- 无标题文档
查看论文信息

中文题名:

 布朗斯特碱催化硫代磺酸酯参与的C-S键构筑反应    

姓名:

 罗锦昀    

学号:

 20222307214    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 081704    

学科名称:

 工学 - 化学工程与技术 - 应用化学    

学生类型:

 博士    

学位:

 工学博士    

学位类型:

 学术学位    

学位年度:

 2024    

学校:

 石河子大学    

院系:

 化学化工学院    

专业:

 化学工程与技术    

第一导师姓名:

 代斌    

第一导师单位:

 石河子大学    

第二导师姓名:

 何林    

完成日期:

 2024-07-10    

答辩日期:

 2024-07-08    

外文题名:

 Brønsted Base-Catalyzed C-S Bond Construction Reactions involving Thiosulfonates    

中文关键词:

 硫代磺酸酯 ; 全氟苯基硫醚 ; 乙烯基砜 ; 硫代乙烯基砜 ; 氘代乙烯基砜     

外文关键词:

 Thiosulfonates ; Perfluorophenyl sulfides ; Vinyl sulfones ; Thio vinyl sulfones ; Deuterovinyl sulfones     

中文摘要:

含硫化合物在生物化学、药物化学、功能材料等多个领域中有着广泛的应用,因此,发展C-S键高效构筑的新方法一直是有机合成化学研究的重要方向之一。

硫代磺酸酯是一类结构简单、廉价易得且性质稳定的有机硫化物,该类化合物同时含有硫基和磺酰基,通常被用来构建C-S键和C-SO2键,是合成硫醚、亚砜以及砜类等有机硫化合物的重要试剂。近年来,随着“绿色可持续化学”的发展,开发条件温和、反应高效的有机硫化物的合成新方法已经成为有机合成化学的研究热点之一。本论文作者以硫代磺酸酯为硫化试剂,在温和反应条件下,发展了布朗斯特碱催化下高效合成硫醚、烯基砜等有机硫化物的新方法,并对其反应机理进行了探索。本论文主要工作如下:

第一部分作者发展了一种t-Bu-P4催化硫代磺酸酯和三甲基(全氟苯基)硅烷的亲核取代反应,以23%~97%的收率制备了29种全氟苯基硫醚化合物。该方法表现出无需添加金属催化剂、反应条件温和等优点,为全氟苯基硫醚化合物的制备提供了一种新的合成方法。

第二部分作者发展了一种Cs2CO3催化硫代磺酸酯和炔酮化合物的硫砜基化反应,一步构建了C-S键和C-SO2键,以28%~98%的收率制备了104种硫代乙烯基砜类化合物。该方法具有原料廉价易得、反应条件温和、底物普适性广、原子经济性高和立体选择性优异等特点。

第三部分作者研究了Cs2CO3催化硫代磺酸酯、2-萘酚和炔酮化合物的三组分反应,分别以32%~98%的收率和35%~99%的收率制备了25种2-萘酚硫醚化合物和44种乙烯基砜类化合物。该反应具有良好的底物普适性和优异的立体选择性,为“一锅法”同时合成了多种硫醚化合物和乙烯基砜类化合物提供了一种新策略。

第四部分作者研究了DBU催化硫代磺酸酯、炔酮和氘水的三组分反应,同时构建了C-D键和C-SO2键,制备了23种氘代乙烯基砜类化合物。

本论文作者开发了碱催化硫代磺酸酯参与的C-S键形成反应,合成了全氟苯基硫醚、硫代乙烯基砜、氘代乙烯基砜等化合物。这些方法具有反应条件温和、底物普适性广、官能团兼容性好、优异的化学及立体选择性优点。

外文摘要:

Sulfur-containing compounds have broad applications in many fields, such as biochemistry, medicinal chemistry, and functional materials. Therefore, the development of new methods for constructing C-S bonds has been a research in organic synthetic chemistry.

Thiosulfates are a class of organic sulfides with simple structure, cheap and easy to obtain, and stable properties. These compounds contain both sulfur and sulfonyl groups, which are usually used to construct C-S and C-SO2 bonds, and are important reagents for the synthesis of organic sulfur compounds such as thioethers, sulfoxides, and sulfones. In recent years, with the development of “green and sustainable chemistry”, the development of new methods for the synthesis of organosulfur compounds under mild conditions and with high efficiency has become one of the hot topics in organic synthetic chemistry. In this thesis, author has developed a new method for the Brønsted base-catalyzed efficient synthesis of organosulfides such as thioethers and alkenyl sulfones under mild reaction conditions using thiosulfonates as sulfurizing reagents, and the reaction mechanism has been explored. The main work of this thesis is as follows:

In the first part of this thesis, the author developed a t-Bu-P4-catalyzed nucleophilic substitution reaction of thiosulfonates and trimethyl (perfluorophenyl) silanes to prepare 29 perfluorophenyl sulfides in 23%~97% yields. This method showed the advantages of no use of metal catalysts and mild reaction condition, which provides a new synthetic method for the preparation of perfluorophenyl sulfides.

In the second part of this thesis, the author developed a Cs2CO3-catalyzed thiosulfonation reaction of thiosulfonates and ynones with one-step construction of C-S and C-SO2 bonds to prepare 104 thio vinyl sulfones in 28%~98% yields. The method is characterized by cheap and easy availability of raw materials, mild reaction conditions, broad substrate universality, high atom economy and excellent stereoselectivity.

In the third part of this thesis, the author investigated the Cs2CO3-catalyzed three-component reaction of thiosulfonates, 2-naphthols and ynones to prepare 25 2-naphthol thioether compounds and 44 vinyl sulfones in 32%~98% and 35%~99% yields, respectively. The reaction has good substrate universality and excellent stereoselectivity, which provides a new strategy for the simultaneous synthesis of a variety of thioethers and vinyl sulfones by the "one-pot method".

In the fourth part of this thesis, the author investigated the DBU-catalyzed three-component reaction of thiosulfonates, ynones, and deuterium water with simultaneous construction of C-D and C-SO2 bonds to prepare 23 deuterated vinyl sulfones.

In this thesis, several types of Brønsted bases catalyzed C-S bond construction reactions involving thiosulfonates have been developed. A variety of structurally diverse sulfur-containg products including perfluorophenyl sulfides, vinyl sulfone sulfides, thio vinyl sulfones and deuterovinyl sulfones have been prepared successfully. These methods present the advantages of mild reaction conditions, broad substrate scope, good functional compatibility and excellent chemo- and stero-selectivity.

参考文献:

[1] Koning, N. R., Sundin, A. P., Strand, D., Total Synthesis of (−)-Glionitrin A and B Enabled by an Asymmetric Oxidative Sulfenylation of Triketopiperazines [J]. Journal of the American Chemical Society, 2021, 143: 21218-21222.

[2] Laxmikeshav, K., Kumari, P., Shankaraiah, N., Expedition of Sulfur‐Containing Heterocyclic Derivatives as Cytotoxic agents in Medicinal Chemistry: A Decade Update [J]. Medicinal Research Reviews, 2021, 42: 513-575.

[3] Chen, S.-H., Jiang, K., Lin, J.-Y., et al., Rational Design and Synthesis of Y-Shaped Fluorophores with Multifarious Emission Properties and their Application in the Sensitive Detection of PA [J]. Journal of Materials Chemistry C, 2020, 8: 8257-8267.

[4] Mampuys, P., McElroy, C. R., Clark, J. H., et al., Thiosulfonates as Emerging Reactants: Synthesis and Applications [J]. Advanced Synthesis & Catalysis, 2019, 362: 3-64.

[5] Wang, F., Liu, B.-X., Rao, W. D., et al., Metal-Free Chemoselective Reaction of Sulfoxonium Ylides and Thiosulfonates: Diverse Synthesis of 1, 4-Diketones, Aryl Sulfursulfoxonium Ylides, and β-Keto Thiosulfones Derivatives [J]. Organic Letters, 2020, 22: 6600-6604.

[6] Merchant, R. R., Edwards., J. T., Qin, T., et al., Modular Radical Cross-Coupling with Sulfones Enables Access to sp3-Rich (Fluoro)Alkylated Scaffolds [J]. Science, 2018, 360: 75-80.

