight pathogen Erwinia amylovora discovered small RNAs with virulence regulatory function[J]. BMC Genomics, 2014, 15(1): 1-19.

[49] Koczan J M, Lenneman B R, McGrath M J, et al. Cell surface attachment structures contribute to biofilm formation and xylem colonization by Erwinia amylovora[J]. Applied and Environmental Microbiology, 2011, 77(19): 7031-7039.

[50] Ordax M, Marco-Noales E, López M M, et al. Exopolysaccharides favor the survival of Erwinia amylovora under copper stress through different strategies[J]. Research in Microbiology, 2010, 161(7): 549-555.

[51] Vrancken K, Holtappels M, Schoofs H, et al. Pathogenicity and infection strategies of the fire blight pathogen Erwinia amylovora in Rosaceae: state of the art[J]. Microbiology, 2013, 159(Pt-5): 823-832.

[52] Maes M, Orye K, Bobev S, et al. Influence of amylovoran production on virulence of Erwinia amylovora and a different amylovoran structure in E. amylovora isolates from Rubus[J]. European Journal of Plant Pathology, 2001, 107: 839-844.

[53] Schollmeyer M, Langlotz C, Huber A, et al. Variations in the molecular masses of the capsular exopolysaccharides amylovoran, pyrifolan and stewartan[J]. International Journal of Biological Macromolecules, 2012, 50(3): 518-522.

[54] Bellemann P, Geider K. Localization of transposon insertions in pathogenicity mutants of Erwinia amylovora and their biochemical characterization[J]. Journal of General Microbiology, 1992, 138(5): 931-940.

[55] Geier G, Geider K. Characterization and influence on virulence of the levansucrase gene from the fireblight pathogen Erwinia amylovora[J]. Physiological and Molecular Plant Pathology, 1993, 42(6): 387-404.

[56] Khokhani D, Zhang C, Li Y, et al. Discovery of plant phenolic compounds that act as type III secretion system inhibitors or inducers of the fire blight pathogen, Erwinia amylovora[J]. Applied and Environmental Microbiology, 2013, 79(18): 5424-5436.

[57] Jin Q, Hu W, Brown I, et al. Visualization of secreted Hrp and Avr proteins along the Hrp pilus during type III secretion in Erwinia amylovora and Pseudomonas syringae[J]. Molecular Microbiology, 2001, 40(5): 1129-1139.

[58] Barnhart M M, Chapman M R. Curli biogenesis and function[J]. Annual Review of Microbiology, 2006, 60: 131-147.

[59] Epstein E A, Chapman M R. Polymerizing the fibre between bacteria and host cells: the biogenesis of functional amyloid fibres[J]. Cellular Microbiology, 2008, 10(7): 1413-1420.

[60] Kachadourian R, Dellagi A, Laurent J, et al. Desferrioxamine-dependent iron transport in Erwinia amylovora CFBP1430: cloning of the gene encoding the ferrioxamine receptor FoxR[J]. Biometals, 1996, 9: 143-150.

[61] Santander R D, Figàs-Segura À, Biosca E G. Erwinia amylovora catalases KatA and KatG are virulence factors and delay the starvation-induced viable but non-culturable (VBNC) response[J]. Molecular Plant Pathology, 2018, 19(4): 922-934.

[62] Van d Z T, Beer S V. Fire blight: Its nature, prevention, and control: a practical guide to integrated disease management[J]. Agricultural Information Bulletins, 1999.

[63] Eden-Green S J, Knee M. Bacterial polysaccharide and sorbitol in fireblight exudate[J]. Microbiology, 1974, 81(2): 509-512.

[64] Norelli J L, Jones A L, Aldwinckle H S. Fire blight management in the twenty-first century: using new technologies that enhance host resistance in apple[J]. Plant Disease, 2003, 87(7): 756-765.

[65] Paulin J P. Erwinia amylovora: general characteristics, biochemistry and serology[J]. Cabi Publishing, 2000: 87-117.

[66] Llop P, Bonaterra A, Peñalver J, et al. Development of a highly sensitive nested-PCR procedure using a single closed tube for detection of Erwinia amylovora in asymptomatic plant material[J]. Applied and Environmental Microbiology, 2000, 66(5): 2071-2078.

