- 无标题文档
查看论文信息

中文题名:

 盐地碱蓬SsNLP7基因提高串叶松香草 抗盐性的研究    

姓名:

 史寒琪    

学号:

 20222106062    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 086000    

学科名称:

 工学 - 生物与医药    

学生类型:

 硕士    

学位:

 生物与医药硕士    

学位类型:

 专业学位    

学位年度:

 2025    

学校:

 石河子大学    

院系:

 生命科学学院    

专业:

 生物与医药(专业学位)    

研究方向:

 生物技术与工程    

第一导师姓名:

 祝建波    

第一导师单位:

 石河子大学    

完成日期:

 2025-05-22    

答辩日期:

 2025-05-17    

外文题名:

 Research on the Enhancement of Salt Resistance of Cup plant by SsNLP7 Gene from Serenoa repens    

中文关键词:

 SsNLP7基因 ; 番茄 ; 串叶松香草 ; 盐胁迫     

外文关键词:

 SsNLP7  ; gene ;   ; Tomatoes ; Cup plant ; Salt stress     

中文摘要:

串叶松香草(Silphium perfoliatum L.)属于菊科多年生的草本植物,粗蛋白含量高,是潜在优质饲料的来源。新疆土壤盐渍化严重,是制约作物产量和品质提高的限制因素。盐地碱蓬是盐生植物,是重要挖掘耐盐基因的资源。NLP7(NIN-like protein 7)是植物硝酸盐信号通路中的正向调控转录因子,在氮代谢和植物逆境胁迫响应中发挥重要作用。前期研究发现盐地碱蓬(Suaeda salsa)的SsNLP7基因提高了番茄的耐盐性。本研究以串叶松香草为材料,构建了串叶松香草的稳定高效的再生体系,将SsNLP7A、SsNLP7D基因的过表达载体通过农杆菌介导法转化串叶松香草,获得转基因植株,并测量了盐胁迫下转基因串叶松香草的生理指标,以验证SsNLP7A、SsNLP7D基因在串叶松香草中的抗盐功能。主要研究结果如下:

1.与无氮高盐处理相比,过表达SsNLP7A、SsNLP7D基因的番茄植株在低氮高盐环境下根系更为发达,表现出更强的耐盐性。在大田栽培条件下,转基因番茄的果实产量与野生型无显著差异,表明过表达SsNLP7A、SsNLP7D基因不影响番茄产量的同时,提高番茄的耐盐性。

2.通过优化外植体选择和激素配比,成功构建了串叶松香草的稳定高效的再生体系。下胚轴作为外植体再生效果更佳,确定了最佳诱导不定芽培养基:MS+1.2 mg/L 6-BA+0.5 mg/L NAA,生根培养基:1/2 MS+0.1 mg/L NAA,为后续的遗传转化奠定了基础。

3.通过农杆菌介导法获得转基因串叶松香草。结果表明,SsNLP7A、SsNLP7D基因过表达显著促进根系发育,蛋白质含量无显著变化。

4.在300mmol/L NaCl盐胁迫下,转基因串叶松香草的相对含水量、叶绿素含量、脯氨酸和可溶性糖含量均显著高于野生型,而相对电导率、MDA含量和H2O2则显著低于野生型。转基因植株的抗氧化酶(SOD、POD、CAT)活性显著提高,表明SsNLP7A、SsNLP7D基因通过保护细胞膜的稳定性和完整性、增加了叶绿素含量,增强抗氧化酶的活性,提高了串叶松香草的耐盐性。

综上所述,过表达SsNLP7A、SsNLP7D基因可提高串叶松香草的耐盐性且维持其营养价值,为耐盐作物育种提供了重要理论依据。

外文摘要:

