- 无标题文档
查看论文信息

中文题名:

 有机超强碱催化硅试剂与醛、酮的加成 反应研究    

姓名:

 杨寿山    

学号:

 20182007167    

学科代码:

 08    

学科名称:

 工学    

学生类型:

 硕士    

院系:

 化学化工学院    

专业:

 化学工程与技术    

研究方向:

 精细化工    

第一导师姓名:

 何林    

第一导师单位:

 石河子大学    

第二导师姓名:

 杜广芬    

完成日期:

 2021-06-07    

外文题名:

 Study on Organic Superbase-Catalyzed Addition Reactions of Silylated Reagents with Aldehydes and Ketones    

中文关键词:

 

有机超强碱 ; 亲硅活化 ; 酰胺 ; 五氟乙基 ; 羰基化合物    

外文关键词:

  organic superbase ; silicon activation ; amide ; pentafluoroethyl ; carbonyl compounds    

中文摘要:

Schwesinger超强碱是一类重要的无金属非离子型有机碱,具有很强的碱性和较弱的亲核性。t-Bu-P4是Schwesinger超强碱中应用比较广泛的一种催化剂,在亲硅活化反应、去质子化反应以及聚合反应中有良好的催化效果。本文以t-Bu-P4催化N,N-二甲基甲酰基三甲基硅烷和全氟烷基三甲基硅烷分别与醛、酮发生亲核加成反应,生成一系列甲酰胺化衍生物和全氟烷基甲醇。

1、酰胺及其衍生物是构成蛋白质与多肽化合物的重要结构单元,合成多取代的酰胺衍生物对药物的合成以及重要天然产物的合成等都具有重要意义。本文利用有机超强碱t-Bu-P4催化N,N-二甲基甲酰基三甲基硅烷与一系列不饱和酮发生甲酰胺化反应。以10 mol%的t-Bu-P4催化N,N-二甲基甲酰基三甲基硅烷与一系列α,β-不饱和烯酮、炔酮发生亲核加成反应,生成相应的甲酰胺化衍生物,其产率在56%-82%之间。最后,根据理论知识和已报道文献提出了该甲酰胺化反应可能的亲硅活化机理。

2、氟原子具有独特的物理、化学和生物活性,五氟乙基与三氟甲基是相似的官能团,也有不同的物理性质和生物活性,如五氟乙基比三氟甲基的空间位阻更大,其吸电子效果也更好,且不易被氧化。而有机化合物五氟乙基化的报道仍然很有限,本文充分利用有机超强碱t-Bu-P4催化TMSCF2CF3、TMSCF3与醛、酮发生全氟烷基化反应。以10 mol%的t-Bu-P4为催化剂,在0oC至室温条件下TMSCF2CF3、TMSCF3分别与一系列醛、酮发生亲核加成反应,生成相应的全氟烷基化甲醇, 产率在30%-98%之间。最后,我们根据有机超强碱亲硅活化的相关文献提出了该反应可能的催化机理。

综上,本论文发展了以有机超强碱t-Bu-P4活化有机硅试剂与羰基化合物发生亲核加成反应,成功将甲酰胺和全氟烷基引入到有机化合物中。此合成方法具有操作简便、无过渡金属催化、反应条件温和等优点。

外文摘要:

Schwesinger’s superbases are important nonmetallic non-ionic organic superbases with strong alkaline and low nucleophilicity. Schwesinger’s superbase t-Bu-P4 exhibits high reactivity toward the activation of silylated pronucleophiles, deprotonative reactions and polymerizations. In this paper, t-Bu-P4 was used successfully to activate N,N-dimethyl carbamoylsilane and (perfluoroalkyl)trimethylsilane to initiate the nucleophilic addition reactions of aldehydes and ketones, respectively, affording the corresponding amide derivatives and perfluoroalkyl carbinols.

1. Amide and its derivatives are important structural units that constitute protein and polypeptide compounds, which synthesis of polysubstituted amide derivatives is of great significance to the synthesis of drugs and the synthesis of important natural products. We developed organic superbase-catalyzed aminocarbonylation of N,N-dimethyl carbamoylsilane with α,β-unsaturated ketones. Under the catalysis of 10 mol% Schwesinger’s superbase t-Bu-P4, a variety of enones and ynone reacted with N, N-dimethyl carbamoylsilane to afford α-siloxyamides or α-hydroxyamides in 56-82% yields. Finally, based on the previous studies on t-Bu-P4 catalyzed reactions of silylated reagents, a plausible silicon activation mechanism was proposed.