[7] Wu, Z., Xu, Y., Wu, X., et al., Synthesis of Selenoether and Thioether Functionalized Bicyclo[1.1.1]pentanes [J]. Tetrahedron, 2020, 76: 131692- 131698.

[8] Zhao, X., Yang, B., Wei, A. Q., et al., Silver-Mediated Radical Aryltrifluoromethylthiolation of Activated Alkenes by S-Trifluoromethyl 4-Methylbenzenesulfonothioate [J]. Tetrahedron Letters, 2018, 59: 1719-1722.

[9] Chen, H., Yan, Y. Y., Zhang, N. N., et al., Visible-Light-Induced Cyclization/Aromatization of 2-Vinyloxy Arylalkynes: Synthesis of Thio-Substituted Dibenzofuran Derivatives [J]. Organic Letters, 2020, 23: 376-381.

[10] Dong, Y., Ji, P., Zhang, Y. T., et al., Organophotoredox-Catalyzed Formation of Alkyl-Aryl and -Alkyl C−S/Se Bonds from Coupling of Redox-Active Esters with Thio/Selenosulfonates [J]. Organic Letters, 2020, 22: 9562-9567.

[11] Li, Z., Wang, K.-F., Zhao, X., et al., Manganese-Mediated Reductive Functionalization of Activated Aliphatic Acids and Primary Amines [J]. Nature Communications, 2020, 11: 5036-5047.

[12] Ravi, C., Joshi, A., Adimurthy, S., Sulfenylation of N‐Heteroarenes in Water under Catalyst‐Free Conditions [J]. European Journal of Organic Chemistry, 2017, 2017: 3646-3651.

[13] Wang, B. B.-W., Jiang, K., Li, J.-X., et al., 1, 1‐Diphenylvinylsulfide as a Functional Aiegen Derived from the Aggregation‐Caused‐Quenching Molecule 1, 1‐Diphenylethene through Simple Thioetherification [J]. Angewandte Chemie International Edition, 2019, 59: 2338-2343.

[14] Cao, L., Jimeno, C., Renaud, P., Desulfitative Thioalkylation of Alkenes [J]. Advanced Synthesis & Catalysis, 2020, 362: 3644-3648.

[15] Shyam, P. K., Son, S., Jang, H. Y., Copper‐Catalyzed Sulfonylation of Alkenes and Amines by Using Thiosulfonates as a Sulfonylating Agent [J]. European Journal of Organic Chemistry, 2017, 2017: 5025-5031.

[16] Son, S., Shyam, P. K., Park, H., et al., Complementary Strategy for Regioselective Synthesis of Diverse β‐Hydroxysulfones from Thiosulfonates [J]. European Journal of Organic Chemistry, 2018, 2018: 3365-3371.

[17] Liang, Q. J., Walsh, P. J., Jia, T. Z., Copper-Catalyzed Intermolecular Difunctionalization of Styrenes with Thiosulfonates and Arylboronic Acids via a Radical Relay Pathway [J]. ACS Catalysis, 2019, 10: 2633-2639.

[18] Mao, K., Bian, M. W., Dai, L., et al., Metal-Free Radical Annulation of Oxygen-Containing 1, 7-Enynes: Configuration-Selective Synthesis of (E)-3-((Arylsulfonyl)methyl)-4-Substituted Arylidenechromene Derivatives [J]. Organic Letters, 2020, 23: 218-224.

[19] Zhu, D. H., Shao, X. X., Hong, X., et al., PhSO2SCF2H: A Shelf‐Stable, Easily Scalable Reagent for Radical Difluoromethylthiolation [J]. Angewandte Chemie International Edition, 2016, 55: 15807-15811.

[20] Li, H. Y., Shan, C. C., Tung, C.-H., et al., Dual Gold and Photoredox Catalysis: Visible Light-Mediated Intermolecular Atom Transfer Thiosulfonylation of Alkenes [J]. Chemical Science, 2017, 8: 2610-2615.

[21] Zhou, X., Peng, Z. Y., Wang, P. G., et al., Atom Transfer Radical Addition to Styrenes with Thiosulfonates Enabled by Synergetic Copper/Photoredox Catalysis [J]. Organic Letters, 2021, 23: 1054-1059.

[22] Gadde, K., Mampuys, P., Guidetti, A., et al., Thiosulfonylation of Unactivated Alkenes with Visible-Light Organic Photocatalysis [J]. ACS Catalysis, 2020, 10: 8765-8779.

[23] Huang, S., Li, H. Y., Xie, T., et al., Scandium-Catalyzed Electrophilic Alkene Difunctionalization: Regioselective Synthesis of Thiosulfone Derivatives [J]. Organic Chemistry Frontiers, 2019, 6: 1663-1666.

[24] Liu, X.-Y., Tian, S.-Y., Jiang, Y.-F., et al., Visible-Light-Triggered Sulfonylation/Aryl Migration/Desulfonylation and C−S/Se Bond Formation Reaction: 1, 2, 4-Trifunctionalization of Butenyl Benzothiazole Sulfone with Thiosulfonate/Selenosulfonates [J]. Organic Letters, 2021, 23: 8246-8251.

[25] Liu, Y., Zhang, N. N., Xu, Y. L., et al., Visible-Light-Induced Radical Cascade Reaction of 1-Allyl-2-ethynylbenzoimidazoles with Thiosulfonates to Assemble Thiosulfonylated Pyrrolo[1,2-a]benzimidazoles [J]. The Journal of Organic Chemistry, 2021, 86: 16882-16891.

[26] Huang, S., Thirupathi, N., Tung, C.-H., et al., Copper-Catalyzed Oxidative Trifunctionalization of Olefins: an Access to Functionalized β-Keto Thiosulfones [J]. The Journal of Organic Chemistry, 2018, 83: 9449-9455.

[27] Reddy, R. J., Kumar, J. J., Kumari, A. H., Unprecedented Reactivity of β‐Iodovinyl Sulfones: An Efficient Synthesis of β‐Keto Sulfones and β‐Keto Thiosulfones [J]. European Journal of Organic Chemistry, 2019, 2019: 3771-3775.

[28] Huo, J. P., LÜ, M. X., Wang, Z. Y., et al., Synthesis of 2(5H)‐Furanone Derivatives with Bis‐1, 2, 3‐Triazole Structure [J]. Chinese Journal of Chemistry, 2012, 30: 2411-2422.

[29] Kanemoto, K., Yoshida, S., Hosoya, T., Synthesis of Alkynyl Sulfides by Copper-Catalyzed Thiolation of Terminal Alkynes Using Thiosulfonates [J]. Organic Letters, 2019, 21: 3172-3177.

[30] Wang, W. G., Peng, X. L., Wei, F., et al., Copper(I)‐Catalyzed Interrupted Click Reaction: Synthesis of Diverse 5‐Hetero‐Functionalized Triazoles [J]. Angewandte Chemie International Edition, 2015, 55: 649-653.

[31] Wang, W. G., Lin, Y. Z., Ma, Y. D., et al., Copper(I)-Catalyzed Three-Component Click/Persulfuration Cascade: Regioselective Synthesis of Triazole Disulfides [J]. Organic Letters, 2018, 20: 2956-2959.

[32] Shankar, A., Waheed, M., Reddy, R. J., Simple and Efficient Synthesis of Allyl Sulfones through Cs2CO3-Mediated Radical Sulfonylation of Morita-Baylis-Hillman Adducts with Thiosulfonates [J]. SynOpen, 2021, 5: 91-99.

[33] Wang, X. X., Sun, B. X., Zhao, Z. W., et al., Copper‐Catalyzed Four‐Component Cascade Reaction for the Construction of Triazoles Bearing β‐Hydroxy Chalcogenides [J]. Advanced Synthesis & Catalysis, 2021, 364: 165-171.

[34] Wang, W. G., Huang, S., Yan, S. K., et al., Copper(I)‐Catalyzed Interrupted Click/Sulfenylation Cascade: One‐Pot Synthesis of Sulfur Cycle Fused 1, 2, 3‐Triazoles [J]. Chinese Journal of Chemistry, 2020, 38: 445-448.

