- 无标题文档
查看论文信息

题名:

 均衡多不饱和脂肪酸红花籽油调和油的制备及微囊化研究    

作者:

 张高虔    

学号:

 20202111016    

保密级别:

 秘密3年后开放    

语种:

 chi    

学科代码:

 086003    

学科:

 工学 - 生物与医药 - 食品工程    

学生类型:

 硕士    

学位:

 工程硕士    

学位类型:

 专业学位    

学位年度:

 2023    

学校:

 石河子大学    

院系:

 食品学院    

专业:

 生物与医药    

研究方向:

 粮食、油脂与植物蛋白工程    

导师姓名:

 魏长庆    

导师单位:

 石河子大学    

完成日期:

 2023-05-15    

答辩日期:

 2023-05-09    

外文题名:

 Study on the preparation and microencapsulation of equilibrium polyunsaturated fatty acid safflower seed oil-based blend oil    

关键词:

 红花籽油 ; 多不饱和脂肪酸(PUFAs) ; 微波 ; 混合冷榨 ; 微胶囊     

外文关键词:

 safflower oil ; polyunsaturated fatty acids (PUFAs) ; microwave ; blended cold pressing ; microencapsulation     

摘要:

红花籽油作为一种新疆特种植物油,因其含有丰富的多不饱和脂肪酸(PUFAs)尤其是亚油酸而受到众多消费者青睐,不过其n-6/n-3 PUFAs比例并不完全符合PUFAs膳食推荐摄入比(n-6/n-3 PUFAs=4-6:1)。为满足大众均衡饮食的需求,促进红花籽油多元高值化利用,可以对红花籽油进行调和补充。微波辅助混合冷榨工艺是近年来逐渐兴起的一种调和油制备手段,此法不仅继承了微波预处理高提油率、高活性物质保留特点,还可以提高油脂抗氧化能力并产生独特的风味。对于调和油常见的不稳定特性(如易挥发、氧化和降解),采用微囊化技术可以达到延长油脂货架期的目的。

本课题首先采用质量比值方式与脂肪酸比值方式确定红花籽与亚麻籽的混合比例(Ws/Wf),并采用响应面法对微波辅助混合冷榨工艺参数优化,获得最优参数条件;其次,对PUFAs均衡型红花籽油调和油(BCPO)、传统冷榨调和油(BO)以及冷榨红花籽油(SO)的理化特性、营养指标及挥发性化合物进行对比分析;最后,采用喷雾干燥法制备出PUFAs均衡型红花籽油调和油微胶囊产品(BCPOM),优化BCPOM制备工艺,探究分析其品质特性和应用。主要内容与结果如下:

(1)微波辅助混合冷榨工艺探究:通过质量比值方式与脂肪酸比值方式确定的Ws/Wf分别为1.80-2.40和1.66-2.59,质量比值方式操作简单且结果无需验证,但原料需求量高,精确度较低;脂肪酸比值方式原料需求较低且结果精确度较高,但需要进行PUFAs验证分析。在Ws/Wf=2基础上进行单因素和响应面优化实验设计,分析各因素交互影响,得到最佳工艺条件为:微波(800 W)处理时间1.5 min,压榨温度64 ℃,油籽水分含量6.7%。最优条件下提油率为19.83±0.21%。

(2)BCPO理化、营养及风味特性分析:基本理化指标结果表明BCPO的酸价为0.97±0.04 mgKOH/mg,过氧化值为0.093±0.003 g/100 g,硫代巴比妥酸值为0.96±0.04 mg/100 g,p-茴香胺值为0.91±0.04,碘值为151.67±3.09 g/100g。在初级、次级及综合氧化水平上BCPO均显著低于BO(p<0.05);不饱和水平上BCPO与BO虽无显著差异(p>0.05)但均显著高于SO(p<0.05)。Schaal烘箱法和Rancimat氧化加速法结果均表明BCPO氧化稳定性优于BO。营养分析结果表明在脂肪酸、生育酚和植物甾醇含量上BCPO与BO无显著差异(p>0.05),BCPO中n-6/n-3 PUFAs比例为4.69:1。在β、γ和δ生育酚及植物甾醇含量上BCPO与BO均显著高于SO(p<0.05)。基于挥发性变量的主成分分析法表明BCPO、BO和SO中挥发性化合物组成存在差异。气味活度值(OAV)分析结果表明1-辛烯-3-酮、2-乙基-3,5-二甲基吡嗪和2-乙基-6-甲基吡嗪为BCPO中特有的关键香气物质,感官分析明确烤香味和焦糊味为BCPO主要风味特点。

(3)BCPOM制备、特性及应用研究:通过单因素实验及L9(34)正交优化分析得到喷雾干燥制备BCPOM的最佳工艺条件为:可溶性固形物含量12%、脱脂乳粉:麦芽糊精=1:1,壁芯比2:1、进风温度160 ℃,此参数下,BCPOM呈疏松的乳白色粉末状,包埋率为89.1±0.95%。基本理化分析结果表明BCPOM的水分含量为2.31±0.12%、粗蛋白含量8.82±0.29%、休止角39.16±0.39 °、溶解度71.36±0.82 g/100 g、容重0.34±0.05 g/cm3,说明BCPOM具有良好的溶解性和流动性。扫描电镜及粒度测定结果表明BCPOM呈近似球形结构,粒径主要分布在5-30 μm范围内,Span值为1.55,说明BCPOM颗粒有着良好的均一性。通过傅里叶红外光谱发现壁材与芯材的主要特征峰(C=C、-C=O等)在BCPOM上的振动并不明显,说明芯材与壁材互相作用形成微胶囊结构。热重分析结果表明BCPOM在200 ℃以下具有良好热稳定性。体外模拟消化实验发现BCPOM芯材主要在肠液中释放,在肠胃液中的BCPOM释放与一级动力学模型拟合系数最高(R2>0.997)。贮藏稳定性实验发现BCPOM芯材的氧化稳定性高于BCPO,在第28天BCPO的过氧化值和p-茴香胺值分别是BCPOM芯材的3.7倍和4.7倍。将BCPOM按不同梯度添加至小麦面粉中并制备面条样品,发现在BCPOM添加后面条的吸水率和粘着性均显著降低,硬度、咀嚼性和拉断力等指标均有显著提高(p<0.05),BCPOM添加量为3%时面条感官得分最高。