Silphium perfoliatum L., a perennial herbaceous plant in the Asteraceae family, has a high crude protein content and is a potential source of high-quality feed. Severe soil salinization in Xinjiang is a limiting factor that restricts the improvement of crop yield and quality. Salt tolerant Suaeda salsa is a halophyte and an important resource for exploring salt tolerant genes. NLP7 (NIN like protein 7) is a positively regulated transcription factor in the plant nitrate signaling pathway, playing an important role in nitrogen metabolism and plant stress response. Previous studies have found that the SsNLP7 gene in Suaeda salsa enhances salt tolerance in tomatoes. This study constructed a stable and efficient regeneration system for the Chinese pine herb, using the herb as the material. Overexpression vectors of the SsNLP7A and SsNLP7D genes were transformed into transgenic plants through Agrobacterium mediated transformation, and physiological indicators of the transgenic Chinese pine herb under salt stress were measured to verify the salt resistance function of the SsNLP7A and SsNLP7D genes in Chinese pine herb. The main research results are as follows:

Compared with the nitrogen free and high salt treatment, tomato plants overexpressing SsNLP7A and SsNLP7D genes showed more developed roots and stronger salt tolerance in low nitrogen and high salt environments. Under field cultivation conditions, there was no significant difference in fruit yield between genetically modified tomatoes and the wild type, indicating that overexpression of SsNLP7A and SsNLP7D genes does not affect tomato yield and improves salt tolerance.

2. By optimizing the selection of explants and hormone ratios, a stable and efficient regeneration system for Pinus massoniana was successfully constructed. The regeneration effect of hypocotyls as explants is better, and the optimal induction medium for adventitious buds has been determined: MS+1.2 mg/L 6-BA+0.5 mg/L NAA, Rooting medium: 1/2 MS+0.1 mg/L NAA, laying the foundation for subsequent genetic transformation.

3. Obtain genetically modified pine vanilla through Agrobacterium mediated method. The results showed that overexpression of SsNLP7A and SsNLP7D genes significantly promoted root development, with no significant changes in protein content.

4. Under 300mmol/L NaCl salt stress, the relative water content, chlorophyll content, proline content, and soluble sugar content of transgenic Chinese pine vanilla were significantly higher than those of the wild type, while the relative conductivity, MDA content, and H2O2 content were significantly lower than those of the wild type. The antioxidant enzyme activities (SOD, POD, CAT) of transgenic plants were significantly increased, indicating that the SsNLP7A and SsNLP7D genes improved the salt tolerance of Pinus massoniana by protecting the stability and integrity of the cell membrane, increasing chlorophyll content, and enhancing antioxidant enzyme activity.

In summary, overexpression of SsNLP7A and SsNLP7D genes can enhance salt tolerance and maintain its nutritional value in the Chinese pine herb, providing important theoretical basis for salt tolerant crop breeding.

参考文献:

[1]侯国庆,柴雨昕,张凡凡.串叶松香草的研究现状及发展前景[J].当代畜牧,2023,(09):12-16.

[2]郭云霞,高双喜,周秀平,等.新型饲草串叶松香草SOD提取条件优化及其抗氧化能力[J].中国饲料,2019,(15):29-35.

[3]Assefa T, Wu J, Albrecht K A, et al. Genetic variation for biomass and related morphological traits in cup plant (Silphium perfoliatum L.)[J]. American Journal of Plant Sciences, 2015, 6(08): 1098.

[4]Ende L M, Lauerer M. Spreading of the cup plant (Silphium perfoliatum) in northern Bavaria (Germany) from bioenergy crops[J]. NeoBiota, 2022, 79: 87-105.

[5]Wu H, Shang H, Guo Y, et al. Comparison of different extraction methods of polysaccharides from cup plant (Silphium perfoliatum L.)[J]. Process Biochemistry, 2020, 90: 241-248.

[6]秦令祥, 丁昱婵, 赵俊芳, 等. 串叶松香草超氧化物歧化酶提取工艺优化及对 D-半乳糖致衰老模型小鼠的保护作用研究 [J]. 食品安全质量检测学报, 2023, 14(1): 122-129.

[7]张志儒,李超欣,马骏,等.高蛋白饲草串叶松香草不同生长期营养成分分析[J].中国饲料,2020,(21):130-133.

[8]许美解, 罗庆平. 串叶松香草饲喂特种野猪的效果试验 [J]. 黑龙江畜牧兽医, 2008(6): 98-100.

[9]胡利珍, 刘林秀, 谷德平, 等. 菊科牧草对兴国灰鹅生产性能及效益分析 [J]. 江西畜牧兽医杂志, 2014(6): 32-36.