[67] Thomas T M, Jones A L. Severity of fire blight on apple cultivars and strains in Michigan[J]. Plant Disease, 1992, 76(10): 1049-1052.

[68] Moller, W. J. The scenario of fire blight and streptomycin resistance[J]. Plant Disease, 1981, 65: 563.

[69] McManus P S, Jones A L. Genetic fingerprinting of Erwinia amylovora strains isolated from tree-fruit crops and Rubus spp[J]. Phytopathology, 1995, 85(12): 1547-1553.

[70] 杨金花,徐叶挺,张校立. 梨火疫病研究进展[J]. 分子植物育种,2022,20(03):1003-1013.

[71] 胡白石. 梨火疫病菌的风险分析及检测技术研究[D]. 南京:南京农业大学,2000.

[72] Fahrentrapp J, Broggini G A L, Kellerhals M, et al. A candidate gene for fire blight resistance in Malus×robusta 5 is coding for a CC-NBS-LRR[J]. Tree Genetics & Genomes, 2013, 9: 237-251.

[73] Le Roux P M F, Khan M A, Broggini G A L, et al. Mapping of quantitative trait loci for fire blight resistance in the apple cultivars ‘Florina’and ‘Nova Easygro’[J]. Genome, 2010, 53(9): 710-722.

[74] Chiou C S, Jones A L. Molecular analysis of high-level streptomycin resistance in Erwinia amylovora[J]. Phytopathology, 1995, 85(3): 324-328.

[75] Russo N L, Burr T J, Breth D I, et al. Isolation of streptomycin-resistant isolates of Erwinia amylovora in New York[J]. Plant Disease, 2008, 92(5): 714-718.

[76] Mikiciński A, Puławska J, Molzhigitova A, et al. Bacterial species recognized for the first time for its biocontrol activity against fire blight (Erwinia amylovora)[J]. European Journal of Plant Pathology, 2020, 156(1): 257-272.

[77] Johnson K B. Fire blight of apple and pear[J]. The Plant Health Instructor, 2000, 2015.

[78] Bastas K K. Management of Erwinia amylovora by potential bio-pesticides in vitro and in vivo conditions[J]. Turkish Journal of Agriculture-Food Science and Technology, 2020, 8: 38-45.

[79] Oubihi A, Ouryemchi I, Nounah I, et al. Chemical composition, antibacterial and antifungal activities of Thymus leptobotrys Murb essential oil[J]. Advances in Traditional Medicine, 2020, 20: 673-679.

[80] Doukkali L, Tahiri A, Tazi B, et al. Chemical composition and antibacterial activity of two essential oils of rosemary against Erwinia amylovora, the causal agent fire blight[J]. Journal of Materials and Environmental Science, 2018, 9: 2913-2918.

[81] Baysal O, Laux P, Zeller W. Further studies on the induced resistance (IR) effect of plant extract from Hedera helix against fire blight (Erwinia amylovora)[J]. Acta Horticulturae, 2002: 273-277.

[82] Vanneste J L, Cornish D A, Spinelli F, et al. Colonisation of apple and pear leaves by different strains of biological control agents of fire blight[J]. New Zealand Plant Protection, 2004, 57: 49-53.

[83] Vanneste J L. Fire blight: the disease and its causative agent, Erwinia amylovora[M]. Cabi Publishing, 2000.

[84] Stockwell V O, Johnson K B, Sugar D, et al. Control of fire blight by Pseudomonas fluorescens A506 and Pantoea vagans C9-1 applied as single strains and mixed inocula[J]. Phytopathology, 2010, 100(12): 1330-1339.

[85] Wilson M, Lindow S E. Interactions between the biological control agent Pseudomonas fluorescens A506 and Erwinia amylovora in pear blossoms[J]. Phytopathology, 1993, 83(1): 117-123.

[86] Vanneste J L, Cornish D A, Yu J, et al. P10c: a new biological control agent for control of fire blight which can be sprayed or distributed using honey bees[J]. Acta Horticulturae, 2002, 590: 231-235.

[87] Pusey P L, Stockwell V O, Rudell D R. Antibiosis and acidification by Pantoea agglomerans strain E325 may contribute to suppression of Erwinia amylovora[J]. Phytopathology, 2008, 98(10): 1136-1143.

[88] Smits T H M, Rezzonico F, Kamber T, et al. Genome sequence of the biocontrol agent Pantoea vagans strain C9-1[J]. Journal of Bacteriology, 2010, 192(24): 6486-6487.