外摘要要:

Safflower seed oil, a unique vegetable oil from Xinjiang, is popular among consumers due to its abundance in polyunsaturated fatty acids (PUFAs), particularly linoleic acid. However, its n-6/n-3 PUFAs ratio does not exactly match the recommended dietary intake ratio of PUFAs (n-6/n-3 PUFAs = 4-6:1). In order to meet the needs of a balanced diet for the general public and to improve the diversified and high value utilization of safflower seed oil, it can be blended and supplemented. A method of blending oil preparation that has steadily arisen in recent years is microwave-assisted blended cold pressing. This method not only inherits microwave pretreatment's high oil extraction rate and high active substance retention characteristics, but also strengthen the antioxidant capacity of oil and produce unique flavor. For the common unstable characteristics of blended oils (such as volatility, oxidation and degradation), microencapsulation technology was used to achieve the purpose of extending the shelf life of oils.

In this study, we firstly determined the blending ratio (Ws/Wf) of safflower seed and flaxseed using the mass ratio method and the fatty acid ratio method, and then used the response surface method to optimize the microwave-assisted blended cold pressing process parameters to obtain the optimal parameter conditions; secondly, we compared the physicochemical characteristics, nutritional index, and volatile compounds of PUFAs equilibrium safflower seed oil-based blend oil (BCPO), conventional cold pressing blend oil (BO) and cold pressing safflower seed oil (SO). Finally, PUFAs equilibrium safflower seed oil-based blend oil microcapsule (BCPOM) was prepared using the spray drying method, and the BCPOM preparation process was optimized, as were its quality characteristics and applications. The main contents and results are as follows:

(1) Research on microwave-assisted blended cold pressing process: The Ws/Wf determined by the mass ratio method and the fatty acid ratio method were 1.8-2.4 and 1.66-2.59, respectively. The former method was simple and the results did not need to be validated, but the raw material requirement was high and the accuracy was low; the latter method had a lower raw material requirement and the results were more accurate, but the validation analysis of PUFAs was required. Based on the determination of Ws/Wf, single-factor and response surface optimization experiments were conducted to analyze the interaction effects of various factors, and the optimal process conditions were obtained as follows: microwave treatment time of 1.5 min, pressing temperature of 64 ℃, and oilseed moisture content of 6.7%. The oil extraction rate under the optimal conditions was 19.83 ± 0.21%.

(2) Analysis of physicochemical, nutritional and flavor characteristics of BCPO: The results of basic physicochemical indexes showed that the acid value of BCPO was 0.97 ± 0.04 mgKOH/mg, the peroxide value was 0.093 ± 0.003 g/100 g, the thiobarbituric acid value was 0.96 ± 0.04 mg/100 g, the p-anisidine value was 0.91 ± 0.04, and the iodine value was 151.67 ± 3.09 g/100 g. At the primary, secondary and comprehensive oxidation levels, BCPO was significantly lower than BO (p<0.05) but significantly higher than SO (p<0.05). The results of both Schaal oven method and Rancimat oxidation acceleration method indicated that the oxidative stability of BCPO was better than BO. Nutritional analysis showed no significant difference between BCPO and BO in terms of fatty acid, tocopherol and phytosterol contents (p>0.05), and the ratio of n-6/n-3 PUFAs in BCPO was 4.69:1. In terms of β, γ and δ tocopherols and phytosterols BCPO and BO were significantly higher than SO (p<0.05). Principal component analysis based on volatile variables showed differences in the composition of volatile compounds in BCPO, BO and SO. The results of odor activity value (OAV) analysis indicated that 1-octen-3-one, 2-ethyl-3,5-dimethylpyrazine and 2-ethyl-6-methylpyrazine were the key aroma substances specific to BCPO, and sensory analysis clarified that roasted aroma and burnt flavor were the main flavor characteristics of BCPO.

 (3) The optimal process conditions for spray drying preparation of BCPOM were obtained by single-factor experiment and L9(34)orthogonal optimization analysis: soluble solids content 12%, SMP: MD= 1:1, wall-core ratio 2:1, inlet air temperature 160°C, and the encapsulation rate was 89.1±0.95% under the optimal parameters. BCPOM was in the form of loose creamy white powder with a moisture content of 2.31±0.12%, crude protein content 8.82±0.29%, rest angle 39.16±0.39°, solubility 71.36±0.82 g/100 g, and bulk weight 0.34±0.05 g/cm3, which indicated that BCPOM had good solubility, and fluidity. The results of scanning electron microscopy and particle size determination showed that BCPOM had a nearly spherical structure, and the particle size was mainly distributed in the range of 5-30 μm, and the Span value was 1.55, which indicated that BCPOM had good particle homogeneity. Fourier infrared spectroscopy (FTIR) analysis showed that the core material and wall material interacted with each other to form a microcapsule structure. Thermogravimetric analysis showed that BCPOM has good thermal stability below 200°C. In vitro simulated digestion experiments revealed that BCPOM cores were mainly released in intestinal fluid, and the highest coefficient of fit of BCPOM release in gastrointestinal fluid with the first-order kinetic model (R2>0.997). Storage stability experiments revealed that the oxidative stability of BCPOM core material was higher than that of BCPO, and the peroxide value and P-anisidine value of BCPO were 3.7 and 4.7 times higher than those of BCPOM core material at 28th day, respectively. BCPOM was added to wheat flour in a certain gradient and prepared into noodles. It was found that the water absorption and adhesion of the noodles were significantly reduced (p<0.05), and the hardness, chewiness and tensile strength were improved after the addition of microcapsules, and the highest sensory score of the noodles was obtained when BCPOM was added at 3%.