[10]胡颂钦,林艳,史秀兰,等.饲料中添加串叶松香草对团头鲂幼鱼生长性能、抗氧化能力和脂肪代谢的影响[J].水产学报,2024,48(04):323-336.

[11]Chen X, Liu L, Yang Q, et al. Optimizing Biochar Application Rates to improve soil properties and crop growth in saline–alkali soil[J]. Sustainability, 2024, 16(6): 2523.

[12]刘小京, 郭凯, 封晓辉, 等. 农业高效利用盐碱地资源探讨[J]. 中国生态农业学报, 2023, 31(3): 345-353.

[13]Hemdan N A, El-Ashry S M, Abd-Elmabod S K, et al. Reclamation and Improvement of Saline Soils Using Organo–Mineral–Natural Resources, Treated Saline Water, and Drip Irrigation Technology[J]. Water, 2024, 16(22): 3234.

[14]Negacz K, Malek Ž, de Vos A, et al. Saline soils worldwide: Identifying the most promising areas for saline agriculture[J]. Journal of arid environments, 2022, 203: 104775.

[15]Jaiswal B, Singh S, Agrawal S B, et al. Improvements in soil physical, chemical and biological properties at natural saline and non-saline sites under different management practices[J]. Environmental Management, 2022, 69(5): 1005-1019.

[16]Mann A, Lata C, Kumar N, et al. Halophytes as new model plant species for salt tolerance strategies[J]. Frontiers in Plant Science, 2023, 14: 1137211.

[17]Fan C. Genetic mechanisms of salt stress responses in halophytes[J]. Plant signaling & behavior, 2020, 15(1): 1704528.

[18]Rahman M M, Mostofa M G, Keya S S, et al. Adaptive mechanisms of halophytes and their potential in improving salinity tolerance in plants[J]. International journal of molecular sciences, 2021, 22(19): 10733.

[19]Dashtebani F, Hajiboland R, Aliasgharzad N. Characterization of salt-tolerance mechanisms in mycorrhizal (Claroideoglomus etunicatum) halophytic grass, Puccinellia distans[J]. Acta physiologiae plantarum, 2014, 36: 1713-1726.

[20]Yu W, Wu W, Zhang N, et al. Research advances on molecular mechanism of salt tolerance in Suaeda[J]. Biology, 2022, 11(9): 1273.

[21]Reguera M, Bassil E, Blumwald E. Intracellular NHX-type cation/H+ antiporters in plants[J]. Molecular plant, 2014, 7(2): 261-263.

[22]Oh D H, Leidi E, Zhang Q, et al. Loss of halophytism by interference with SOS1 expression[J]. Plant physiology, 2009, 151(1): 210-222.

[23]Shao Q, Han N, Ding T, et al. SsHKT1; 1 is a potassium transporter of the C3 halophyte Suaeda salsa that is involved in salt tolerance[J]. Functional Plant Biology, 2014, 41(8): 790-802.

[24]Wang W Y, Liu Y Q, Duan H R, et al. SsHKT1; 1 is coordinated with SsSOS1 and SsNHX1 to regulate Na+ homeostasis in Suaeda salsa under saline conditions[J]. Plant and Soil, 2020, 449: 117-131.

[25]Chen J, Mueller V. Coastal climate change, soil salinity and human migration in Bangladesh[J]. Nature climate change, 2018, 8(11): 981-985.

[26]Chen Y Q, Zhou Y, Cai Y, et al. De novo transcriptome analysis of high-salinity stress-induced antioxidant activity and plant phytohormone alterations in Sesuvium portulacastrum[J]. Frontiers in Plant Science, 2022, 13: 995855.

[27]Van Zelm E, Zhang Y, Testerink C. Salt tolerance mechanisms of plants[J]. Annual review of plant biology, 2020, 71(1): 403-433.

[28]Liang W, Ma X, Wan P, et al. Plant salt-tolerance mechanism: A review[J]. Biochemical and biophysical research communications, 2018, 495(1): 286-291.