[35] Waheed, M., Kumari, A. H., Krishna, G. R., et al., Interrupted CuAAC‐Thiolation for the Construction of 1, 2, 3‐Triazole‐Fused Eight‐Membered Heterocycles from O‐/N‐Propargyl derived Benzyl Thiosulfonates with Organic Azides [J]. Advanced Synthesis & Catalysis, 2021, 364: 319-325.

[36] Qi, J. J., Wei, F., Huang, S., et al., Copper(I)‐Catalyzed Asymmetric Interrupted Kinugasa Reaction: Synthesis of α‐Thiofunctional Chiral β‐Lactams [J]. Angewandte Chemie International Edition, 2021, 60: 4561-4565.

[37] Yuan, B. X., Jiang, Y., Qi, Z. J., et al., External Oxidant‐Free Oxidative Tandem Cyclization: NaI‐Catalyzed Thiolation for the Synthesis of 3‐Thiosubstituted Pyrroles [J]. Advanced Synthesis & Catalysis, 2019, 361: 5112-5117.

[38] Song, T. T., Li, H. Y., Wei, F., et al., Gold/Photoredox-Cocatalyzed Atom Transfer Thiosulfonylation of Alkynes: Stereoselective Synthesis of Vinylsulfones [J]. Tetrahedron Letters, 2019, 60: 916-919.

[39] Li, H. Y., Cheng, Z. R., Tung, C.-H., et al., Atom Transfer Radical Addition to Alkynes and Enynes: A Versatile Gold/Photoredox Approach to Thio-Functionalized Vinylsulfones [J]. ACS Catalysis, 2018, 8: 8237-8243.

[40] Peng, Z. Y., Yin, H. L., Zhang, H., et al., Regio- and Stereoselective Photoredox-Catalyzed Atom Transfer Radical Addition of Thiosulfonates to Aryl Alkynes [J]. Organic Letters, 2020, 22: 5885-5889.

[41] Kumari, A. H., Kumar, J. J., Krishna, G. R., et al., Nickel-Catalyzed Difunctionalization of Alkynyl Bromides with Thiosulfonates and N-Arylthio Succinimides: A Convenient Synthesis of 1, 2-Thiosulfonylethenes and 1, 1-Dithioethenes [J]. Synthesis, 2021, 53: 2850-2864.

[42] Lü, S. W., Wang, Z. P., Gao, X., et al., 1, 2‐Difunctionalization of Acetylene Enabled by Light [J]. Angewandte Chemie International Edition, 2023, 62: e202300268.

[43] Fang, Y., Rogge, T., Ackermann, L., et al., Nickel-Catalyzed Reductive Thiolation and Selenylation of Unactivated Alkyl Bromides [J]. Nature Communications, 2018, 9: 2240-2249.

[44] Ang, N. W. J., Ackermann, L., Electroreductive Nickel‐Catalyzed Thiolation: Efficient Cross‐Electrophile Coupling for C−S Formation [J]. Chemistry – A European Journal, 2021, 27: 4883-4887.

[45] Li, J., Rao, W. D., Wang, S.-Y., et al., Nickel-Catalyzed Defluorinative Reductive Cross-Coupling Reaction of Gem-Difluoroalkenes with Thiosulfonate or Selenium Sulfonate [J]. The Journal of Organic Chemistry, 2019, 84: 11542-11552.

[46] Reddy, R. J., Waheed, M., Kumar, J. J., A Straightforward and Convenient Synthesis of Functionalized Allyl Thiosulfonates and Allyl Disulfanes [J]. RSC Advances, 2018, 8: 40446-40453.

[47] Shyam, P. K., Jang, H.-Y., Synthesis of Sulfones and Sulfonamides via Sulfinate Anions: Revisiting the Utility of Thiosulfonates [J]. The Journal of Organic Chemistry, 2017, 82: 1761-1767.

[48] Reddy, R. J., Kumari, A. H., Kumar, J. J., et al., Cs2CO3‐Mediated Vicinal Thiosulfonylation of 1, 1‐Dibromo‐1‐Alkenes with Thiosulfonates: an Expedient Synthesis of (E)‐1, 2‐Thiosulfonylethenes [J]. Advanced Synthesis & Catalysis, 2019, 361: 1587-1591.

[49] Mampuys, P., Zhu, Y. P., Sergeyev, S., et al., Iodide-Catalyzed Synthesis of Secondary Thiocarbamates from Isocyanides and Thiosulfonates [J]. Organic Letters, 2016, 18: 2808-2811.

[50] Li, J., Wang, S.-Y., Ji, S.-J., Nickel-Catalyzed Thiolation and Selenylation of Cycloketone Oxime Esters with Thiosulfonate or Seleniumsulfonate [J]. The Journal of Organic Chemistry, 2019, 84: 16147-16156.

[51] Li, J., Yang, X.-E., Wang, S.-L., et al., Visible-Light-Promoted Cross-Coupling Reactions of 4-Alkyl-1, 4-dihydropyridines with Thiosulfonate or Selenium Sulfonate: A Unified Approach to Sulfides, Selenides, and Sulfoxides [J]. Organic Letters, 2020, 22: 4908-4913.

[52] Bi, W.-Z., Zhang, W.-J., Li, Z.-J., et al., Visible-Light-Promoted Synthesis of Secondary and Tertiary Thiocarbamates from Thiosulfonates and N-substituted Formamides [J]. Organic & Biomolecular Chemistry, 2021, 19: 8701-8705.

[53] Wang, W. G., Zhang, S. X., Zhao, H. Q., et al., Visible Light-Promoted Difluoromethylthiolation of Aryldiazonium Salts [J]. Organic & Biomolecular Chemistry, 2018, 16: 8565-8568.

[54] Zhang, H. W., Yu, F., Li, C., et al., Iron-Catalyzed, Site-Selective Difluoromethylthiolation (–SCF2H) and Difluoromethylselenation (–SeCF2H) of Unactivated C(sp3)–H Bonds in N-Fluoroamides [J]. Organic Letters, 2021, 23: 4721-4725.

[55] Xu, C. F., Wang, S. P., Shen, Q. L., Recent Progress on Trifluoromethylthiolation of (Hetero)Aryl C–H Bonds with Electrophilic Trifluoromethylthiolating Reagents [J]. ACS Sustainable Chemistry & Engineering, 2022, 10: 6889-6899.

[56] Xu, W. T., Wang, W. L., Liu, T., et al., Late-Stage Trifluoromethylthiolation of Benzylic C–H Bonds [J]. Nature Communications, 2019, 10: 4867-4874.

[57] Zhou, X.-Y., Zhang, M., Liu, Z., et al., C3-Selective Trifluoromethylthiolation and Difluoromethylthiolation of Pyridines and Pyridine Drugs via Dihydropyridine Intermediates [J]. Journal of the American Chemical Society, 2022, 144: 14463-14470.

[58] Meng, D. P., Lyu, Y. C., Ni, C. F., et al., S‐(Trifluoromethyl)Benzothioate (TFBT): A KF‐Based Reagent for Nucleophilic Trifluoromethylthiolation [J]. Chemistry – A European Journal, 2022, 28: e202104395.

[59] Mudshinge, S. R., Yang, Y. H., Xu, B., et al., Gold (I/III)‐Catalyzed Trifluoromethylthiolation and Trifluoromethylselenolation of Organohalides [J]. Angewandte Chemie International Edition, 2022, 61: e202115687.

[60] Li, M., Guo, J. P., Xue, X.-S., et al., Quantitative Scale for the Trifluoromethylthio Cation-Donating Ability of Electrophilic Trifluoromethylthiolating Reagents [J]. Organic Letters, 2016, 18: 264-267.

[61] Zhao, X., Zheng, X. C., Tian, M. M., et al., Visible-Light Photocatalytic Trifluoromethylthiolation of Aryldiazonium Salts: Conversion of Amino Group into Trifluoromethylthiol Group [J]. Organic Chemistry Frontiers, 2018, 5: 2636-2640.

[62] Li, A. K., Li, Y. X., Liu, J. J., et al., Metal-Free Trifluoromethylthiolation of Arylazo Sulfones [J]. The Journal of Organic Chemistry, 2020, 86: 1292-1299.