参考文献:

[1]Sasanuma T, Sehgal D, Sasakuma T, et al. Phylogenetic analysis of Carthamus species based on the nucleotide sequence of the nuclear SACPD gene and chloroplast trnL-trnF IGS region[J]. Genome, 2008, 51(9): 721-727.

[2]吕培霖, 李成义, 王俊丽. 红花籽油的研究进展[J]. 中国现代中药, 2016, 18(3): 387-389.

[3]陈欢, 高萌, 罗小泉, 等. 不同产地枳壳药材中12种有效成分的主成分分析和判别分析[J]. 中草药, 2019, 50(14): 3433-3437.

[4]周远航, 郭建富, 马小龙, 等. 新疆红花生产现状及发展对策研究[J]. 安徽农业科学, 2021, 49(19): 199-201+217.

[5]李琥. 红花及高乌头中有效成分的提取与工艺优化[D]. 武汉: 中南民族大学, 2020.

[6]Khalid N, Khan R S, Hussain M I, et al. A comprehensive characterisation of safflower oil for its potential applications as a bioactive food ingredient - A review[J]. Trends in Food Science & Technology, 2017, 66: 176-186.

[7]梁慧珍, 董薇, 余永亮, 等. 国内外红花种质资源研究进展[J]. 安徽农业科学, 2015, 43(16): 71-74.

[8]韩宇昕, 边连全, 陈静, 等. 红花籽油的提取方法、化学成分及生物学功能的研究进展[J]. 黑龙江畜牧兽医, 2015, (21): 61-63.

[9]王菲, 李红华, 苏洁. 基于MODIS-NDVI的邯郸市冬小麦和夏玉米面积提取[J]. 现代农业科技, 2018, (24): 3-5.

[10]张学鹏. 红花籽油微胶囊的制备、性质及其应用研究[D]. 郑州: 河南工业大学, 2013.

[11]梁慧珍, 许兰杰, 余永亮, 等. 红花籽油中脂肪酸组成评价与分析[J]. 食品科学, 2021, 42(6): 244-249.

[12]Ribeiro J S, Veloso C M. Microencapsulation of natural dyes with biopolymers for application in food: A review[J]. Food Hydrocolloids, 2021, 112.

[13]Yeilaghi H, Arzani A, Ghaderian M, et al. Effect of salinity on seed oil content and fatty acid composition of safflower (Carthamus tinctorius L.) genotypes[J]. Food Chemistry, 2012, 130(3): 618-625.

[14]赵忠堂, 国素梅, 李光胜, 等. 红花籽油的医疗保健价值[J]. 基层中药杂志, 2000, (5): 51-52.

[15]Duan J-l, Wang J-w, Guan Y, et al. Safflor yellow A protects neonatal rat cardiomyocytes against anoxia/reoxygenation injury in vitro[J]. Acta Pharmacologica Sinica, 2013, 34(4): 487-495.

[16]Khuphe M, Mukonoweshuro B, Kazlauciunas A, et al. A vegetable oil-based organogel for use in pH-mediated drug delivery[J]. Soft Matter, 2015, 11(47): 9160-9167.

[17]Morales-Rueda J A, Dibildox-Alvarado E, Charo-Alonso M A, et al. Thermo-mechanical properties of candelilla wax and dotriacontane organogels in safflower oil[J]. European Journal of Lipid Science and Technology, 2009, 111(2): 207-215.

[18]李晓. 水酶法提取红花籽油及其抗氧化活性与氧化稳定性研究[D]. 南京: 南京农业大学, 2017.

[19]Thomas T P, Birney D M, Auld D L. Viscosity reduction of castor oil esters by the addition of diesel, safflower oil esters and additives[J]. Industrial Crops and Products, 2012, 36(1): 267-270.

[20]Schneedorferova I, Tomcala A, Valterova I. Effect of heat treatment on the n-3/n-6 ratio and content of polyunsaturated fatty acids in fish tissues[J]. Food Chemistry, 2015, 176: 205-211.

[21]王莉梅. 不同比例n-6/n-3多不饱和脂肪酸体外营养评价[D]. 无锡: 江南大学, 2015.

[22]Adkins Y, Kelley D S. Mechanisms underlying the cardioprotective effects of omega-3 polyunsaturated fatty acids[J]. Journal of Nutritional Biochemistry, 2010, 21(9): 781-792.

[23]Zhu H, Fan C, Xu F, et al. Dietary fish oil n-3 polyunsaturated fatty acids and alpha-linolenic acid differently affect brain accretion of docosahexaenoic acid and expression of desaturases and sterol regulatory element-binding protein 1 in mice[J]. Journal of Nutritional Biochemistry, 2010, 21(10): 954-960.

[24]庞邵杰, 贾珊珊, 方微, 等. 中国18~59岁居民膳食脂肪酸的摄入状况及食物来源分析[J]. 营养学报, 2022, 44(4): 366-370+376.

[25]王剑飞. 日粮中不饱和脂肪酸比例(n-6/n-3)对鹅产肉性能和肉品风味影响的研究[D]. 扬州: 扬州大学, 2011.

[26]Kanter J E, Goodspeed L, Wang S, et al. 0,12 conjugated linoleic acid-driven weight loss is protective against atherosclerosis in mice and is associated with alternative macrophage enrichment in perivascular adipose tissue[J]. Nutrients, 2018, 10(10).