[29]Alam M S, Tester M, Fiene G, et al. Early growth stage characterization and the biochemical responses for salinity stress in tomato[J]. Plants, 2021, 10(4): 712.

[30]Cui X, Chen J, Li S, et al. Growth and physiological characteristics of forage bermudagrass in response to salt stress[J]. BMC Plant Biology, 2025, 25(1): 269.

[31]Yousefi S, Kartoolinejad D, Bahmani M, et al. Effect of Azospirillum lipoferum and Azotobacter chroococcum on germination and early growth of hopbush shrub (Dodonaea viscosa L.) under salinity stress[J]. Journal of Sustainable Forestry, 2017, 36(2): 107-120.

[32]Zahra N, Al Hinai M S, Hafeez M B, et al. Regulation of photosynthesis under salt stress and associated tolerance mechanisms[J]. Plant Physiology and Biochemistry, 2022, 178: 55-69.

[33]Betzen B M, Smart C M, Maricle K L, et al. Effects of increasing salinity on photosynthesis and plant water potential in Kansas salt marsh species[J]. Transactions of the Kansas Academy of Science, 2019, 122(1-2): 49-58.

[34]Chevilly S, Dolz-Edo L, Morcillo L, et al. Identification of distinctive physiological and molecular responses to salt stress among tolerant and sensitive cultivars of broccoli (Brassica oleracea var. Italica)[J]. BMC plant biology, 2021, 21: 1-16.

[35]Tang H, Wang C, Mei J, et al. Transcriptome Analysis Revealed the Response Mechanism of Pomegranate to Salt Stress[J]. Agronomy, 2024, 14(10): 2261.

[36]Zhang X, Liu P, Qing C, et al. Comparative transcriptome analyses of maize seedling root responses to salt stress[J]. PeerJ, 2021, 9: e10765.

[37]Banik S, Dutta D. Membrane proteins in plant salinity stress perception, sensing, and response[J]. The Journal of Membrane Biology, 2023, 256(2): 109-124.

[38]Guo Q, Liu L, Rupasinghe T W T, et al. Salt stress alters membrane lipid content and lipid biosynthesis pathways in the plasma membrane and tonoplast[J]. Plant Physiology, 2022, 189(2): 805-826.

[39]Wang D, Zhang M, Huang J, et al. Zygosaccharomyces rouxii combats salt stress by maintaining cell membrane structure and functionality[J]. Journal of Microbiology and Biotechnology, 2019, 30(1): 62.

[40]Tuteja N. Mechanisms of high salinity tolerance in plants[J]. Methods in enzymology, 2007, 428: 419-438.

[41]Kang H K, Nam K H. Reverse function of ROS-induced CBL10 during salt and drought stress responses[J]. Plant Science, 2016, 243: 49-55.

[42]Foster K J, Miklavcic S J. A comprehensive biophysical model of ion and water transport in plant roots. I. Clarifying the roles of endodermal barriers in the salt stress response[J]. Frontiers in plant science, 2017, 8: 1326.

[43]Lu Z, Yin G, Chai M, et al. Systematic analysis of CNGCs in cotton and the positive role of GhCNGC32 and GhCNGC35 in salt tolerance[J]. BMC genomics, 2022, 23(1): 560.

[44]Zhu J K. Salt and drought stress signal transduction in plants[J]. Annual review of plant biology, 2002, 53(1): 247-273.

[45]Park S Y, Fung P, Nishimura N, et al. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins[J]. science, 2009, 324(5930): 1068-1071.

[46]Liu H, Wang X, Zhu X, et al. Meta‐analysis of SnRK2 gene overexpression in response to drought and salt stress[J]. Physiologia Plantarum, 2024, 176(6): e14578.

[47]Li C, Zhang H, Qi Y, et al. Genome-wide identification of PYL/PYR-PP2C (A)-SnRK2 genes in Eutrema and their co-expression analysis in response to ABA and abiotic stresses[J]. International Journal of Biological Macromolecules, 2023, 253: 126701.

[48]Mehlmer N, Wurzinger B, Stael S, et al. The Ca2+‐dependent protein kinase CPK3 is required for MAPK‐independent salt‐stress acclimation in Arabidopsis[J]. The Plant Journal, 2010, 63(3): 484-498.

