中文题名: |
智能温室内部温度场测控系统 设计与实现
|
姓名: |
任远
|
学号: |
20182109048
|
保密级别: |
公开
|
论文语种: |
chi
|
学科代码: |
0828
|
学科名称: |
农业工程
|
学生类型: |
硕士
|
学位类型: |
专业学位
|
学位年度: |
2021
|
学校: |
石河子大学
|
院系: |
机械电气工程学院
|
专业: |
农业工程
|
研究方向: |
农业工程
|
第一导师姓名: |
李志刚
|
第一导师单位: |
机械电气工程学院
|
第二导师姓名: |
苑严伟
|
完成日期: |
2021-06-01
|
答辩日期: |
2021-06-01
|
外文题名: |
Intelligent Greenhouse Temperature Field Measurement and Control System Design and Implementation
|
中文关键词: |
温度场 ; 传感器故障检测 ; 测控系统 ; 智能温室
|
外文关键词: |
Temperature Field ; sensor fault detection ; measurement and control system ; smart greenhous
|
中文摘要: |
︿
<div>
随着现代信息技术在农业领域的广泛应用,以智慧农业为表现形式的新的农业变革已经到来,智慧农业是农业发展从机械化到数字化再到智能化的高级阶段,而设施农业作为智慧农业重要的表现形式,日光温室的发展也越发重要。智能温室的功能在于以计算机管理技术对室内作物的生长环境进行人为的控制,创造作物生长的最佳环境,以降低温室运营成本,增加作物产量和提高劳动效率。</div>
<div>
本文通过对云南地区现代农业示范项目进行调研和分析,结合现有的研究,对温室智能化管理的实际需求进行分析,设计开发一款温室智能化管理系统,并将该系统命名为智能温室内部温度场测控系统。论文的主要研究内容如下。</div>
<div>
第一部分主要介绍了CFD技术在温室中的应用,故障传感器网络节点检测以及温室管理系统的国内外研究现状,通过对前人研究的文献梳理结合室内管理系统的关键技术分析,选择ZigBee技术进行无线信号的采集与传输,确定室内温度场测控系统的基本组成框架。</div>
<div>
第二部分利用ANSYS建立温室仿真模型,并对模型的有效性进行验证,将验证过的温室有效模型对室内场域变化进行分析,结合空间相似原理与LEBDF算法对故障传感器网络节点进行识别,为保证室内温度场测控系统的稳定运行提供准确的数据支持。</div>
<div>
第三部分主要介绍了室内温度场测控系统的实现过程。室内温度场测控系统主要包括传感器信号的采集传输和对室内设备的控制,利用ZigBee无线通讯技术实现信号的采集与传输,利用软件技术对系统平台进行开发,基于MVC(Model、View、Control)模式实现对室内温度场测控系统的开发,并通过相关的网络测试,确保系统运行的稳定性和有效性,结果表明,基于室内温度场的测控系统能够满足温室智能化管理需要。</div>
<div>
本文利用仿真软件对温室内部场域进行分析,提出一种基于场域变化的传感器故障节点检测方法,为温室的智能化管理提供准确有效的数据支持,并结合软件开发等相关技术设计并实现了一套针对玻璃连栋温室的智能化管理系统,并将之命名为智能温室内部温度场测控系统,从而实现了现代温室标准化、集约化、智能化管理,作物的高效种植和设施装备的精准作业。</div>
<div>
</div>
﹀
|
外文摘要: |
︿
<div>
With the widespread application of modern information technology in the agricultural field, a new agricultural transformation in the form of smart agriculture has arrived. Smart agriculture is the advanced stage of agricultural development from mechanization to digitalization and then to intelligence, as facility agriculture is an important manifestation of smart agriculture. The development of solar greenhouses is becoming more and more important. The function of the intelligent greenhouse is to artificially control the environmental conditions of crop growth with advanced technology, so that crop growth is not affected by the natural climate, and achieve high efficiency, low input and high efficiency production all year round.</div>
<div>
Based on the investigation and analysis of modern agricultural demonstration projects in Yunnan, combined with existing research, this paper analyzes the actual needs of greenhouse intelligent management, designs and develops a greenhouse intelligent management system, and named the system indoor temperature of greenhouse Field measurement and control system. The main research content of the thesis is as follows.</div>
<div>
The first part mainly introduces the application of CFD technology in the greenhouse, sensor fault detection and the current research status of greenhouse measurement and control systems at home and abroad. Through combing the literature of previous studies combined with the shutdown technology analysis of the indoor measurement and control system, the ZigBee technology is selected for wireless signal detection. Collect and transmit, determine the basic composition framework of the indoor temperature field measurement and control system.</div>