[27]Nasrollahi S A, Ayatollahi A, Yazdanparast T, et al. Comparison of linoleic acid-containing water-in-oil emulsion with urea-containing water-in-oil emulsion in the treatment of atopic dermatitis: a randomized clinical trial[J]. Clinical Cosmetic and Investigational Dermatology, 2018, 11: 21-28.

[28]Feldstein A E, Lopez R, Tamimi T A-R, et al. Mass spectrometric profiling of oxidized lipid products in human nonalcoholic fatty liver disease and nonalcoholic steatohepatitis[J]. Journal of Lipid Research, 2010, 51(10): 3046-3054.

[29]Gibson R A, Muhlhausler B, Makrides M. Conversion of linoleic acid and alpha-linolenic acid to long-chain polyunsaturated fatty acids (LCPUFAs), with a focus on pregnancy, lactation and the first 2 years of life[J]. Maternal and Child Nutrition, 2011, 7: 17-26.

[30]潘勇. α-亚麻酸在体内外的吸收和转化为长链多不饱和脂肪酸效率的研究[D]. 无锡: 江南大学, 2016.

[31]Tang Y, Jiang Y, Meng J, et al. A brief review of physiological roles, plant resources, synthesis, purification and oxidative stability of Alpha-linolenic Acid[J]. Emirates Journal of Food and Agriculture, 2018, 30(5): 341-356.

[32]陆燕婷. 富含α-亚麻酸的中长碳链结构甘油三酯合成及精制工艺研究[D]. 无锡: 江南大学, 2021.

[33]Rodriguez-Leyva D, Bassett C M C, McCullough R, et al. The cardiovascular effects of flaxseed and its omega-3 fatty acid, alpha-linolenic acid[J]. Canadian Journal of Cardiology, 2010, 26(9): 489-496.

[34]杨雅. 孕妇膳食n-6/n-3多不饱和脂肪酸比例与妊娠期糖尿病的关联研究[D]. 合肥: 安徽医科大学, 2021.

[35]燕志, 朱江煜, 魏继燕, 等. n-3/n-6多不饱和脂肪酸的生理功能与膳食平衡研究[J]. 江苏调味副食品, 2022, (3): 1-3+44.

[36]中国营养学会. 中国居民膳食营养素参考摄入量[J]. 2000, 23(3): 193-196.

[37]苏杭. 亚油酸和α-亚麻酸的摄入比例对体内炎症因子及高度不饱和脂肪酸合成通路的影响[D]. 无锡: 江南大学, 2018.

[38]张坚, 孟丽苹, 姜元荣, 等. 中国成人膳食脂肪酸摄入和食物来源状况分析[J]. 营养学报, 2009, 31(5): 424-427.

[39]Enos R T, Velazquez K T, McClellan J L, et al. Reducing the Dietary Omega-6:Omega-3 Utilizing alpha-Linolenic Acid; Not a Sufficient Therapy for Attenuating High-Fat-Diet-Induced Obesity Development Nor Related Detrimental Metabolic and Adipose Tissue Inflammatory Outcomes[J]. Plos One, 2014, 9(7): e94897.

[40]姜明霞, 章海风, 叶变良, 等. 葡萄糖对HK-2细胞的糖毒性及ALA/LA的干预作用[J]. 营养学报, 2017, 39(1): 41-44+49.

[41]Suri K, Singh B, Kaur A, et al. Impact of infrared and dry air roasting on the oxidative stability, fatty acid composition, Maillard reaction products and other chemical properties of black cumin (Nigella sativa L.) seed oil[J]. Food Chemistry, 2019, 295: 537-547.

[42]柏云爱, 张春辉. 我国油料预处理技术的现状及发展趋势[J]. 中国油脂, 2005, (7): 12-17.

[43]陈德经. 微波预处理水酶法提取茶叶籽油工艺优化[J]. 食品科学, 2012, 33(6):87-91.

[44]Ji J, Liu Y, Wang D. Comparison of de-skin pretreatment and oil extraction on aflatoxins, phthalate esters, and polycyclic aromatic hydrocarbons in peanut oil[J]. Food Control, 2020, 118.

[45]Masalimov I, Fayzrakhmanov S, Yanbaev Y, et al. Microwave processing of sunflower achenes and its influence on their quality and enzymes activities[J]. Mathematical Biosciences and Engineering, 2020, 18(1): 445-455.

[46]Maskan M. Microwave/air and microwave finish drying of banana[J]. Journal of Food Engineering, 2000, 44(2): 71-78.

[47]张建峰, 高鹏龙, 阮紫灵, 等. 响应面法优化带壳冷榨红花籽油的工艺[J]. 食品工业, 2019, 40(12): 37-40.

[48]Jia X, Zhou Q, Wang J, et al. Identification of key aroma-active compounds in sesame oil from microwaved seeds using E-nose and HS-SPME-GCxGC-TOF/MS[J]. Journal of Food Biochemistry, 2019, 43(10).

[49]鞠阳, 汪学德, 马素换. 微波处理对芝麻出油率及油脂品质的影响[J]. 粮油食品科技, 2015, 23(4): 40-43.

[50]Niu Y, Rogiewicz A, Wan C, et al. Effect of microwave treatment on the efficacy of expeller pressing of Brassica napus rapeseed and Brassica juncea mustard seeds[J]. Journal of Agricultural and Food Chemistry, 2015, 63(12): 3078-3084.

[51]刘玉兰, 刘春梅, 张东东, 等. 焙炒条件对油菜籽中多环芳烃含量影响的研究[J]. 粮食与油脂, 2018, 31(7): 24-27.