[89] Broggini G A L, Duffy B, Holliger E, et al. Detection of the fire blight biocontrol agent Bacillus subtilis BD170 (Biopro®) in a Swiss apple orchard[J]. European Journal of Plant Pathology, 2005, 111: 93-100.

[90] Oni F E, Esmaeel Q, Onyeka J T, et al. Pseudomonas lipopeptide-mediated biocontrol: chemotaxonomy and biological activity[J]. Molecules, 2022, 27(2): 372.

[91] Giddens S R, Feng Y, Mahanty H K. Characterization of a novel phenazine antibiotic gene cluster in Erwinia herbicola Eh1087[J]. Molecular Microbiology, 2002, 45(3): 769-783.

[92] Wright S A I, Zumoff C H, Schneider L, et al. Pantoea agglomerans strain EH318 produces two antibiotics that inhibit Erwinia amylovora in vitro[J]. Applied and Environmental Microbiology, 2001, 67(1): 284-292.

[93] Connor N, Sikorski J, Rooney A P, et al. Ecology of speciation in the genus Bacillus[J]. Applied and Environmental Microbiology, 2010, 76(5): 1349-1358.

[94] Saxena A K, Kumar M, Chakdar H, et al. Bacillus species in soil as a natural resource for plant health and nutrition[J]. Journal of Applied Microbiology, 2020, 128(6): 1583-1594.

[95] Chen X H, Koumoutsi A, Scholz R, et al. Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens[J]. Journal of Biotechnology, 2009, 140(1-2): 27-37.

[96] Lee X, Azevedo M D, Armstrong D J, et al. The Pseudomonas aeruginosa antimetabolite L-2-amino-4-methoxy-trans-3-butenoic acid inhibits growth of Erwinia amylovora and acts as a seed germination-arrest factor[J]. Environmental Microbiology Reports, 2013, 5(1): 83-89.

[97] Sharma R, Berg J A, Beatty N J, et al. Genome sequences of nine Erwinia amylovora bacteriophages[J]. Microbiology Resource Announcements, 2018, 7(14): e00944-18.

[98] Garcia P, Martinez B, Obeso J M, et al. Bacteriophages and their application in food safety[J]. Letters in Applied Microbiology, 2008, 47(6): 479-485.

[99] Sabri M, Benkirane R, Habbadi K, et al. Phages as a potential biocontrol of phytobacteria[J]. Archives of Phytopathology and Plant Protection, 2021, 54(17-18): 1277-1291.

[100] Goodridge L D, Abedon S T. Bacteriophage biocontrol: the technology matures[J]. Microbiology Australia, 2008, 29(1): 48-49.

[101] Połaska M, Sokołowska B. Bacteriophages-a new hope or a huge problem in the food industry[J]. AIMS Microbiology, 2019, 5(4): 324.

[102] Sabri M, El Handi K, Valentini F, et al. Identification and characterization of Erwinia Phage IT22: a new bacteriophage-based biocontrol against Erwinia amylovora[J]. Viruses, 2022, 14(11): 2455.

[103] Hartung J S, Fulbright D W, Klos E J. Cloning of a bacteriophage polysaccharide depolymerase gene and its expression in Erwinia amylovora[J]. Molecular Plant-Microbe Interactions, 1988, 1: 87-93.

[104] Schnabel E L, Jones A L. Isolation and characterization of five Erwinia amylovora bacteriophages and assessment of phage resistance in strains of Erwinia amylovora[J]. Applied and Environmental Microbiology, 2001, 67(1): 59-64.

[105] Mora I, Cabrefiga J, Montesinos E. Cyclic lipopeptide biosynthetic genes and products, and inhibitory activity of plant-associated Bacillus against phytopathogenic bacteria[J]. PLoS One, 2015, 10(5): e0127738.

[106] Ishimaru C A, Klos E J, Brubaker R R. Multiple antibiotic production by Erwinia herbicola[J]. Phytopathology, 1988, 78(6): 746-750.

[107] Johnson K B, Stockwell V O. Biological control of fire blight. In J. L. Vanneste (Ed.), Fire blight-the disease and its causative agent, Erwinia amylovora[J]. CABI Publishing, Wallingford, 2000: 319-337.