<div>
The second part uses ANSYS to establish a greenhouse simulation model and verify the validity of the model. The validated greenhouse model is analyzed for indoor field changes, combined with the principle of spatial similarity and the LEBDF algorithm to identify faulty sensor network nodes. Ensure the stable operation of the indoor temperature field measurement and control system and provide accurate data support.</div>
<div>
The third part mainly introduces the realization process of the indoor temperature field measurement and control system. The indoor temperature field measurement and control system mainly includes the acquisition and transmission of sensor signals and the control of indoor equipment. It uses ZigBee wireless communication technology to achieve signal acquisition and transmission, and uses software technology to develop the system platform, based on MVC (Model, View, Control) mode Realize the development of the indoor temperature field measurement and control system, and through related network tests to ensure the stability and effectiveness of the system operation, the results show that the measurement and control system based on the indoor temperature field can meet the needs of intelligent greenhouse management.</div>
<div>
This paper uses simulation software to analyze the internal field of the greenhouse, and proposes a sensor failure node detection method based on field changes, which provides accurate and effective data support for the intelligent management of the greenhouse, and combines software development and other related technologies to design and implement An intelligent management system for glass multi-span greenhouses, and named it the indoor temperature field measurement and control system, realizes the standardization, intensive and intelligent management of modern greenhouses, efficient planting of crops and precise operation of facilities and equipment.</div>
<div>
</div>
﹀
|
参考文献: |
︿
<div> [1]<span style="white-space:pre"> </span>王纪章.基于物联网的温室环境智能管理系统研究[D].江苏大学,2013.</div> <div> [2]<span style="white-space:pre"> </span>陈教料.基于模型优化预测与流场分析的温室能耗控制方法[D].浙江大学,2016.</div> <div> [3]<span style="white-space:pre"> </span>Okushima L,Sase S,Nara M.A SUPPORT SYSTEM FOR NATURAL VENTILATION DESIGN OF GREENHOUSES BASED ON COMPUTATIONAL AERODYNAMICS[J].Acta Horticulturae,1989,248:129-136.</div> <div> [4]<span style="white-space:pre"> </span>Sase S,Takakura T,Nara M.WIND TUNNEL TESTING ON AIRFLOW AND TEMPERATURE DISTRIBUTION OF A NATURALLY VENTILATED GREENHOUSE[J].Acta Horticulturae,1984,148:329-336.</div> <div> [5]<span style="white-space:pre"> </span>PISCIAD,Mu oz P,Panadès C,et al.A method of couplingCFD and energy balance simulations to study humidity control in un-heated greenhouse[J].Computers and Electronics in Agriculture,2015,115: 129-141.</div> <div> [6]<span style="white-space:pre"> </span>Campen JB,Bot GPA.Determination of Greenhouse-specific Aspects of Ventilation using Three-dimensional Computational Fluid Dynamics[J].Biosystems Engineering,2013,84(1):69-77.</div> <div> [7]<span style="white-space:pre"> </span>Ayad Saberian,Seyed Majid Sajadiye. The effect of dynamic solar heat load on the greenhouse microclimate using CFD simulation[J]. Renewable Energy,2019,138:722-727.