[52]胡爱鹏, 魏芳, 黄凤洪, 等. 微波预处理对油菜籽及其低温压榨油脂肪酸含量的影响[J]. 中国油料作物学报, 2021, 43(5): 923-932.

[53]Li D, Wang D, Xiao H, et al. Simultaneous analysis of free/combined phytosterols in rapeseed and their dynamic changes during microwave pretreatment and oil processing[J]. Foods, 2022, 11(20).

[54]李信. 文冠果微波预处理压榨制油工艺技术研究及品质评价[D]. 北京: 中国农业科学院, 2020.

[55]忻耀年. 油料冷榨的概念和应用范围[J]. 中国油脂, 2005, (2): 20-22.

[56]Teh S-S, Birch J. Physicochemical and quality characteristics of cold-pressed hemp, flax and canola seed oils[J]. Journal of Food Composition and Analysis, 2013, 30(1): 26-31.

[57]Zeaiter A, Besombes C, Rhazi L, et al. How does instant autovaporization deepen the cold press-extraction process of sunflower vegetal oil?[J]. Journal of Food Engineering, 2019, 263: 70-78.

[58]王甜, 徐淑玲, 吴邦富, 等. 冷榨油品质控制及检测分析方法研究进展[J]. 分析科学学报, 2020, 36(5): 662-670.

[59]Suri K, Singh B, Kaur A, et al. Influence of microwave roasting on chemical composition, oxidative stability and fatty acid composition of flaxseed (Linum usitatissimum L.) oil[J]. Food Chemistry, 2020, 326.

[60]Zhou Q, Yang M, Huang F, et al. Effect of pretreatment with dehulling and microwaving on the flavor characteristics of cold-pressed rapeseed oil by GC-MS-PCA and electronic nose discrimination[J]. Journal of Food Science, 2013, 78(7): 961-970.

[61]王兴国, 金青哲. 食用调和油开发依据、发展进程与标准现状[J]. 中国油脂, 2018, 43(3): 1-5.

[62]姚志新. 产妇玉米调和油的开发及稳定性研究[D]. 长春: 吉林大学, 2017.

[63]陈科名. 芝麻花生混合压榨制备调和油及稳定性的研究[D]. 武汉: 武汉轻工大学, 2022.

[64]吴克刚, 尤腾琦, 柴向华. 花生与芝麻混合压榨油的氧化稳定性研究[J]. 中国粮油学报, 2015, 30(6): 57-61.

[65]宋秋枫, 侯东园, 施佩影, 等. 富含多不饱和脂肪酸的油脂微囊化研究进展[J]. 中国食品学报, 2022, 22(9): 376-385.

[66]Yakdhane A, Labidi S, Chaabane D, et al. Microencapsulation of flaxseed oil-state of art[J]. Processes, 2021, 9(2).

[67]黄立新, 王宗濂, 唐金鑫. 我国喷雾干燥技术研究及进展[J]. 化学工程, 2001, (2): 51-55+73-54.

[68]Raza Z A, Khalil S, Ayub A, et al. Recent developments in chitosan encapsulation of various active ingredients for multifunctional applications[J]. Carbohydrate Research, 2020, 492.

[69]戚登斐. 核桃油微胶囊工艺优化及生理功能评价[D]. 西安: 陕西师范大学, 2020.

[70]Mohammed N K, Tan C P, Manap Y A, et al. Spray drying for the encapsulation of oils-A review[J]. Molecules, 2020, 25(17).

[71]Rubio-Rodriguez N, Beltran S, Jaime I, et al. Production of omega-3 polyunsaturated fatty acid concentrates: A review[J]. Innovative Food Science & Emerging Technologies, 2010, 11(1): 1-12.

[72]杨佳, 侯占群, 贺文浩, 等. 微胶囊壁材的分类及其性质比较[J]. 食品与发酵工业, 2009, 35(5): 122-127.

[73]Geranpour M, Assadpour E, Jafari S M. Recent advances in the spray drying encapsulation of essential fatty acids and functional oils[J]. Trends in Food Science & Technology, 2020, 102: 71-90.

[74]俞毅舒. 复合壁材对微胶囊化大豆油的性能影响[D]. 无锡: 江南大学, 2013.

[75]刘晓庚, 谢亚桐. 微胶囊制备方法的比较[J]. 粮食与食品工业, 2005, (1): 28-31.

[76]Minemoto Y, Fang X, Hakamata K, et al. Oxidation of linoleic acid encapsulated with soluble soybean polysaccharide by spray-drying[J]. Bioscience Biotechnology and Biochemistry, 2002, 66(9): 1829-1834.

[77]da Silva P T, Martins Fries L L, de Menezes C R, et al. Microencapsulation: concepts, mechanisms, methods and some applications in food technology[J]. Ciencia Rural, 2014, 44(7): 1304-1311.

[78]Gharsallaoui A, Roudaut G, Beney L, et al. Properties of spray-dried food flavours microencapsulated with two-layered membranes: Roles of interfacial interactions and water[J]. Food Chemistry, 2012, 132(4): 1713-1720.

[79]葛林梅, 郜海燕, 毛金林, 等. 贮藏条件对原料葵花籽油脂酸败的影响[J]. 食品科学, 2010, 31(6): 292-296.

[80]卢艳慧. 牡丹籽油微胶囊化及理化和稳定特性的研究[D]. 济南: 齐鲁工业大学, 2021.

[81]李一喆. 橘皮油微胶囊制备及其理化性质研究[D]. 大连: 大连理工大学, 2020.

[82]李艳南, 宋菲, 陈华, 等. 天然椰子油微胶囊制备工艺的优化[J]. 食品工业, 2018, 39(11): 133-137.

[83]高传忠, 刘成祥, 寇兴然, 等. 牡丹籽油微胶囊的释放动力学和氧化稳定性研究[J]. 中国油脂, 2017, 42(7): 40-44.