[49]Han X, Yang Y. Phospholipids in salt stress response[J]. Plants, 2021, 10(10): 2204.

[50]Balasubramaniam T, Shen G, Esmaeili N, et al. Plants’ response mechanisms to salinity stress[J]. Plants, 2023, 12(12): 2253.

[51]Zhou L, Yang S, Chen C, et al. CaCP15 gene negatively regulates salt and osmotic stress responses in Capsicum annuum L[J]. Genes, 2023, 14(7): 1409.

[52]Zhang Y, Wang L F, Li T T, et al. Mutual promotion of LAP2 and CAT2 synergistically regulates plant salt and osmotic stress tolerance[J]. Frontiers in Plant Science, 2021, 12: 672672.

[53]Zhao S, Zhang Q, Liu M, et al. Regulation of plant responses to salt stress[J]. International Journal of Molecular Sciences, 2021, 22(9): 4609.

[54]Zhou H, Lin H, Chen S, et al. Inhibition of the Arabidopsis salt overly sensitive pathway by 14-3-3 proteins[J]. The Plant Cell, 2014, 26(3): 1166-1182.

[55]Kim W Y, Ali Z, Park H J, et al. Release of SOS2 kinase from sequestration with GIGANTEA determines salt tolerance in Arabidopsis[J]. Nature communications, 2013, 4(1): 1352.

[56]Tan T, Cai J, Zhan E, et al. Stability and localization of 14-3-3 proteins are involved in salt tolerance in Arabidopsis[J]. Plant Molecular Biology, 2016, 92: 391-400.

[57]Ma L, Ye J, Yang Y, et al. The SOS2-SCaBP8 Complex Generates and Fine-Tunes an AtANN4-Dependent Calcium Signature under Salt Stress[J]. Dev Cell, 2019, 48(5): 697-709.

[58]Horie T, Karahara I, Katsuhara M. Salinity tolerance mechanisms in glycophytes: An overview with the central focus on rice plants[J]. Rice, 2012, 5: 1-18.

[59]Singh M, Nara U, Kumar A, et al. Salinity tolerance mechanisms and their breeding implications[J]. Journal of Genetic Engineering and Biotechnology, 2021, 19(1): 173.

[60]Li J, Zhou H, Zhang Y, et al. The GSK3-like Kinase BIN2 Is a Molecular Switch between the Salt Stress Response and Growth Recovery in Arabidopsis thaliana[J]. Dev Cell, 2020, 55(3): 367-380.

[61]Qi J, Song C P, Wang B, et al. Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack[J]. Journal of Integrative Plant Biology, 2018, 60(9): 805-826.

[62]Guo Q, Han J, Li C, et al. Defining key metabolic roles in osmotic adjustment and ROS homeostasis in the recretohalophyte Karelinia caspia under salt stress[J]. Physiologia Plantarum, 2022, 174(2): e13663.

[63]Klingler J P, Batelli G, Zhu J K. ABA receptors: the START of a new paradigm in phytohormone signalling[J]. Journal of experimental botany, 2010, 61(12): 3199-3210.

[64]Min M K, Choi E H, Kim J A, et al. Two clade a phosphatase 2Cs expressed in guard cells physically interact with abscisic acid signaling components to induce stomatal closure in rice[J]. Rice (New York, N.Y.), 2019, 12(1): 37.

[65]Ashraf M. Biotechnological approach of improving plant salt tolerance using antioxidants as markers[J]. Biotechnology Advances, 2009, 27(1): 84-93.

[66]Cutler SR, Rodriguez PL, Finkelstein RR, et al. Abscisic acid: emergence of a core signaling network[J]. Annual review of plant biology, 2010, 61: 651-679.

[67]Singh P, Choudhary KK, Chaudhary N, et al. Salt stress resilience in plants mediated through osmolyte accumulation and its crosstalk mechanism with phytohormones[J]. Frontiers in Plant Science, 2022, 13: 1006617.

[68]张浩,吴子龙,付伟,等.外源脱落酸对 NaCl 盐胁迫下玉米幼苗生长、气孔特征及光合性能的影响[J].生态学杂志,2021,40(07):2005-2015.