</div> <div> [8]<span style="white-space:pre"> </span>吴飞青,张立彬,胥芳,等.基于多孔介质的玻璃温室加热环境数值模拟[J].农业机械学报.2011,42(2):180-185.</div> <div> [9]<span style="white-space:pre"> </span>方慧,杨其长,张义,程瑞锋,张芳,卢威,刘焕.基于CFD的不同走向大跨度保温型温室温度场模拟[J].中国农业大学学报,2017,22(11):133-139..</div> <div> [10]<span style="white-space:pre"> </span>佟国红,David M.Christopher.日光温室墙体蓄放热层温度变化规律研究[J].农业工程学报,2019,35(07):170-177.</div> <div> [11]<span style="white-space:pre"> </span>胥芳,蔡彦文,陈教料,张立彬.湿帘-风机降温下的温室热/流场模拟及降温系统参数优化[J].农业工程学报,2015,31(09):201-208.</div> <div> [12]<span style="white-space:pre"> </span>薛晓萍,宿文.基于CFD的自然通风对日光温室湿度分布模拟分析[J].海洋气象学报,2019,39(04):90-96.</div> <div> [13]<span style="white-space:pre"> </span>王誉. 传感器网络节点故障诊断方法研究[D].哈尔滨工业大学,2016.</div> <div> [14]<span style="white-space:pre"> </span>季赛,袁慎芳,吴键,王水平.基于时空特性的无线传感器网络节点故障诊断方法[J].传感器与微系统,2009,28(10):117-120.</div> <div> [15]<span style="white-space:pre"> </span>赵继军,刘云飞,赵欣.无线传感器网络数据融合体系结构综述[J].传感器与微系统,2009,28(10):1-4.</div> <div> [16]<span style="white-space:pre"> </span>钱朋朋.基于多方法结合的传感器故障诊断方法研究[D].沈阳理工大学,2013.</div> <div> [17]<span style="white-space:pre"> </span>Naidu S R, Zafiriou E, Mcavoy T J. Use of neural networks for sensor failure detection in a control system[J].IEEE Control Systems Magazine,2002,10(3):49-55. </div> <div> [18]<span style="white-space:pre"> </span>Chessa S, Santi P. Comparison-Based System-Level Fault Diagnosis in Ad Hoc Networks[J]. Proceedings of the IEEE Symposium on Reliable Distributed Systems, 2001(1):257-266. </div> <div> [19]<span style="white-space:pre"> </span>Chen Jinran,Kher S,Somani A.Distributed fault detection of wireless sensor networks[C].Proceedings of the 2006 Workshop on Dependability Issues in Wireless Ad Hoc Net-works and Sensor Networks, 2006: 65-72.</div> <div> [20]<span style="white-space:pre"> </span>ZHANG J,LI A,LI J,et al.Research of real-time image acquisition system based on ARM 7 for agricultural environmental monitoring,2011[C]. IEEE, 2011.</div> <div> [21]<span style="white-space:pre"> </span>Lazarescu M T.Design of a WSN platform for long-term environmental monitoring for Io Tapplications[J].IEEE Journal on Emerging&Selected Topics in Circuits&Systems,2013,3(1):45-54.</div> <div> [22]<span style="white-space:pre"> </span>Wu,Bingfang.Agricultural monitoring and early warning in the era of big data[J].Journal Of Remote Sensing,2016,20(5):1027-1037.</div> <div> [23]<span style="white-space:pre"> </span>王国华.日本农业发展的现状及政策走向分析[J].长春大学学报,2017,27(03):27-31.</div> <div> [24]<span style="white-space:pre"> </span>蒲宝山,郑回勇,黄语燕,等.我国温室农业设施装备技术发展现状及建议[J].江苏农业科学,2019,47(14):13-18.</div> <div> [25]<span style="white-space:pre"> </span>张强.基于物联网的农业温室智能监测电气系统[D].天津:天津理工大学,2019.</div> <div> [26]<span style="white-space:pre"> </span>王怀宇,赵建军,李景丽等.基于物联网的温室大棚远程控制系统研究[J].农机化研究, 2015,37 (1):123-127.</div> <div> [27]<span style="white-space:pre"> </span>尹晶晶,徐振峰.温室环境无线传感器节点设计[J].西安航空学院学报,2017,35(05):57-60.</div> <div> [28]<span style="white-space:pre"> </span>余国雄,王卫星,谢家兴,等.基于物联网的荔枝园信息获取与智能灌溉专辑决策系统[J].农业工程学报, 2016, 32 (20) :144-152.</div> <div> [29]<span style="white-space:pre"> </span>佟国红,David M C.墙体材料对日光温室温度环境影响的CFD模拟[J].农业工程学报,2009,25(3):153-157.</div> <div> [30]<span style="white-space:pre"> </span>张旭.基于CFD方法的农业温室环境测控系统研究与实现[D].黑龙江大学,2015.