[108] 李洪涛,张静文,盛强,等. 我国20个梨品种(种质)对国外梨火疫病菌的抗病性评价[J]. 果树学报,2019,(5):629-637.

[109] 陈晓晓,艾尼赛·赛米,粟神强,等. 梨火疫病病原菌的分离鉴定及室内抑菌药剂筛选[J]. 西北农业学报,2023,32(03):468-478.

[110] Wang Z, Zhang J B, Jia C H, et al. De novo characterization of the banana root transcriptome and analysis of gene expression under Fusarium oxysporum f. sp. Cubense tropical race 4 infection[J]. BMC Genomics, 2012, 13: 1-9.

[111] 张巍,于宇,沈淑霞. 农药污染对生态环境的影响分析与可持续治理对策[J]. 价值工程,2020,39(19):103-104.

[112] Kim W S, Hildebrand M, Jock S, et al. Molecular comparison of pathogenic bacteria from pear trees in Japan and the fire blight pathogen Erwinia amylovora[J]. Microbiology, 2001, 147(11): 2951-2959.

[113] Stöger A, Schaffer J, Ruppitsch W. A rapid and sensitive method for direct detection of Erwinia amylovora in symptomatic and asymptomatic plant tissues by polymerase chain reaction[J]. Journal of Phytopathology, 2006, 154(7-8): 469-473.

[114] Mitrev S, Kostadinovska E. Isolation and molecular determination of the fire blight pathogen, Erwinia amylovora, isolated from apple trees in the republic of Macedonia[J]. Journal of Plant Pathology, 2016, 98(3): 577-580.

[115] Granarium, T. Diagnostic protocols for regulated pests[J]. EPPO Bulletin, 2008, 31: 37-39.

[116] Bereswill S, Jock S, Bellemann P, et al. Identification of Erwinia amylovora by growth morphology on agar containing copper sulfate and by capsule staining with lectin[J]. Plant Disease, 1998, 82(2): 158-164.

[117] Schaad N W, Jones J B, Chun W. Laboratory guide for the identification of plant pathogenic bacteria, Third Edition[J]. Plant Pathology, 2001, 50(6): 812-814.

[118] King E O, Ward M K, Raney D E. Two simple media for the demonstration of pyocyanin and fluorescein[J]. The Journal of Laboratory and Clinical Medicine, 1954, 22(4): 301-307.

[119] Ishimaru C, Klos E J. New medium for detecting Erwinia amylovora and its use in epidemiological studies[J]. Phytopathology, 1984, 74(11): 1342-1345.

[120] 方中达. 植病研究方法(第三版)[M]. 中国农业出版社,1998.

[121] 东秀珠,蔡妙英. 常用细菌系统鉴定手册[M]. 北京:科学出版社,2001.

[122] 东秀珠,蔡秒英. 伯杰细菌鉴定手册(第八版)[M]. 北京:科学出版社,2001.

[123] 胡俊. 微生物学实验技术[M]. 内蒙古文化出版社,2000.

[124] Ashmawy N A, Zaghloul T I, El-Sabagh M A. Isolation and molecular characterization of the fire blight pathogen, Erwinia amylovora, isolated from apple and pear orchards in Egypt[J]. Plant Pathology Journal (Faisalabad), 2015, 14(3): 142-147.

[125] Weisburg W G, Barns S M, Pelletier D A, et al. 16S ribosomal DNA amplification for phylogenetic study[J]. Journal of Bacteriology, 1991, 173(2): 697-703.

[126] Tamura K, Dudley J, Nei M, et al. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0[J]. Molecular Biology and Evolution, 2007, 24(8): 1596-1599.

[127] Song P, Li G, Xu J, et al. Genome-wide analysis of genes involved in the GA signal transduction pathway in ‘duli’Pear (Pyrus betulifolia Bunge)[J]. International Journal of Molecular Sciences, 2022, 23(12): 6570.

[128] Cheng S, Ouyang H, Guo W, et al. Proteomic and physiological analysis of ‘Korla’fragrant pears (Pyrus×brestschneideri Rehd) during postharvest under cold storage[J]. Scientia Horticulturae, 2021, 288: 110428.

[129] Vincelli P, Hershman D E. Assessing foliar diseases of corn, soybeans, and wheat[J]. Principles and Practices PPFS-MISC-06, 2011.