[84]Lozinska N, Glowacz-Rozynska A, Artichowicz W, et al. Microencapsulation of fish oil - determination of optimal wall material and encapsulation methodology[J]. Journal of Food Engineering, 2020, 268: 109730.

[85]Shamaei S, Seiiedlou S S, Aghbashlo M, et al. Microencapsulation of walnut oil by spray drying: Effects of wall material and drying conditions on physicochemical properties of microcapsules[J]. Innovative Food Science & Emerging Technologies, 2017, 39: 101-112.

[86]Ye S H, Fan Y, Cui Y N, et al. Preparation of safflower oil microcapsules with gelatin and a novel exopolysaccharide as wall matrix[J]. Journal of Food Process Engineering, 2017, 40(6).

[87]Zhou D, Pan Y, Ye J, et al. Preparation of walnut oil microcapsules employing soybean protein isolate and maltodextrin with enhanced oxidation stability of walnut oil[J]. Lwt-Food Science and Technology, 2017, 83: 292-297.

[88]王世豪. 喷雾干燥法制备粉末油脂及数值分析[D]. 大连: 大连理工大学, 2019.

[89]孙琪, 陈凤莲, 杨悦. 食用香精在烘焙食品中的应用[J]. 产业与科技论坛, 2013, 12(15): 84-85.

[90]蒋毅. 橄榄油微胶囊的包埋及其在饼干中的应用[D]. 绵阳: 西南科技大学, 2020.

[91]孙艳辉, 张宜凤, 梁军. 粉末油脂的开发及其在食品工业中的应用[J]. 农业机械, 2012, (9): 38-40.

[92]杨晓慧. 喷雾干燥制备非全氢化植物油咖啡伴侣粉末油脂的研究[D]. 无锡: 江南大学, 2013.

[93]Gowda A, Sharma V, Goyal A, et al. Process optimization and oxidative stability of omega-3 ice cream fortified with flaxseed oil microcapsules[J]. Journal of Food Science and Technology-Mysore, 2018, 55(5): 1705-1715.

[94]Li N, Huang G, Zhang Y, et al. Diversity of volatile compounds in raw milk with different n-6 to n-3 fatty acid ratio[J]. Animals, 2022, 12(3).

[95]张春丽. 制取工艺对茶籽油品质与风味影响及天然增香技术开发[D]. 长沙: 长沙理工大学, 2015.

[96]张欢欢, 曾志红, 高飞虎, 等. 预处理技术对冷榨双低菜籽油品质及挥发性风味成分的影响[J]. 食品科学, 2020, 41(18): 233-238.

[97]GB 5009.3-2016, 食品安全国家标准 食品中水分的测定[S].

[98]Wang L, Chen Z, Han B, et al. Comprehensive analysis of volatile compounds in cold-pressed safflower seed oil from Xinjiang, China[J]. Food Science & Nutrition, 2020, 8(2): 903-914.

[99]糟帆, 丁彩云, 马玉婷, 等. 不同制油工艺对亚麻籽油品质及抗氧化活性的影响[J]. 中国油脂, 2022, 47(9): 13-18+25.

[100]张忠, 王呈馨, 范柳萍, 等. 不同提取工艺翅果油抗氧化能力与活性成分的分析[J]. 中国油脂, 2020, 45(9): 23-29.

[101]GB 5009.168-2016, 食品安全国家标准 食品中脂肪酸的测定[S].

[102]符成刚, 刘文玉, 陈友志, 等. 加热温度对新疆马脂理化性质、脂肪酸及挥发性风味化合物的影响[J]. 食品科学, 2021, 42(16): 54-60.

[103]李子祥, 王茂清, 王新宇. 植物油中脂肪酸不同定量方法的比较分析[J]. 分析试验室, 2021, 40(2): 207-212.

[104]张雪娇, 王向红, 桑亚新, 等. 响应面法优化亚麻籽油制备工艺条件[J]. 中国食品学报, 2013, 13(9): 99-107.

[105]da Silva S A, da Silva Torres E A F, de Almeida A P, et al. Polycyclic aromatic hydrocarbons content and fatty acids profile in coconut, safflower, evening primrose and linseed oils[J]. Food Chemistry, 2018, 245: 798-805.

[106]Uquiche E, Jerez M, Ortiz J. Effect of pretreatment with microwaves on mechanical extraction yield and quality of vegetable oil from Chilean hazelnuts (Gevuina avellana Mol)[J]. Innovative Food Science & Emerging Technologies, 2008, 9(4): 495-500.

[107]任传义, 张延平, 汤富彬, 等. 油茶籽油、油橄榄油、核桃油、香榧油中主要化学成分分析[J]. 食品安全质量检测学报, 2015, 6(12): 5011-5016.

[108]禹晓, 聂成镇, 秦晓鹏, 等. 等离子体处理对亚麻籽胶结构和功能特性的影响[J]. 农业工程学报, 2021, 37(3): 269-277.

[109]Bouallegue K, Allaf T, Besombes C, et al. Phenomenological modeling and intensification of texturing/grinding-assisted solvent oil extraction: case of date seeds (Phoenix dactylifera L.)[J]. Arabian Journal of Chemistry, 2019, 12(8): 2398-2410.

[110]Ye M, Zhou H, Hao J, et al. Microwave pretreatment on microstructure, characteristic compounds and oxidative stability of Camellia seeds[J]. Industrial Crops and Products, 2021, 161.

[111]朱敏敏, 魏长庆. 响应面法优化冷榨提取番茄籽油工艺的研究[J]. 食品工业, 2017, 38(6): 137-139.

[112]王雯, 王睿智, 王彤, 等. 响应面法优化酶解低温榨取汉麻籽油工艺[J]. 食品科学, 2019, 40(8): 242-247.