[63] Huang, C.-M., Li, J., Ai, J.-J., et al., Visible-Light-Promoted Cross-Coupling Reactions of Aryldiazonium Salts with S-Methyl-d3 Sulfonothioate or Se-Methyl-d3 Selenium Sulfonate: Synthesis of Trideuteromethylated Sulfides, Sulfoxides, and Selenides [J]. Organic Letters, 2020, 22: 9128-9132.

[64] Zhang, D. R., Hu, L. P., Yang, C. Y., et al., Tetramethylammonium Iodide (TMAI)‐Promoted Sulfenylation/Annulation of Enaminones with Thiosulfonates [J]. Asian Journal of Organic Chemistry, 2022, 11: e202100694.

[65] Tong, J., Li, H., Zhu, Y., et al., Visible-Light-Induced Dehydrogenative Sulfonylation of Tertiary Amines under Transition-Metal- and Photocatalyst-Free Conditions [J]. Green Chemistry, 2022, 24: 1995-1999.

[66] Rao, C. Q., Mai, S. Y., Song, Q. L., Rh(ii)/Phosphine-Cocatalyzed Synthesis of Dithioketal Derivatives from Diazo Compounds through Simultaneous Construction of Two Different C–S Bonds [J]. Chemical Communications, 2018, 54: 5964-5967.

[67] Yuan, H. R., Nuligonda, T., Gao, H. Y., et al., Copper-Catalyzed Carbene Insertion into the Sulfur-Sulfur Bond of Benzenesulfonothioate [J]. Organic Chemistry Frontiers, 2018, 5: 1371-1374.

[68] Wei, L. D., Wu, C. J., Tung, C.-H., et al., Decarboxylative Sulfenylation of Amino Acids via Metallaphotoredox Catalysis [J]. Organic Chemistry Frontiers, 2019, 6: 3224-3227.

[69] Chen, Y., Wang, F., Liu, B.-X., et al., A Ni(ii)-Catalyzed Reductive Cross-Coupling Reaction of Oxalates and Thiosulfonates/Selenosulfonates [J]. Organic Chemistry Frontiers, 2022, 9: 731-736.

[70] Guo, S. H., Zhang, X. L., Pan, G. F., et al., Synthesis of Difluoromethylthioesters from Aldehydes [J]. Angewandte Chemie International Edition, 2018, 57: 1663-1667.

[71] Guo, S. H., Wang, M. Y., Pan, G. F., et al., Synthesis of Monofluoromethylthioesters from Aldehydes [J]. Advanced Synthesis & Catalysis, 2018, 360: 1861-1869.

[72] Xu, B., Li, D. Z., Lu, L., et al., Radical Fluoroalkylthiolation of Aldehydes with PhSO2SRf (Rf = CF3, C2F5, CF2H or CH2F): A General Protocol for the Preparation of Fluoroalkylthioesters [J]. Organic Chemistry Frontiers, 2018, 5: 2163-2166.

[73] Yan, J. M., Tang, H. D., Kuek, E. J. R., et al., Divergent Functionalization of Aldehydes Photocatalyzed by Neutral Eosin Y with Sulfone Reagents [J]. Nature Communications, 2021, 12: 7214-7223.

[74] Bizzini, L. D., Zwick, P., Mayor, M., Preparation of Unsymmetrical Disulfides from Thioacetates and Thiosulfonates [J]. European Journal of Organic Chemistry, 2019, 2019: 6956-6960.

[75] Wang, F., Wang, S.-Y., Visible-Light-Promoted Cross-Coupling Reaction of Hypervalent Bis-Catecholato Silicon Compounds with Selenosulfonates or Thiosulfonates [J]. Organic Chemistry Frontiers, 2021, 8: 1976-1982.

[76] Kanemoto, K., Sakata, Y., Hosoya, T., et al., Synthesis of Phenoxathiins and Phenothiazines by Aryne Reactions with Thiosulfonates [J]. Chemistry Letters, 2020, 49: 593-596.

[77] Luo, Z. W., Yang, X. K., Tsui, G. C., Perfluoroalkylation of Thiosulfonates: Synthesis of Perfluoroalkyl Sulfides [J]. Organic Letters, 2020, 22: 6155-6159.

[78] Zhao, Q. C., Lu, L., Shen, Q. L., Direct Monofluoromethylthiolation with S‐(Fluoromethyl) Benzenesulfonothioate [J]. Angewandte Chemie International Edition, 2017, 56: 11575-11578.

[79] Wang, W. G., Lin, Y. Z., Ma, Y. D., et al., Cu-Catalyzed Electrophilic Disulfur Transfer: Synthesis of Unsymmetrical Disulfides [J]. Organic Letters, 2018, 20: 3829-3832.

[80] Wang, D. G., He, Q., Shi, K. Q., et al., Transition‐Metal‐Free Synthesis of Unsymmetrical Disulfides via Three‐Component Reaction of Thiosulfonates, Thiourea and Alkyl Halides [J]. Advanced Synthesis & Catalysis, 2021, 363: 2767-2772.

[81] Waheed, M., Krishna, G. R., Reddy, R. J., Phenylboronic Acid-Catalyzed Tandem Construction of S–S and C–S Bonds: A New Method for the Synthesis of Benzyl Disulfanylsulfone Derivatives from S-Benzyl Thiosulfonates [J]. Organic & Biomolecular Chemistry, 2020, 18: 3243-3248.

[82] Wu, Z., Xu, Y. H., Liu, J. G., et al., A Practical Access to Fluoroalkylthio(seleno)-Functionalized Bicyclo[1.1.1]pentanes [J]. Science China Chemistry, 2020, 63: 1025-1029.

[83] Kirk, K. L., Fluorination in Medicinal Chemistry: Methods, Strategies, and Recent Developments [J]. Organic Process Research & Development, 2008, 12: 305-321.

[84] Müller, K., Faeh, C., Diederich, F., Fluorine in Pharmaceuticals: Looking Beyond Intuition [J]. Science, 2008, 317: 1881-1886.

[85] Purser, S., Moore, P. R., Swallow, S., et al., Fluorine in Medicinal Chemistry [J]. Chemical Society Reviews, 2008, 37: 320-330.

[86] Zakowiecki, D., Edinger, P., Papaioannou, M., et al., Exploiting Synergistic Effects of Brittle and Plastic Excipients in Directly Compressible Formulations of Sitagliptin Phosphate and Sitagliptin Hydrochloride [J]. Pharmaceutical Development and Technology, 2022, 27: 702-713.

[87] Azratul-Hizayu, T., Chen, C. D., Lau, K. W., et al., Phenotypic Profile of Aedes Albopictus (Skuse) Exposed to Pyrethroid-Based Mat Vaporizers and Underlying Detoxification Mechanisms: A Statewide Report in Selangor, Malaysia [J]. Parasitology International, 2022, 86: 102483-102490.

[88] Song, J., Lee, H., Jeong, E. G., et al., Organic Light-Emitting Diodes: Organic Light-Emitting Diodes: Pushing Toward the Limits and Beyond [J]. Advanced Materials, 2020, 32: 1907539-1907555.

[89] Ward, W. E., Sicree, S., Chen, B., et al., Synthesis of Polyfluoroarylalkyl Sulfide Compounds [J]. Journal of Fluorine Chemistry, 1994, 73: 73-77.

[90] Matsugi, M., Murata, K., Gotanda, K., et al., Facile and Efficient Sulfenylation Method Using Quinone Mono-O, S-Acetals under Mild Conditions [J]. The Journal of Organic Chemistry, 2001, 66: 2434-2441.

[91] Matsugi, M., Murata, K., Nambu, H., et al., An Efficient Sulfenylation of Aromatics Using Highly Active Quinone Mono O, S-Acetal Bearing a Pentafluorophenylthio Group [J]. Tetrahedron Letters, 2001, 42: 1077-1080.

[92] Yu, C. M., Zhang, C. L., Shi, X. J., Copper‐Catalyzed Direct Thiolation of Pentafluorobenzene with Diaryl Disulfides or Aryl Thiols by C−H and C−F Bond Activation [J]. European Journal of Organic Chemistry, 2012, 2012: 1953-1959.