[130] Reller L B, Weinstein M, Jorgensen J H, et al. Antimicrobial susceptibility testing: a review of general principles and contemporary practices[J]. Clinical Infectious Diseases, 2009, 49(11): 1749-1755.

[131] Chatterjee A. Fire blight: the disease and its causative agent, Erwinia amylovora. Edited by J.L. Vanneste[J]. European Journal of Plant Pathology, 2001, 107(5): 569.

[132] 周登博,井涛,起登凤,等. 抗香蕉枯萎病菌的卢娜林瑞链霉菌的分离及防效鉴定[J]. 园艺学报,2017,44(04):664-674.

[133] Zaidan M R, Noor Rain A, Badrul A R, et al. In vitro screening of five local medicinal plants for antibacterial activity using disc diffusion method[J]. Trop Biomed, 2005, 22(2): 165-170.

[134] Vater J, Kablitz B, Wilde C, et al. Matrix-assisted laser desorption ionization-time of flight mass spectrometry of lipopeptide biosurfactants in whole cells and culture filtrates of Bacillus subtilis C-1 isolated from petroleum sludge[J]. Applied and Environmental Microbiology, 2002, 68(12): 6210-6219.

[135] Batrakov S G, Rodionova T A, Esipov S E, et al. A novel lipopeptide, an inhibitor of bacterial adhesion, from the thermophilic and halotolerant subsurface Bacillus licheniformis strain 603[J]. Acta Biochimica et Biophysica Sinica, 2003, 1634(3): 107-115.

[136] Kalai-Grami L, Karkouch I, Naili O, et al. Production and identification of iturin A lipopeptide from Bacillus methyltrophicus TEB1 for control of Phoma tracheiphila[J]. Journal of Basic Microbiology, 2016, 56(8): 864-871.

[137] Wang J, Qiu J, Yang X, et al. Identification of lipopeptide iturin a produced by Bacillus amyloliquefaciens NCPSJ7 and its antifungal activities against Fusarium oxysporum f. sp. niveum[J]. Foods, 2022, 11(19): 2996.

[138] 徐欣韵,王宁,丁佳,等. 番茄青枯病拮抗菌的定向筛选及其抗病促生机制研究[J]. 微生物学报,2021,61(10):3276-3290.

[139] 姚拓. 高寒地区燕麦根际联合固氮菌研究Ⅱ固氮菌的溶磷性和分泌植物生长素特性测定[J]. 草业学报,2004(03):85-90.

[140] 江绪文,李贺勤,谭勇. 藿香内生细菌 HX-2 的鉴定,耐性及对宿主植物的促生作用[J]. 草业学报,2018,27(01):161-168.

[141] 李兴昱,李发康,李培,等. 放线菌 ZZ-9 发酵液与腐植酸钠混施对小麦的促生作用[J]. 中国植保导刊,2020,40(4):5-10.

[142] Patel R R, Sundin G W, Yang C H, et al. Exploration of using antisense peptide nucleic acid (PNA)-cell penetrating peptide (CPP) as a novel bactericide against fire blight pathogen Erwinia amylovora[J]. Frontiers in Microbiology, 2017, 8: 687.

[143] Klee S M, Sinn J P, McNellis T W. The apple fruitlet model system for fire blight disease[J]. Plant Innate Immunity: Methods and Protocols, 2019, 1991: 187-198.

[144] Mannaa M, Kim K D. Biocontrol activity of volatile-producing Bacillus megaterium and Pseudomonas protegens against aspergillus and Penicillium spp. Predominant in stored rice grains: study II[J]. Mycobiology, 2018, 46(1): 52-63.

[145] 丁从文,冯群,李春焕. 巨大芽孢杆菌LB01对采后芒果炭疽病菌的抑制机制初探[J]. 食品工业科技,2020,41(10):131-137.

[146] Ongena M, Jacques P. Bacillus lipopeptides: versatile weapons for plant disease biocontrol[J]. Trends in Microbiology, 2008, 16(3): 115-125.

[147] Penha R O, Vandenberghe L P S, Faulds C, et al. Bacillus lipopeptides as powerful pest control agents for a more sustainable and healthy agriculture: recent studies and innovations[J]. Planta, 2020, 251(3): 1-15.

[148] Fira D, Dimkić I, Berić T, et al. Biological control of plant pathogens by Bacillus species[J]. Journal of Biotechnology, 2018, 285: 44-55.