[113]李汶罡, 孙晓莉, 祖元刚, 等. 适温压榨牡丹籽油工艺优化及理化性质分析[J]. 植物研究, 2020, 40(1): 73-78.

[114]李甜, 郭芹, 段玉权, 等. 南眉籽油低温压榨工艺优化及理化指标分析[J]. 食品与机械, 2019, 35(4): 186-191.

[115]Bitaraf M S, Khodaiyan F, Mohammadifar M A, et al. Application of response surface methodology to improve fermentation time and rheological properties of probiotic yogurt containing lactobacillus reuteri [J]. Food and Bioprocess Technology, 2012, 5(4): 1394-1401.

[116]He W, Gao Y, Yuan F, et al. Optimization of supercritical carbon dioxide extraction of gardenia fruit oil and the analysis of functional components[J]. Journal of the American Oil Chemists Society, 2010, 87(9): 1071-1079.

[117]Wang H, Liu Y, Wei S, et al. Application of response surface methodology to optimise supercritical carbon dioxide extraction of essential oil from Cyperus rotundus Linn[J]. Food Chemistry, 2012, 132(1): 582-587.

[118]Lokman I M, Rashid U, Taufiq-Yap Y H. Microwave-assisted methyl ester production from palm fatty acid distillate over a heterogeneous carbon-based solid acid Catalyst[J]. Chemical Engineering & Technology, 2015, 38(10): 1837-1844.

[119]郑畅, 杨湄, 周琦, 等. 微波预处理对葵花籽油和红花籽油品质的影响[J]. 中国油脂, 2016, 41(7): 39-42.

[120]GB 5009.229-2016, 食品安全国家标准 食品中酸价的测定[S].

[121]GB 5009.227-2016, 食品安全国家标准 食品中过氧化值的测定[S].

[122]GB/T 35252-2017, 动植物油脂 2-硫代巴比妥酸值的测定 直接法[S].

[123]GB/T 24304-2009, 动植物油脂 茴香胺值的测定[S].

[124]动植物油脂──碘值的测定[J].中国油脂,1995(2):50-51.

[125]曹健, 秦朗, 张立国, 等. 2种酚类抗氧化剂对牡丹籽油氧化稳定性影响研究[J]. 粮食与油脂, 2019, 32(12): 25-29.

[126]GB/T 21121-2007, 动植物油脂 氧化稳定性的测定(加速氧化测试)[S].

[127]孔凡. 南瓜籽油制取工艺及氧化稳定性的研究[D]. 武汉: 武汉轻工大学, 2021.

[128]陈丽兰, 杨心怡, 乔明锋, 等. 基于 GC-IMS、GC-MS和OAV法分析花椒粉颗粒度对花椒油挥发性香气成分的影响[J]. 食品工业科技, 2022, 1-14.

[129]Wang M-Q, Ma W-J, Shi J, et al. Characterization of the key aroma compounds in Longjing tea using stir bar sorptive extraction (SBSE) combined with gas chromatography-mass spectrometry (GC-MS), gas chromatography-olfactometry (GC-O), odor activity value (OAV), and aroma recombination[J]. Food Research International, 2020, 130.

[130]He J, Wu X, Yu Z. Microwave pretreatment of camellia (Camellia oleifera Abel.) seeds: Effect on oil flavor[J]. Food Chemistry, 2021, 364.

[131]陈音. 黑豆抗氧化肽抑制油脂氧化作用解析[D]. 无锡: 江南大学, 2022.

[132]王洁, 邹惠玲, 夏攀登, 等. 植物油脂氧化及其氧化稳定性研究进展[J]. 保鲜与加工, 2019, 19(4): 207-210.

[133]初丽君, 王珊珊, 张睿, 等. 不同品种植物油氧化稳定性的研究[J]. 粮食与食品工业, 2013, 20(6): 3-5.

[134]唐瑞丽, 袁先雯, 冯燕玲, 等. 食用大豆油储藏过程中品质变化的预测[J]. 食品科学, 2016, 37(18): 256-261

[135]沙爽, 冯启鑫, 张欣蕊, 等. 亚油酸/α-亚麻酸复合物对小鼠急性肝损伤的预防作用 [J]. 食品科学, 2022, 43(17): 188-198.

[136]周琪乐, 罗诗萌, 高园, 等. 黑枸杞油脂肪酸和生育酚的分析[J]. 食品研究与开发, 2022, 43(23): 139-144.

[137]杨波涛, 陈凤香, 莫文莲, 等. 我国食用植物油维生素E含量研究[J]. 粮油加工, 2009, (9): 52-55.

[138]Yang R, Xue L, Zhang L, et al. Phytosterol contents of edible oils and their contributions to estimated phytosterol intake in the chinese diet [J]. Foods, 2019, 8(8).

[139]Katan M B, Grundy S M, Jones P, et al. Efficacy and safety of plant stanols and sterols in the management of blood cholesterol levels[J]. Mayo Clinic Proceedings, 2003, 78(8): 965-978.

[140]赖玉萍, 姜福全, 黄思苑, 等. 亚麻籽油的营养成分、功能活性及应用研究进展[J]. 中国油脂, 2022, 47(8): 109-115.

[141]Yu X, Huang S, Yang F, et al. Effect of microwave exposure to flaxseed on the composition, structure and techno-functionality of gum polysaccharides[J]. Food Hydrocolloids, 2022, 125.

[142]Tian P, Zhan P, Tian H, et al. Analysis of volatile compound changes in fried shallot (Allium cepa L. var. aggregatum) oil at different frying temperatures by GC-MS, OAV, and multivariate analysis[J]. Food Chemistry, 2021, 345(1-2): 128748.