[93] Yonova, I. M., Osborne, C. A., Morrissette, N. S., et al., Diaryl and Heteroaryl Sulfides: Synthesis via Sulfenyl Chlorides and Evaluation as Selective Anti-Breast-Cancer Agents [J]. The Journal of Organic Chemistry, 2014, 79: 1947-1953.

[94] Kabalka, G. W., Musolino, B. J., Copper Mediated Formation of Carbon-Heteroatom Bonds Using Organoboron Reagents and Ultrasound [J]. Heterocycles, 2015, 90: 271-297.

[95] Saidalimu, I., Yoshioka, T., Liang, Y. M., et al., The CF3-DAST-Induced Deacylative Trifluoromethylthiolation of Cyclic 1, 3-Diketones/Lactams/Lactones and its Extension to Deacylative Pentafluorophenylthiolation [J]. Chemical Communications, 2018, 54: 8761-8764.

[96] Bandaru, S. S. M., Bhilare, S., Cardozo, J., et al., Pd/PTABS: Low-Temperature Thioetherification of Chloro(hetero)arenes [J]. The Journal of Organic Chemistry, 2019, 84: 8921-8940.

[97] Zhao, Y. P., Gao, Y., Xie, Z. K., et al., Tf2O-Promoted Chemoselective C3 Functionalization of Anthranils with Phenols and Thiophenols [J]. The Journal of Organic Chemistry, 2023, 88: 10257-10265.

[98] Saidalimu, I., Suzuki, S., Wang, J. D., et al., Construction of Fluorinated Benzoxathiin Skeleton by Successive Perfluorophenylthiolation/Cyclization of Activated α-Methylene Ketones by Perfluorophenyl Diethylaminosulfur Difluoride [J]. Organic Letters, 2017, 19: 1012-1015.

[99] Nishino, K., Tsukahara, S., Ogiwara, Y., et al., Palladium(II)/Copper(II)‐Catalyzed C−H Sulfidation or Selenation of Arenes Leading to Unsymmetrical Sulfides and Selenides [J]. European Journal of Organic Chemistry, 2019, 2019: 1588-1593.

[100] Du, G.-F., Xing, F., Gu, C.-Z., et al., N-Heterocyclic Carbene-Catalysed Pentafluorophenylation of Aldehydes [J]. RSC Advances, 2015, 5: 35513-35517.

[101] Zhao, X. N., Liu, T.-X., Zhang, G. S., Synthesis of Thiosulfonates via CuI‐Catalyzed Reductive Coupling of Arenesulfonyl Chlorides Using Na2SO3 or NaHSO3 as Reductants [J]. Asian Journal of Organic Chemistry, 2017, 6: 677-681.

[102] Bahrami, K., Khodaei, M. M., Khaledian, D., Synthesis of Sulfonyl Chlorides and Thiosulfonates from H2O2-TiCl4 [J]. Tetrahedron Letters, 2012, 53: 354-358.

[103] Chen, Q., Huang, Y. L., Wang, X. F., et al., Metal-Free NaI/TBHP-Mediated Sulfonylation of Thiols with Sulfonyl Hydrazides [J]. Organic & Biomolecular Chemistry, 2018, 16: 1713-1719.

[104] Desaintjean, A., Haupt, T., Bole, L. J., et al., Regioselective Bromine/Magnesium Exchange for the Selective Functionalization of Polyhalogenated Arenes and Heterocycles [J]. Angewandte Chemie International Edition, 2020, 60: 1513-1518.

[105] Arisawa, M., Tanii, S., Tazawa, T., et al., Rhodium-Catalyzed Transformation of Heteroaryl Aryl Ethers into Heteroaryl Fluorides [J]. Chemical Communications, 2016, 52: 11390-11393.

[106] Zhao, J., Yu, Y., Yang, X., et al., Phosphorescent Iridium(III) Complexes Bearing Fluorinated Aromatic Sulfonyl Group with Nearly Unity Phosphorescent Quantum Yields and Outstanding Electroluminescent Properties [J]. ACS Applied Materials & Interfaces, 2015, 7: 24703-24714.

[107] Leong, T. S., Peach, M. E., Some Substitution Reactions of Pentafluorobenzenesulfenyl Chloride [J]. Journal of Fluorine Chemistry, 1975, 5: 545-558.

[108] Weidlich, F., Esumi, N., Chen, D. Y., et al., Mild C–F Activation in Perfluorinated Arenes through Photosensitized Insertion of Isonitriles at 350 nm [J]. Advanced Synthesis & Catalysis, 2019, 362: 376-383.

[109] Tamai, T., Fujiwara, K., Higashimae, S., et al., Gold-Catalyzed Anti-Markovnikov Selective Hydrothiolation of Unactivated Alkenes [J]. Organic Letters, 2016, 18: 2114-2117.

[110] Levin, V. V., Dilman, A. D., Visible-Light-Mediated Organocatalyzed Thiol-Ene Reaction Initiated by a Proton-Coupled Electron Transfer [J]. The Journal of Organic Chemistry, 2019, 84: 8337-8343.

[111] Jr., J. F. H., Free-Radical Reactions of Pentafluorobenzenesulfenyl Chloride with Alkanes and Alkylbenzenes [J]. The Journal of Organic Chemistry, 1976, 43: 1319-1320.

[112] Vedula, M. S., Pulipaka, A. B., Venna, C., et al., New Styryl Sulfones as Anticancer Agents [J]. European Journal of Medicinal Chemistry, 2003, 38: 811-824.

[113] Morales-Sanfrutos, J., Lopez-Jaramillo, J., Ortega-Muñoz, M., et al., Vinyl Sulfone: A Versatile Function for Simple Bioconjugation and Immobilization [J]. Organic & Biomolecular Chemistry, 2010, 8: 667-675.

[114] Woo, S. Y., Kim, J. H., Moon, M. K., et al., Discovery of Vinyl Sulfones as a Novel Class of Neuroprotective Agents toward Parkinson’s Disease Therapy [J]. Journal of Medicinal Chemistry, 2014, 57: 1473-1487.

[115] Besson, M., Gallezot, P., Deactivation of Metal Catalysts in Liquid Phase Organic Reactions [J]. Catalysis Today, 2003, 81: 547-559.

[116] Lu, L.-H., Zhou, S.-J., He, W.-B., et al., Metal-Free Difunctionalization of Alkynes Leading to Alkenyl Dithiocyanates and Alkenyl Diselenocyanates at Room Temperature [J]. Organic & Biomolecular Chemistry, 2018, 16: 9064-9068.

[117] Campbell, M. W., Compton, J. S., Kelly, C. B., et al., Three-Component Olefin Dicarbofunctionalization Enabled by Nickel/Photoredox Dual Catalysis [J]. Journal of the American Chemical Society, 2019, 141: 20069-20078.

[118] Xiao, Y. X., Liu, Z.-Q., Atom-Transfer Radical Addition of Alcohols to Aliphatic Alkynes [J]. The Journal of Organic Chemistry, 2019, 84: 9577-9583.

[119] Qi, X. T., Liu, X. F., Qu, L.-B., et al., Mechanistic Insight into Cobalt-Catalyzed Stereodivergent Semihydrogenation of Alkynes: The Story of Selectivity Control [J]. Journal of Catalysis, 2018, 362: 25-34.

[120] Zhao, M., Shan, C.-C., Wang, Z.-L., et al., Ligand-Dependent-Controlled Copper-Catalyzed Regio- and Stereoselective Silaboration of Alkynes [J]. Organic Letters, 2019, 21: 6016-6020.

[121] Chen, K., Zhu, H. D., Li, Y. L., et al., Dinuclear Cobalt Complex-Catalyzed Stereodivergent Semireduction of Alkynes: Switchable Selectivities Controlled by H2O [J]. ACS Catalysis, 2021, 11: 13696-13705.

[122] Hu, L. F., Gao, H., Hu, Y. L., et al., Computational Study of Silver-Catalyzed Stereoselective Hydroalkylation of Alkynes: Pauli Repulsion Controlled Z/E Selectivity [J]. Chemical Communications, 2021, 57: 6412-6415.

[123] Huang, J. Z., Li, X. M., Wen, H. L., et al., Substrate-Controlled Cu(OAc)2-Catalyzed Stereoselective Semi-Reduction of Alkynes with MeOH as the Hydrogen Source [J]. ACS Omega, 2021, 6: 11740-11749.