[149] Villegas-Escobar V, González-Jaramillo L M, Ramírez M, et al. Lipopeptides from Bacillus sp. EA-CB0959: active metabolites responsible for in vitro and in vivo control of Ralstonia solanacearum[J]. Biological Control, 2018, 125: 20-28.

[150] Chen M, Wang J, Liu B, et al. Biocontrol of tomato bacterial wilt by the new strain Bacillus velezensis FJAT-46737 and its lipopeptides[J]. BMC Microbiology, 2020, 20(1): 1-12.

[151] Zhou T, Chen D, Li C, et al. Isolation and characterization of Pseudomonas brassicacearum J12 as an antagonist against Ralstonia solanacearum and identification of its antimicrobial components[J]. Microbiological Research, 2012, 167(7): 388-394.

[152] Patel H, Tscheka C, Edwards K, et al. All-or-none membrane permeabilization by fengycin-type lipopeptides from Bacillus subtilis QST713[J]. Acta Biochimica et Biophysica Sinica, 2011, 1808(8): 2000-2008.

[153] Jourdan E, Henry G, Duby F, et al. Insights into the defense-related events occurring in plant cells following perception of surfactin-type lipopeptide from Bacillus subtilis[J]. Molecular Plant-Microbe Interactions, 2009, 22(4): 456-468.

[154] Pueyo M T, Bloch C, Carmona-Ribeiro A M, et al. Lipopeptides produced by a soil Bacillus megaterium strain[J]. Microbial Ecology, 2009, 57: 367-378.

[155] Xu Y, Cai D, Zhang H, et al. Enhanced production of iturin A in Bacillus amyloliquefaciens by genetic engineering and medium optimization[J]. Process Biochemistry, 2020, 90: 50-57.

[156] Calvo H, Mendiara I, Arias E, et al. The role of iturin A from B. amyloliquefaciens BUZ-14 in the inhibition of the most common postharvest fruit rots[J]. Food Microbiology, 2019, 82: 62-69.

[157] Fu R, Tang W, Zhang H, et al. Study on the mechanism of inhibiting patulin production by fengycin[J]. Open Life Sciences, 2022, 17(1): 372-379.

[158] Feng R Y, Chen Y H, Lin C, et al. Surfactin secreted by Bacillus amyloliquefaciens Ba01 is required to combat Streptomyces scabies causing potato common scab[J]. Frontiers in Plant Science, 2022, 13:998707.

[159] Romero D, De Vicente A, Rakotoaly R H, et al. The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca[J]. Molecular Plant-Microbe Interactions, 2007, 20(4): 430-440.

[160] Mohammad A, Ullah Q, Khan M, et al. Detection reagents used in on-plate identification of amino acids by thin layer chromatography: a review[J]. Journal of Liquid Chromatography & Related Technologies, 2018, 41(10): 595-603.

[161] Rong S, Xu H, Li L, et al. Antifungal activity of endophytic Bacillus safensis B21 and its potential application as a biopesticide to control rice blast[J]. Pesticide Biochemistry and Physiology, 2020, 162: 69-77.

[162] Chen X, Zhang Y, Fu X, et al. Isolation and characterization of Bacillus amyloliquefaciens PG12 for the biological control of apple ring rot[J]. Postharvest Biology and Technology, 2016, 115: 113-121.

[163] 唐晨,杨倩文,程小龙,等. 半夏软腐病拮抗细菌的筛选与鉴定[J]. 生物加工过程,2023,21(01):57-66.

[164] 商永泉. 土壤微生物在促进植物生长方面的作用分析[J]. 科技风,2016,(21):151.

[165] Chaurasia L K, Tirwa R K, Tamang B. Potential of Enterococcus faecium LM5.2 for lipopeptide biosurfactant production and its effect on the growth of maize (Zea mays L.)[J]. Archives of Microbiology, 2022, 204(4): 223.

[166] Chaurasia L K, Tamang B, Tirwa R K, et al. Influence of biosurfactant producing Bacillus tequilensis LK5. 4 isolate of kinema, a fermented soybean, on seed germination and growth of maize (Zea mays L.)[J]. 3 Biotech, 2020, 10: 1-12.

中图分类号:

 Q93    

开放日期:

 2023-05-24    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式