[69]张敏,蔡瑞国,李慧芝,等.盐胁迫环境下不同抗盐性小麦品种幼苗长势和内源激素的变化[J].生态学报,2008,(01):310-320.

[70]Song Y, Zheng H, Sui Y, et al. SbWRKY55 regulates sorghum response to saline environment by its dual role in abscisic acid signaling[J]. Theoretical and Applied Genetics, 2022, 135(8): 2609-2625.

[71]Ribba T, Garrido-Vargas F, O’Brien JA. Auxin-mediated responses under salt stress: Fromdevelopmental regulation to biotechnological applications[J]. Journal of Experimental Botany, 2020, 71(13): 3843-3853.

[72]Yu Z, Duan X, Luo L, et al. How plant hormones mediate salt stress responses[J]. Trends in plant science, 2020, 25(11): 1117-1130.

[73]周晓馥,王艺璇.外源茉莉酸对盐胁迫下玉米光合特性的影响[J].吉林师范大学学报(自然科学版),2019,40(04):80-86.

[74]Ninkuu V, Liu Z, Sun X. Genetic regulation of nitrogen use efficiency in Gossypium spp[J]. Plant, Cell & Environment, 2023, 46(6): 1749-1773.

[75]Ashraf M, Shahzad S M, Imtiaz M, et al. Salinity effects on nitrogen metabolism in plants–focusing on the activities of nitrogen metabolizing enzymes: A review[J]. Journal of Plant Nutrition, 2018, 41(8): 1065-1081.

[76]Wang H, Zhang M, Guo R, et al. Effects of salt stress on ion balance and nitrogen metabolism of old and young leaves in rice (Oryza sativa L.)[J]. BMC plant biology, 2012, 12: 1-11.

[77]Nunes-Nesi A, Fernie A R, Stitt M. Metabolic and signaling aspects underpinning the regulation of plant carbon nitrogen interactions[J]. Molecular plant, 2010, 3(6): 973-996.

[78]Sikder R K, Wang X, Zhang H, et al. Nitrogen enhances salt tolerance by modulating the antioxidant defense system and osmoregulation substance content in Gossypium hirsutum[J]. Plants, 2020, 9(4): 450.

[79]Singh M, Singh V P, Prasad S M. Responses of photosynthesis, nitrogen and proline metabolism to salinity stress in Solanum lycopersicum under different levels of nitrogen supplementation[J]. Plant Physiology and Biochemistry, 2016, 109: 72-83.

[80]Tian T, Wang J, Wang H, et al. Nitrogen application alleviates salt stress by enhancing osmotic balance, ROS scavenging, and photosynthesis of rapeseed seedlings (Brassica napus)[J]. Plant Signaling & Behavior, 2022, 17(1): 2081419.

[81]杜永成,王玉波,范文婷,等.不同氮素水平对甜菜硝酸还原酶和亚硝酸还原酶活性的影响[J].植物营养与肥料学报,2012,18(03):717-723.

[82]杨菊,穆红梅,张锡齐.外源一氧化氮对盐胁迫下观赏葫芦幼苗生理指标的影响[J].北方园艺,2023,(02):64-71.

[83]段德玉,刘小京,李存桢,等.N素营养对NaCl胁迫下盐地碱蓬幼苗生长及渗透调节物质变化的影响[J].草业学报,2005,(01):63-68.

[84]刘爱荣,张远兵,汪建飞,等.适量施氮增强盐胁迫下高羊茅生长和抗氧化能力[J].农业工程学报,2013,29(15):126-135.

[85]Jahan B, AlAjmi M F, Rehman M T, et al. Treatment of nitric oxide supplemented with nitrogen and sulfur regulates photosynthetic performance and stomatal behavior in mustard under salt stress[J]. Physiologia plantarum, 2020, 168(2): 490-510.

[86]Borisov A Y, Madsen L H, Tsyganov V E, et al. The Sym35 gene required for root nodule development in pea is an ortholog of Nin from Lotus japonicus[J]. Plant Physiology, 2003, 131(3): 1009-1017.