[124] Qi, R. Z., Li, Z., Selective Monoethynylation of Isatins Using Solid Calcium Carbide as a Surrogate of Gaseous Acetylene [J]. Synthetic Communications, 2022, 52: 2241-2248.

[125] Sun, K., Li, G. F., Guo, S., et al., Copper-Catalyzed Radical Cascade Cyclization for Synthesis of CF3-containing Tetracyclic Benzimidazo[2,1-a]iso-quinolin-6(5H)-ones [J]. Organic & Biomolecular Chemistry, 2021, 19: 375-378.

[126] André-Joyaux, E., Santana, A. G., González, C. C., Synthesis of Chiral Polyhydroxylated Benzimidazoles by a Tandem Radical Fragmentation/Cyclization Reaction: A Straight Avenue to Fused Aromatic-Carbohydrate Hybrids [J]. The Journal of Organic Chemistry, 2018, 84: 506-515.

[127] Li, J. X., Li, C., Ouyang, L., et al., Palladium‐Catalyzed Regioselective Three‐Component Cascade Bisthiolation of Terminal Alkynes [J]. Advanced Synthesis & Catalysis, 2018, 360: 1138-1150.

[128] Shan, X. W., Wang, X. X., Chen, E. X., et al., Visible-Light-Promoted Trifluoromethylthiolation and Trifluoromethylselenolation of 1, 4-Dihydropyridines [J]. The Journal of Organic Chemistry, 2022, 88: 319-328.

[129] Zhang, Y., Liu, W., Xu, Y. N., et al., S-(Methyl-d3) Arylsulfonothioates: A Family of Robust, Shelf-Stable, and Easily Scalable Reagents for Direct Trideuteromethylthiolation [J]. Organic Letters, 2022, 24: 6794-6799.

[130] Hui, X.-P., Niu, L.-F., Xin, Y.-C., et al., Asymmetric Aza-Friedel-Crafts Reaction of 2-Naphthol with Tosylimines Catalyzed by a Dinuclear Zinc Complex [J]. Synlett, 2010, 2010: 765-768.

[131] Montesinos-Magraner, M., Cantón, R., Vila, C., et al., Organocatalytic Enantioselective Aza-Friedel-Crafts Reaction of 2-Naphthols with Benzoxathiazine 2, 2-Dioxides [J]. RSC Advances, 2015, 5: 60101-60105.

[132] Zhu, M., Wang, D.-C., Xie, M.-S., et al., Enantioselective Friedel-Crafts Alkylation Reactions of β‐Naphthols with Donor-Acceptor Aminocyclopropanes [J]. Chemistry – A European Journal, 2018, 24: 15512-15516.

[133] Li, C.-Y., Xiang, M., Zhang, J., et al., Organocatalytic Enantioselective Aza-Friedel-Crafts Reaction between Benzothiazolimines and 2-Naphthols for the Preparation of Chiral 2′-Aminobenzothiazolomethyl Naphthols [J]. Organic & Biomolecular Chemistry, 2021, 19: 7690-7694.

[134] Dou, Y. C., Huang, X., Wang, H., et al., Reusable Cobalt-Phthalocyanine in Water: Efficient Catalytic Aerobic Oxidative Coupling of Thiols to Construct S–N/S–S Bonds [J]. Green Chemistry, 2017, 19: 2491-2495.

[135] Parumala, S. K. R., Peddinti, R. K., Iodine Catalyzed Cross-Dehydrogenative C–S Coupling by C(sp2)–H Bond Activation: Direct Access to Aryl Sulfides from Aryl Thiols [J]. Green Chemistry, 2015, 17: 4068-4072.

[136] Wang, H. H., Shi, T., Gao, W. W., et al., Sodium Iodide (NaI)‐Catalyzed Cross‐Coupling for C−S Bond Formation via Oxidative Dehydrogenation: Cheap, Direct Access to Unsymmetrical Aryl Sulfides [J]. Chemistry – An Asian Journal, 2017, 12: 2675-2679.

[137] Chaudhary, A., Recent Development in the Synthesis of Heterocycles by 2-Naphthol-Based Multicomponent Reactions [J]. Molecular Diversity, 2020, 25: 1211-1245.

[138] Vargas, J. A. M., Day, D. P., Burtoloso, A. C. B., Substituted Naphthols: Preparations, Applications, and Reactions [J]. European Journal of Organic Chemistry, 2020, 2021: 741-756.

[139] An, J. Z., Bandini, M., Recent Advances in the Catalytic Dearomatization of Naphthols [J]. European Journal of Organic Chemistry, 2020, 2020: 4087-4097.

[140] Maeda, Y., Koyabu, M., Nishimura, T., et al., Vanadium-Catalyzed Sulfenylation of Indoles and 2-Naphthols with Thiols under Molecular Oxygen [J]. The Journal of Organic Chemistry, 2004, 69: 7688-7693.

[141] Rostami, A., Khakyzadeh, V., Zolfigol, M. A., et al., Co(II)-Catalyzed Regioselective Clean and Smooth Synthesis of 2-(Aryl/Alkyl-thio)phenols via sp2 C–H Bond Activation [J]. Molecular Catalysis, 2018, 452: 260-263.

[142] Huang, X., Chen, Y. Q., Zhen, S., et al., Cobalt-Catalyzed Aerobic Cross-Dehydrogenative Coupling of C–H and Thiols in Water for C–S Formation [J]. The Journal of Organic Chemistry, 2018, 83: 7331-7340.

[143] García, J. I., Herrerías, C. I., López‐Sánchez, B., et al., Polytopic Oxazoline‐Based Chiral Ligands for Cyclopropanation Reactions: A New Strategy to Prepare Highly Recyclable Catalysts [J]. Advanced Synthesis & Catalysis, 2011, 353: 2691-2700.

[144] Yu, X.-C., Zheng, Y.-N., Zhang, J.-H., et al., Metal-Catalyst-Free Radical Cyclization of 1, 6-Enynes for the Selective and Switchable Synthesis of Lactams in Water [J]. ACS Sustainable Chemistry & Engineering, 2022, 10: 6057-6062.

[145] Li, L., Li, J.-Z., Sun, Y.-B., et al., Visible-Light-Catalyzed Tandem Radical Addition/1, 5-Hydrogen Atom Transfer/Cyclization of 2-Alkynylarylethers with Sulfonyl Chlorides [J]. Organic Letters, 2022, 24: 4704-4709.

[146] Zhang, Y., Li, S. L., Zhu, Y., et al., Visible Light-Induced Oxidative Cross Dehydrogenative Coupling of Glycine Esters with β-Naphthols: Access to 1, 3-Benzoxazines [J]. The Journal of Organic Chemistry, 2020, 85: 6261-6270.

[147] Talero, G., Kansha, Y., Atom Economy or Product Yield to Determine Optimal Gasification Conditions in Biomass-to-Olefins Biorefinery [J]. Chemical Engineering Research and Design, 2023, 199: 689-699.

[148] Xiao, F. H., Tian, J. X., Xing, Q. Y., et al., Piperidine Promoted Direct Sulfenylation of 2‐Naphthol with Aryl Thiols under Aqueous Conditions [J]. ChemistrySelect, 2017, 2: 428-431.

[149] Han, D.-Y., Liu, X.-P., Li, R.-P., et al., Aerobic Cross-Dehydrogenative Coupling Reactions for Selective Mono- and Dithiolation of Phenols [J]. The Journal of Organic Chemistry, 2021, 86: 10166-10176.

[150] Sorabad, G. S., Maddani, M. R., Metal Free, Facile Sulfenylation of Ketene Dithioacetals Catalyzed by an HBr-DMSO System [J]. New Journal of Chemistry, 2019, 43: 5996-6000.

[151] Hazarika, S., Barman, P., Visible‐Light Cercosporin Catalyzed Sulfenylation of Electron‐Rich Compounds with Thiols under Transition‐Metal‐Free Conditions [J]. ChemistrySelect, 2020, 5: 11583-11589.

[152] Blanco, G. A., Baumgartner, M. T., Sulfenylation of Nitroalkanes and Hydroxyaryls [J]. Tetrahedron Letters, 2011, 52: 7061-7063.