2. Organofluorine compounds have unique physical, chemical and biological activities. Similar with the pentafluoroethyl  and trifluoromethyl, however, pentafluoroethyl exists unique physical properties and biological activities, including bigger steric hindrance, stronger electron-withdrawing, higher lipophilicity and greater stability. Whereas, methods to add the pentafluoroethyl group into organic compounds are limited. Organic superbase-catalyzed nucleophilic addition reactions of  TMSCF2CF3 and TMSCF3 with aldehydes and ketones, respectively, have been described in the paper. Under the catalysis of  10 mol% t-Bu-P4, (perfluoroalkyl)trimethylsilane undergo direct nucleophilic addition reactions with aldehydes and ketones to afford the corresponding perfluoroalkylation adducts in 30-98% yields. At last, based on the pioneering work , we proposed a plausible mechanism.

In summary, organic superbase-catalyzed nucleophilic addition reactions of silylated reagents with aldehydes and ketones has been developed. The simple procedure, transition-metal-free and extremely mild conditions provide a novel method for the introduction of amide and perfluoroalkyl group to the carbonyl compounds.

参考文献:

[1] Puleo T. R.; Sujansky S. J.; Wright S. E.; et al. Organic superbases in recent synthetic methodology research [J]. Chemistry – A European Journal, 2021, 27(13): 4216-4229.

[2] Verkade J. Superbases for organic synthesis. guanidines, amidines, phosphazenes and related organocatalysts [J]. Angewandte Chemie International Edition, 2009, 48(49): 9221-9221.

[3] (a) Babu G. V. S.; Bhaskaran A.; Sridhar B.; et al. Ullmann coupling reaction of bicyclic amidines DBU/DBN with aryl halides: a pathway to the synthesis of caprolactam derivatives [J]. ChemistrySelect, 2021, 6(1): 5-8; (b) Perez E. R.; Santos R. H.; Gambardella M. T.; et al. Activation of carbon dioxide by bicyclic amidines [J]. Journal of Organic Chemistry, 2004, 69(23): 8005-8011.

[4] (a) Volpe C.; Meninno S.; Capobianco A.; et al. 1,5,7-Triazabicyclo[4.4.0]dec-5-ene (TBD) triggered diastereoselective [3+2] cycloaddition of azomethine imines and pyrazoleamides [J]. Advanced Synthesis & Catalysis, 2019, 361(5): 1018-1022; (b) Nielsen M. K.; Ahneman D. T.; Riera O.; et al. Deoxyfluorination with sulfonyl fluorides: navigating reaction space with machine learning [J]. Journal of the American Chemical Society, 2018, 140(15): 5004-5008.

[5] Verkade J. G. Atranes: new examples with unexpected properties [J]. Accounts of Chemical Research, 1993, 26(9): 483-489.

[6] Schwesinger R.; Schlemper H. Peralkylated polyaminophosphazenes extremely strong, neutral ntrogen bases [J]. Angewandte Chemie International Edition, 1987, 26(11): 1167-1169.

[7] (a) Suzawa K.; Ueno M.; Wheatley A. E.; et al. Phosphazene base-promoted functionalization of aryltrimethylsilanes [J]. Chemical Communicatons, 2006, (46): 4850-4852; (b) Kobayashi K.; Ueno M.; Kondo Y. Phosphazene base-catalyzed condensation of trimethylsilylacetate with carbonyl compounds [J]. Chemical Communicatons, 2006, (29): 3128-3130; (c) Ueno M.; Yonemoto M.; Hashimoto M.; et al. Nucleophilic aromatic substitution using Et3SiH/cat. t-Bu-P4 as a system for nucleophile activation [J]. Chemical Communicatons, 2007, (22): 2264-2266; (d) Du G. F.; Wang Y.; Gu C. Z.; et al. Organocatalytic direct difluoromethylation of aldehydes and ketones with TMSCF2H [J]. RSC Advances, 2015, 5(45): 35421-35424; (e) Kondoh A.; Koda K.; Terada M. Organocatalytic nucleophilic substitution reaction of gem-difluoroalkenes with ketene silyl acetals [J]. Organic Letters, 2019, 21(7): 2277-2280.

[8]  (a) Imahori T.; Kondo Y. A new strategy for deprotonative functionalization of aromatics: transformations with excellent chemoselectivity and unique regioselectivities using t-Bu-P4 base [J]. Journal of the American Chemical Society, 2003, 125(27): 8082-8083; (b) Araki Y.; Kobayashi K.; Yonemoto M.; et al. Functionalisation of heteroaromatic N-oxides using organic superbase catalyst [J]. Organic & Biomolecular Chemistry, 2011, 9(1): 78-80; (c) Kawai H.; Yuan Z.; Tokunaga E.; et al. A sterically demanding organo-superbase avoids decomposition of a naked trifluoromethyl carbanion directly generated from fluoroform [J]. Organic & Biomolecular Chemistry, 2013, 11(9): 1446-1450.