[87]Mu X, Luo J. Evolutionary analyses of NIN-like proteins in plants and their roles in nitrate signaling[J]. Cellular and Molecular Life Sciences, 2019, 76(19): 3753-3764.

[88]Ge M, Liu Y, Jiang L, et al. Genome-wide analysis of maize NLP transcription factor family revealed the roles in nitrogen response[J]. Plant growth regulation, 2018, 84: 95-105.

[89]Konishi M, Yanagisawa S. The role of protein-protein interactions mediated by the PB1 domain of NLP transcription factors in nitrate-inducible gene expression[J]. BMC Plant Biology, 2019, 19: 1-12.

[90]LIU M, ZHI X, WANG Y, et al. Genome-wide survey and expression analysis of NIN-like Protein (NLP) genes reveals its potential roles in the response to nitrate signaling in tomato [J]. BMC Plant Biol, 2021, 21(1): 347.

[91]Jagadhesan B, Sathee L, Meena H S, et al. Genome wide analysis of NLP transcription factors reveals their role in nitrogen stress tolerance of rice[J]. Scientific reports, 2020, 10(1): 9368.

[92]Liu M, Chang W, Fan Y, et al. Genome-wide identification and characterization of NODULE-INCEPTION-like protein (NLP) family genes in Brassica napus[J]. International journal of molecular sciences, 2018, 19(8): 2270.

[93]Yu L H, J Wu, H Tang, et al. Overexpression of Arabidopsis NLP7 improves plant growth under both nitrogen-limiting and -sufficient conditions by enhancing nitrogen and carbon assimilation [J]. Scientific Reports, 2016, 6: 27795.

[94]Zhang X, Zhang Q, Gao N, et al. Nitrate transporters and mechanisms of nitrate signal transduction in Arabidopsis and rice[J]. Physiologia Plantarum, 2024, 176(4): e14486.

[95]Jan S U, Liaqat A, Zhu Y, et al. Arabidopsis NLP7 improves nitrogen use efficiency and yield in cotton[J]. Journal of Cotton Research, 2022, 5(1): 2.

[96]SATO T, MAEKAWA S, KONISHI M, et al. Direct transcriptional activation of BT genes by NLP transcription factors is a key component of the nitrate response in Arabidopsis [J]. Biochem Biophys Res Commun, 2017, 483(1): 380-386.

[97]GUAN P, RIPOLL J J, WANG R, et al. Interacting TCP and NLP transcription factors control plant responses to nitrate availability [J]. Proc Natl Acad Sci U S A, 2017, 114(9): 2419-2424.

[98]Castaings L, Camargo A, Pocholle D, et al. The nodule inception‐like protein 7 modulates nitrate sensing and metabolism in Arabidopsis[J]. The Plant Journal, 2009, 57(3): 426-435.

[99]曹雄军,卢晓鹏,熊江,等.枳NLP转录因子克隆及其在不同水分条件下的表达[J].中国农业科学,2016,49(02):381-390.

[100]李晨阳,孔祥强,董合忠.植物吸收转运硝态氮及其信号调控研究进展[J].核农学报,2020,34(05):982-993.

[101]Liu X, Hu B, Chu C. Nitrogen assimilation in plants: current status and future prospects[J]. Journal of genetics and genomics, 2022, 49(5): 394-404.

[102]李传山,张婷婷,宋书峰,等.串叶松香草高效再生体系的建立与兔出血症病毒YL株外壳蛋白基因VP60对其遗传转化[J].生物技术通报,2007,(05):173-178.

[103]Yu L H, Wu J, Tang H, et al. Overexpression of Arabidopsis NLP7 improves plant growth under both nitrogen-limiting and-sufficient conditions by enhancing nitrogen and carbon assimilation[J]. Scientific reports, 2016, 6(1): 27795.

[104]AROUGH Y K, SHARIFI R S, Sedghi M, et al. Effect of zinc and bio fertilizers on antioxidant enzymes activity, chlorophyll content, soluble sugars and proline in triticale under salinity condition[J]. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2016, 44(1): 116-124.

中图分类号:

 S33    

开放日期:

 2025-05-23    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式