[153] Saravanan, P., Anbarasan, P., Palladium Catalyzed Aryl(Alkyl)thiolation of Unactivated Arenes [J]. Organic Letters, 2014, 16: 848-851.

[154] Hazarika, S., Gogoi, P., Barman, P., TBATB Mediated Debenzylative Cross-Coupling of Aryl Benzyl Sulfides with Electron Rich Compounds: Synthesis of Diaryl Sulfides [J]. RSC Advances, 2015, 5: 25765-25767.

[155] Anjaiah, C., Nagamani, M., Lincoln, C. A., et al., Microwave Assisted Synthesis of 1-(Arylthio)naphthalen-2-ols and their Antimicrobial Activity [J]. Russian Journal of General Chemistry, 2018, 87: 2930-2932.

[156] Panja, S., Paul, B., Jalal, S., et al., Mechanochemically Induced Chalcogenation of Bicyclic Arenes under Solvent‐, Ligand‐, Metal‐, and Oxidant‐Free Conditions [J]. ChemistrySelect, 2020, 5: 14198-14202.

[157] Rampon, D. S., Seckler, D., Luz, E. Q. d. d., et al., Chalcogenylation of Naphthalene Derivatives Catalyzed by Iron(III) Chloride and Potassium Iodide [J]. Synlett, 2021, 32: 940-946.

[158] Yanagi, T., Yorimitsu, H., Mechanistic Investigation of a Synthetic Route to Biaryls by the Sigmatropic Rearrangement of Arylsulfonium Species [J]. Chemistry – A European Journal, 2021, 27: 13450-13456.

[159] Macara, J., Caldeira, C., Cunha, J., et al., Practical Synthesis and Biological Screening of Sulfonyl Hydrazides [J]. Organic & Biomolecular Chemistry, 2023, 21: 2118-2126.

[160] Kang, X., Yan, R. L., Yu, G. Q., et al., Iodine-Mediated Thiolation of Substituted Naphthols/Naphthylamines and Arylsulfonyl Hydrazides via C(sp2)–H Bond Functionalization [J]. The Journal of Organic Chemistry, 2014, 79: 10605-10610.

[161] Raghuvanshi, D. S., Verma, N., Regioselective Thiolation of Electron Rich Arenes and Heterocycles in Recyclable Catalytic Media [J]. RSC Advances, 2017, 7: 22860-22868.

[162] Wei, Y. T., Liu, Y. L., He, J., et al., TBAI-Mediated Sulfenylation of Arenes with Arylsulfonyl Hydrazides in DPDME [J]. Tetrahedron, 2020, 76: 131646-131656.

[163] Wang, D. Y., Zhang, R. X., Lin, S., et al., Iodine-Mediated Thiolation of Phenol/Phenylamine Derivatives and Sodium Arylsulfinates in Neat Water [J]. RSC Advances, 2015, 5: 108030-108033.

[164] Lin, Y.-M., Lu, G.-P., Wang, G.-X., et al., Odorless, Regioselective Synthesis of Diaryl Sulfides and α‐Thioaryl Carbonyls from Sodium Arylsulfinates via a Metal‐Free Radical Strategy in Water [J]. Advanced Synthesis & Catalysis, 2016, 358: 4100-4105.

[165] Xiao, F. H., Chen, S. Q., Tian, J. X., et al., Chemoselective Cross-Coupling Reaction of Sodium Sulfinates with Phenols under Aqueous Conditions [J]. Green Chemistry, 2016, 18: 1538-1546.

[166] Xu, Z.-B., Lu, G.-P., Cai, C., Acid-Induced Chemoselective Arylthiolations of Electron-Rich Arenes in Ionic Liquids from Sodium Arylsulfinates: the Reducibility of Halide Anions in [Hmim]Br [J]. Organic & Biomolecular Chemistry, 2017, 15: 2804-2808.

[167] Equbal, D., Singh, R., Saima, et al., Synergistic Dual Role of [Hmim]Br–ArSO2Cl in Cascade Sulfenylation-Halogenation of Indole: Mechanistic Insight into Regioselective C–S and C–S/C–X (X = Cl and Br) Bond Formation in One Pot [J]. The Journal of Organic Chemistry, 2019, 84: 2660-2675.

[168] Wei, Y. T., He, J., Liu, Y. L., et al., Sulfenylation of Arenes with Ethyl Arylsulfinates in Water [J]. ACS Omega, 2020, 5: 18515-18526.

[169] Marset, X., Guillena, G., Ramón, D. J., Deep Eutectic Solvents as Reaction Media for the Palladium‐Catalysed C−S Bond Formation: Scope and Mechanistic Studies [J]. Chemistry - A European Journal, 2017, 23: 10522-10526.

[170] Xiao, F. H., Chen, S. Q., Li, C., et al., Copper‐Catalyzed Three‐Component One‐Pot Synthesis of Aryl Sulfides with Sulfur Powder under Aqueous Conditions [J]. Advanced Synthesis & Catalysis, 2016, 358: 3881-3886.

[171] Pandey, A. K., Chand, S., Singh, R., et al., Iodine-Catalyzed Synthesis of 3-Arylthioindoles Employing a 1-Aryltriazene/CS2 Combination as a New Sulfenylation Source [J]. ACS Omega, 2020, 5: 7627-7635.

[172] Dunny, E., Doherty, W., Evans, P., et al., Vinyl Sulfone-Based Peptidomimetics as Anti-Trypanosomal Agents: Design, Synthesis, Biological and Computational Evaluation [J]. Journal of Medicinal Chemistry, 2013, 56: 6638-6650.

[173] Frankel, B. A., Bentley, M., Kruger, R. G., et al., Vinyl Sulfones: Inhibitors of SrtA, a Transpeptidase Required for Cell Wall Protein Anchoring and Virulence in Staphylococcus Aureus [J]. Journal of the American Chemical Society, 2004, 126: 3404-3405.

[174] Meadows, D. C., Gervay-Hague, J., Vinyl Sulfones: Synthetic Preparations and Medicinal Chemistry Applications [J]. Medicinal Research Reviews, 2006, 26: 793-814.

[175] Xing, F., Feng, Z.-N., Wang, Y., et al., N‐Heterocyclic Carbene‐Catalyzed Double Michael Addition: Stereoselective Synthesis of Spirofluorenes and Multisubstituted Indanes [J]. Advanced Synthesis & Catalysis, 2018, 360: 1704-1710.

[176] Levandowski, B. J., Hamlin, T. A., Eckvahl, H. J., et al., Diels-Alder Reactivities of Cycloalkenediones with Tetrazine [J]. Journal of Molecular Modeling, 2019, 25: 33-37.

[177] Shrinidhi, A., Diels-Alder Reaction with Hydrophilic Dienes and Dienophiles [J]. ChemistrySelect, 2016, 1: 3016-3021.

[178] Heravi, M. M., Janati, F., Zadsirjan, V., Applications of Knoevenagel Condensation Reaction in the Total Synthesis of Natural Products [J]. Monatshefte für Chemie – Chemical Monthly, 2020, 151: 439-482.

[179] Chodroff, S., Whitmore, W. F., The Preparation of Unsaturated Sulfones by Condensation Reactions [J]. Journal of the American Chemical Society, 1950, 72: 1073-1076.

[180] Happer, D. A. R., Steenson, B. E., Preparation of α, β-Unsaturated Sulfones by the Knoevenagel Method [J]. Synthesis, 1980, 1980: 806-807.

[181] Mikołajczyk, M., Perlikowska, W., Omelan´czuk, J., et al., Stereoselective Synthesis of Racemic and Optically Active E-Vinyl and E-Dienyl Sulfoxides via Wittig Reaction of α-Sulfinyl Phosphonium Ylides [J]. The Journal of Organic Chemistry, 1998, 63: 9716-9722.

[182] Steenis, J. H. V., Es, J. J. G. S. v., Gen, A. v. d., Stereoselective Synthesis of (E)-Vinyl Sulfoxides by the Horner-Wittig Reaction [J]. European Journal of Organic Chemistry, 2000, 1: 2787-2793.