[143]Dun Q, Yao L, Deng Z, et al. Effects of hot and cold-pressed processes on volatile compounds of peanut oil and corresponding analysis of characteristic flavor components[J]. Lwt-Food Science and Technology, 2019, 112: 107648-107648.

[144]Ho C W, Aida W M W, Maskat M Y, et al. Changes in volatile compounds of palm sap (Arenga pinnata) during the heating process for production of palm sugar[J]. Food Chemistry, 2007, 102(4): 1156-1162.

[145]Mildner-Szkudlarz S, Jelen H H. The potential of different techniques for volatile compounds analysis coupled with PCA for the detection of the adulteration of olive oil with hazelnut oil[J]. Food Chemistry, 2008, 110(3): 751-761.

[146]Angerosa F, Servili M, Selvaggini R, et al. Volatile compounds in virgin olive oil: occurrence and their relationship with the quality[J]. Journal of Chromatography A, 2004, 1054(1-2): 17-31.

[147]Wei C Q, Liu W Y, Xi W P, et al. Comparison of volatile compounds of hot-pressed, cold-pressed and solvent-extracted flaxseed oils analyzed by SPME-GC/MS combined with electronic nose: Major volatiles can be used asmarkers to distinguish differently processed oils[J]. European Journal of Lipid Science and Technology, 2015, 117(3): 320-330.

[148]Hao J, Xu X-L, Jin F, et al. HS-SPME GC-MS characterization of volatiles in processed walnuts and their oxidative stability[J]. Journal of Food Science and Technology-Mysore, 2020, 57(7): 2693-2704.

[149]高夏洁, 高海燕, 赵镭, 等. SPME-GC-MS结合OAV分析不同产区花椒炸花椒油的关键香气物质[J]. 食品科学, 2022, 43(4): 208-214.

[150]陈卓. 新疆红花籽油特征挥发性香气分析在品控中的应用[D]. 石河子: 石河子大学, 2018.

[151]曹文明, 薛斌, 袁超, 等. 油脂氧化酸败研究进展[J]. 粮食与油脂, 2013, 26(3): 1-5.

[152]刘成祥. 牡丹籽油微胶囊的制备及其性质研究[D]. 无锡: 江南大学, 2016.

[153]Barbosa M, Borsarelli C D, Mercadante A Z. Light stability of spray-dried bixin encapsulated with different edible polysaccharide preparations[J]. Food Research International, 2005, 38(8-9): 989-994.

[154]GB 5009.5-2016, 食品安全国家标准 食品中蛋白质的测定[S].

[155]刘福斌, 张根生, 刘广, 等. 微胶囊化玉米胚芽油粉的研制[J]. 现代食品科技, 2011, 27(2): 173-177.

[156]Tonon R V, Grosso C R F, Hubinger M D. Influence of emulsion composition and inlet air temperature on the microencapsulation of flaxseed oil by spray drying[J]. Food Research International, 2011, 44(1): 282-289.

[157]黄芳丽, 唐婷范, 朱家庆, 等. 蒜头果油微胶囊制备工艺优化及性质分析[J]. 中国油脂, 2021, 46(12): 88-94.

[158]农业部869号公告-2-2007, 转基因生物及其产品食用安全检测模拟胃肠液外源蛋白质消化稳定性试验方法[S].

[159]翟爱华, 刘远洋, 张敬尧, 等. 油脂天然抗氧化剂微胶囊缓释动力学研究[J]. 中国粮油学报, 2013, 28(2): 69-72+76.

[160]穆培源, 桑伟, 王亮, 等. 新疆市售小麦面粉制作新疆拉面的加工品质特性及其专用粉品质评价指标的研究[J]. 麦类作物学报, 2007, (6): 1034-1041.

[161]王育红, 远兵强, 潘治利. 小麦粉糊化特性与冷冻熟制面条品质相关性研究[J]. 粮食与油脂, 2023, 36(1): 43-47.

[162]林荣芳, 徐梦豪, 高丽伟, 等. 响应面法优化DHA藻油微胶囊工艺[J]. 食品研究与开发, 2022, 43(12): 114-123.

[163]Favaro-Trindade C S, Santana A S, Monterrey-Quintero E S, et al. The use of spray drying technology to reduce bitter taste of casein hydrolysate[J]. Food Hydrocolloids, 2010, 24(4): 336-340.

[164]陈智. 复合蓄能材料制备及微胶囊溶液换热特性分析[D]. 南京: 南京大学, 2013.

[165]Yang X, Gao N, Hu L, et al. Development and evaluation of novel microcapsules containing poppy-seed oil using complex coacervation[J]. Journal of Food Engineering, 2015, 161: 87-93.

[166]Lerma-Garcia M J, Ramis-Ramos G, Herrero-Martinez J M, et al. Authentication of extra virgin olive oils by Fourier-transform infrared spectroscopy[J]. Food Chemistry, 2010, 118(1): 78-83.

[167]刘斯博. 亚麻籽油微胶囊的制备及其释放性能研究[D]. 郑州: 河南工业大学, 2016.

[168]Karaca A C, Low N, Nickerson M. Encapsulation of Flaxseed Oil Using a Benchtop Spray Dryer for Legume Protein-Maltodextrin Microcapsule Preparation[J]. Journal of Agricultural and Food Chemistry, 2013, 61(21): 5148-5155.

[169]Yadav B S, Yadav R B, Kumari M, et al. Studies on suitability of wheat flour blends with sweet potato, colocasia and water chestnut flours for noodle making[J]. Lwt-Food Science and Technology, 2014, 57(1): 352-358.

[170]帅天罡. 重庆小面专用面粉品质特点研究及保鲜湿即食重庆小面的研制[D]. 重庆: 西南大学, 2018.

中图分类号:

 TS2    

开放日期:

 2026-05-29    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式