</div> <div> [31]<span style="white-space:pre"> </span>In-Bok Lee and Jessie Pascual P. Bitog and Se-Woon Hong and Il-Hwan Seo and Kyeong-Seok Kwon and Thomas Bartzanas and Murat Kacira. The past, present and future of CFD for agro-environmental applications[J]. Computers and Electronics in Agriculture, 2013,111(1):11-23.</div> <div> [32]<span style="white-space:pre"> </span>李亮亮,王新忠,洪亚杰,卢青,陈健.不同遮阳工况下温室作物冠层辐射场与温度场的CFD分析[J].农机化研究,2019,41(11):192-197.</div> <div> [33]<span style="white-space:pre"> </span>严露露,荆海薇,鲍恩财,曹晏飞,潘铜华,申婷婷,王昊天,邹志荣.不同自然通风方式对日光温室性能的影响[J].中国农业大学学报,2020,25(03):71-78.</div> <div> [34]<span style="white-space:pre"> </span>谢玉龙.湍流燃烧系统中湍流弹内部流场的数值模拟研究[D].江苏科技大学,2020.</div> <div> [35]<span style="white-space:pre"> </span>童莉,张政等.机械通风条件下连栋温室速度场和温度场的CFD数值模拟[J].中国农业大学学报,2003,8(6):33-37.</div> <div> [36]<span style="white-space:pre"> </span>Liu D,Gu X,Liang H,et al.Solution evaluation and optimal solution discrimination of a complete analytical model for power system fault diagnosis[J]. proceedings of the csee,2014,34(31):5668-5676.</div> <div> [37]<span style="white-space:pre"> </span>文成林,吕菲亚,包哲静等.基于数据驱动的微小故障诊断方法综述[J]. 自动化学报,2016,42(09):1285-1299. </div> <div> [38]<span style="white-space:pre"> </span>Hong W, Ding T Y, Brown J L, et al.Data driven fault diagnosis and fault tolerant control:some advances and possible new directions[J].acta Automatica Sinica, 2009,(6):739-747. </div> <div> [39]<span style="white-space:pre"> </span>周金生,王纪章,贺通,王建平,李萍萍.基于时空关联性的温室环境多传感器数据融合[J].江苏农业科学,2018,46(05):203-207.</div> <div> [40]<span style="white-space:pre"> </span>熊迎军,沈明霞,陆明洲,刘永华,孙玉文,刘龙申.温室无线传感器网络系统实时数据融合算法[J].农业工程学报,2012,28(23):160-166.</div> <div> [41]<span style="white-space:pre"> </span>F.D. Molina-Aiz,D.L.Valera,A.J. Álvarez,A. Madueño. A Wind Tunnel Study of Airflow through Horticultural Crops: Determination of the Drag Coefficient[J]. Biosystems Engineering,2006,93(4): 2-7.</div> <div> [42]<span style="white-space:pre"> </span>位欢欢,吴海涛,高建华.基于代码行变更指数的异味类排序方法[J].计算机工程与设计,2021,42(03):656-662.</div> <div> [43]<span style="white-space:pre"> </span>廖宾.基于JAVA开发Web应用中MVC模式分析[J].电子技术与软件工程,2020,(21):49-50.</div> <div> [44]<span style="white-space:pre"> </span>胡江生.基于Java EE的智慧农业软件平台的设计与实现[D].哈尔滨工业大学,2018.</div> <div> [45]<span style="white-space:pre"> </span>刘杰,孙浩,郭东旭,吴雨洽.基于Spring MVC及MyBatis框架的在线教育平台的设计与实现[J].沈阳师范大学学报(自然科学版),2019,37(03):268-273.</div> <div> [46]<span style="white-space:pre"> </span>乔岚.基于MyBatis和Spring的JavaEE数据持久层的研究与应用[J].信息与电脑,2017,(8):73-76. </div> <div> [47]<span style="white-space:pre"> </span>郭红领,周颖,叶啸天,罗柱邦,薛帆.IFC数据模型至关系型数据库模型的自动映射[J].清华大学学报(自然科学版),2021,61(02):152-160.</div> <div> [48]<span style="white-space:pre"> </span>冯学晓.基于粗糙集的高校教师测评系统设计与实现[D].南京理工大学,2018.</div> <div> [49]<span style="white-space:pre"> </span>房银龙.基于Mootools框架的温室远程Web服务系统的设计与实现[D].南京农业大学,2015.</div> <div> [50]<span style="white-space:pre"> </span>朱广,黎海涛,马银童等.低功耗物联网网关设计与实现[J].国外电子测量技术,2016, 35(6):31-36.</div> <div> [51]<span style="white-space:pre"> </span>田贤忠,赵晨,姚超,丁军.无线携能通信中继网络最大化总传输速率[J].浙江工业大学学报,2021,49(02):210-214+224.</div> <div> [52]<span style="white-space:pre"> </span>张璐璐,孔国利.基于DSP和ZigBee的农田灌溉水质监测控制系统设计[J].农机化研究,2021,43(12):229-232+237.</div> <div> [53]<span style="white-space:pre"> </span>刘静静.基于WSN的新疆冷鲜羊肉冷链运输监测系统研究[D].石河子大学,2020. </div>
﹀
|
开放日期: |
2021-06-01
|