[183] Popoff, I. C., Dever, J. L., Leader, G R., α, β-Unsaturated Sulfones via Phosphonate Carbanions [J]. The Journal of Organic Chemistry, 1969, 34: 1128-1130.

[184] Pu, W. Y., Sun, D. N., Fan, W. Y., et al., Cu-Catalyzed Atom Transfer Radical Addition Reactions of Alkenes with α-Bromoacetonitrile [J]. Chemical Communications, 2019, 55: 4821-4824.

[185] Cacchi, S., Fabrizi, G., Goggiamani, A., et al., Unsymmetrical Diaryl Sulfones and Aryl Vinyl Sulfones through Palladium-Catalyzed Coupling of Aryl and Vinyl Halides or Triflates with Sulfinic Acid Salts [J]. The Journal of Organic Chemistry, 2004, 69: 5608-5614.

[186] Kirihara, M., Yamamoto, J., Noguchi, T., et al., Selective Synthesis of Sulfoxides and Sulfones by Tantalum(V) Catalyzed Oxidation of Sulfides with 30% Hydrogen Peroxide [J]. Tetrahedron Letters, 2009, 50: 1180-1183.

[187] Downey, C. W., Craciun, S., Neferu, A. M., et al., One-Pot Synthesis of (Z)-β-Sulfonyl Enoates from Ethyl Propiolate [J]. Tetrahedron Letters, 2012, 53: 5763-5765.

[188] Xu, Y. L., Tang, X. D., Hu, W. G., et al., Transition-Metal-Free Synthesis of Vinyl Sulfones via Tandem Cross-Decarboxylative/Coupling Reactions of Sodium Sulfinates and Cinnamic Acids [J]. Green Chemistry, 2014, 16: 3720-3723.

[189] Li, W. Y., Yin, G. X., Huang, L., et al., Regioselective and Stereoselective Sulfonylation of Alkynylcarbonyl Compounds in Water [J]. Green Chemistry, 2016, 18: 4879-4883.

[190] Wu, C., Yang, P. P., Fu, Z. M., et al., Regio- and Stereoselective Hydrosulfonation of Alkynylcarbonyl Compounds with Sulfinic Acid in Water [J]. The Journal of Organic Chemistry, 2016, 81: 10664-10671.

[191] Rong, G. W., Mao, J. C., Yan, H., et al., Iron/Copper Co-Catalyzed Synthesis of Vinyl Sulfones from Sulfonyl Hydrazides and Alkyne Derivatives [J]. The Journal of Organic Chemistry, 2015, 80: 4697-4703.

[192] Fang, G. C., Liu, J. Q., Shang, W. D., et al., Silver(I)‐Promoted Radical Sulfonylation of Allyl/Propargyl Alcohols: Efficient Synthesis of γ‐Keto Sulfones [J]. Chemistry – An Asian Journal, 2016, 11: 3334-3338.

[193] Hao, W.-J., Du, Y., Wang, D., et al., Catalytic Diazosulfonylation of Enynals toward Diazoindenes via Oxidative Radical-Triggered 5-Exo-Trig Carbocyclizations [J]. Organic Letters, 2016, 18: 1884-1887.

[194] Cheng, X. F., Wang, S., Wei, Y. B., et al., Metal-Free Hydrosulfonylation of α, β-Unsaturated Ketones: Synthesis and Application of γ-Keto Sulfones [J]. RSC Advances, 2022, 12: 35649-35654.

[195] Hsu, Y.-C., Wang, V. C.-C., Au‐Yeung, K.-C., et al., One‐Pot Tandem Photoredox and Cross‐Coupling Catalysis with a Single Palladium Carbodicarbene Complex [J]. Angewandte Chemie International Edition, 2018, 57: 4622-4626.

[196] Chen, R. X., Li, S. Z., Zhang, J. J., et al., Copper-Catalyzed Regio- and Stereoselective Sulfonylation of Alkynyl Imines with Sulfonyl Hydrazides: Access to (E)-β-Sulfonyl Enones [J]. The Journal of Organic Chemistry, 2022, 87: 13322-13330.

[197] Zhang, W., Johnson, G. M., Guan, Z., et al., Regio‐ and Stereoselective Hydrosulfonylation of Electron‐Deficient Alkynes: Access to Both E‐ and Z‐β‐Sulfonyl‐α, β‐Unsaturated Carbonyl Compounds [J]. Advanced Synthesis & Catalysis, 2018, 360: 4562-4570.

[198] Kamigata, N., Satoh, A., Yoshida, M., Reactions of Arylazo Aryl Sulfones with α, β-Unsaturated Esters and Ketones Catalyzed by Palladium(O) Complex [J]. Phosphorus, Sulfur, and Silicon and the Related Elements, 1989, 46: 121-129.

[199] Martino, R. M. C. D., Maxwell, B. D., Pirali, T., Deuterium in Drug Discovery: Progress, Opportunities and Challenges [J]. Nature Reviews Drug Discovery, 2023, 22: 562-584.

[200] Gómez-Gallego, M., Sierra, M. A., Kinetic Isotope Effects in the Study of Organometallic Reaction Mechanisms [J]. Chemical Reviews, 2011, 111: 4857-4963.

[201] Hesk, D., Highlights of C(sp2)–H Hydrogen Isotope Exchange Reactions [J]. Journal of Labelled Compounds and Radiopharmaceuticals, 2019, 63: 247-265.

[202] Atzrodt, J., Derdau, V., Kerr, W. J., et al., C–H Functionalisation for Hydrogen Isotope Exchange [J]. Angewandte Chemie International Edition, 2018, 57: 3022-3047.

[203] Helfenbein, J., Lartigue, C., Noirault, E., et al., Isotopic Effect Study of Propofol Deuteration on the Metabolism, Activity, and Toxicity of the Anesthetic [J]. Journal of Medicinal Chemistry, 2002, 45: 5806-5808.

[204] Gardner, K. H., Kay, L. E., Production and Incorporation of 15N, 13C, 2H(1H-δ1 Methyl) Isoleucine into Proteins for Multidimensional NMR Studies [J]. Journal of the American Chemical Society, 1997, 119: 7599-7600.

[205] Yang, X. L., Ben, H. X., Ragauskas, A. J., Recent Advances in the Synthesis of Deuterium‐Labeled Compounds [J]. Asian Journal of Organic Chemistry, 2021, 10: 2473-2485.

[206] Rodygin, K. S., Voronin, V. V., Ledovskaya, M. S., Synthesis of Glucosamine Vinyl Ether Derivative and its Deuterated Analog [J]. Russian Chemical Bulletin, 2020, 69: 1401-1404.

[207] Frank, S., Stamler, D., Kayson, E., et al., Safety of Converting From Tetrabenazine to Deutetrabenazine for the Treatment of Chorea [J]. JAMA Neurology, 2017, 74: 977-982.

[208] Pirali, T., Serafini, M., Cargnin, S., et al., Applications of Deuterium in Medicinal Chemistry [J]. Journal of Medicinal Chemistry, 2019, 62: 5276-5297.

[209] Atzrodt, J., Derdau, V., Fey, T., et al., The Renaissance of H/D Exchange [J]. Angewandte Chemie International Edition, 2007, 46: 7744-7765.

[210] Hu, G.-Q., Bai, J.-W., Li, E.-C., et al., Synthesis of Multideuterated (Hetero)Aryl Bromides by Ag(I)-Catalyzed H/D Exchange [J]. Organic Letters, 2021, 23: 1554-1560.

[211] Lepron, M., Daniel-Bertrand, M., Mencia, G., et al., Nanocatalyzed Hydrogen Isotope Exchange [J]. Accounts of Chemical Research, 2021, 54: 1465-1480.

[212] Junk, T., Catallo, W. J., Hydrogen Isotope Exchange Reactions involving C–H (D, T) Bonds [J]. Chemical Society Reviews, 1997, 26: 401-406.

[213] Wu, D.-C., Bai, J.-W., Guo, L., et al., A Practical and Efficient Method for Late-Stage Deuteration of Terminal Alkynes with Silver Salt as Catalyst [J]. Tetrahedron Letters, 2021, 66: 152807-152810.

中图分类号:

 O62    

开放日期:

 2024-07-11    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式