[9] (a) Liu S.; Ren C.; Zhao N.; et al. Phosphazene bases as organocatalysts for ring-opening polymerization of cyclic esters [J]. Macromolecular Rapid Communications, 2018, 39(24): 1800485-1800500; (b) Puchelle V.; Du H.; Illy N.; et al. Polymerization of epoxide monomers promoted by t-Bu-P4 phosphazene base: a comparative study of kinetic behavior [J]. Polymer Chemistry, 2020, 11(21): 3585-3592; (c) Weideman I.; Pfukwa R.; Klumperman B. Phosphazene base promoted anionic polymerization of n-butyraldehyde [J]. European Polymer Journal,

[1] Puleo T. R.; Sujansky S. J.; Wright S. E.; et al. Organic superbases in recent synthetic methodology research [J]. Chemistry – A European Journal, 2021, 27(13): 4216-4229.

[2] Verkade J. Superbases for organic synthesis. guanidines, amidines, phosphazenes and related organocatalysts [J]. Angewandte Chemie International Edition, 2009, 48(49): 9221-9221.

[3] (a) Babu G. V. S.; Bhaskaran A.; Sridhar B.; et al. Ullmann coupling reaction of bicyclic amidines DBU/DBN with aryl halides: a pathway to the synthesis of caprolactam derivatives [J]. ChemistrySelect, 2021, 6(1): 5-8; (b) Perez E. R.; Santos R. H.; Gambardella M. T.; et al. Activation of carbon dioxide by bicyclic amidines [J]. Journal of Organic Chemistry, 2004, 69(23): 8005-8011.

[4] (a) Volpe C.; Meninno S.; Capobianco A.; et al. 1,5,7-Triazabicyclo[4.4.0]dec-5-ene (TBD) triggered diastereoselective [3+2] cycloaddition of azomethine imines and pyrazoleamides [J]. Advanced Synthesis & Catalysis, 2019, 361(5): 1018-1022; (b) Nielsen M. K.; Ahneman D. T.; Riera O.; et al. Deoxyfluorination with sulfonyl fluorides: navigating reaction space with machine learning [J]. Journal of the American Chemical Society, 2018, 140(15): 5004-5008.

[5] Verkade J. G. Atranes: new examples with unexpected properties [J]. Accounts of Chemical Research, 1993, 26(9): 483-489.

[6] Schwesinger R.; Schlemper H. Peralkylated polyaminophosphazenes extremely strong, neutral ntrogen bases [J]. Angewandte Chemie International Edition, 1987, 26(11): 1167-1169.

[7] (a) Suzawa K.; Ueno M.; Wheatley A. E.; et al. Phosphazene base-promoted functionalization of aryltrimethylsilanes [J]. Chemical Communicatons, 2006, (46): 4850-4852; (b) Kobayashi K.; Ueno M.; Kondo Y. Phosphazene base-catalyzed condensation of trimethylsilylacetate with carbonyl compounds [J]. Chemical Communicatons, 2006, (29): 3128-3130; (c) Ueno M.; Yonemoto M.; Hashimoto M.; et al. Nucleophilic aromatic substitution using Et3SiH/cat. t-Bu-P4 as a system for nucleophile activation [J]. Chemical Communicatons, 2007, (22): 2264-2266; (d) Du G. F.; Wang Y.; Gu C. Z.; et al. Organocatalytic direct difluoromethylation of aldehydes and ketones with TMSCF2H [J]. RSC Advances, 2015, 5(45): 35421-35424; (e) Kondoh A.; Koda K.; Terada M. Organocatalytic nucleophilic substitution reaction of gem-difluoroalkenes with ketene silyl acetals [J]. Organic Letters, 2019, 21(7): 2277-2280.

[8]  (a) Imahori T.; Kondo Y. A new strategy for deprotonative functionalization of aromatics: transformations with excellent chemoselectivity and unique regioselectivities using t-Bu-P4 base [J]. Journal of the American Chemical Society, 2003, 125(27): 8082-8083; (b) Araki Y.; Kobayashi K.; Yonemoto M.; et al. Functionalisation of heteroaromatic N-oxides using organic superbase catalyst [J]. Organic & Biomolecular Chemistry, 2011, 9(1): 78-80; (c) Kawai H.; Yuan Z.; Tokunaga E.; et al. A sterically demanding organo-superbase avoids decomposition of a naked trifluoromethyl carbanion directly generated from fluoroform [J]. Organic & Biomolecular Chemistry, 2013, 11(9): 1446-1450.

[9] (a) Liu S.; Ren C.; Zhao N.; et al. Phosphazene bases as organocatalysts for ring-opening polymerization of cyclic esters [J]. Macromolecular Rapid Communications, 2018, 39(24): 1800485-1800500; (b) Puchelle V.; Du H.; Illy N.; et al. Polymerization of epoxide monomers promoted by t-Bu-P4 phosphazene base: a comparative study of kinetic behavior [J]. Polymer Chemistry, 2020, 11(21): 3585-3592; (c) Weideman I.; Pfukwa R.; Klumperman B. Phosphazene base promoted anionic polymerization of n-butyraldehyde [J]. European Polymer Journal, 2017, 93: 97-102; (d) Zhao N.; Ren C.; Li H.; et al. Selective ring-opening polymerization of non-strained gamma-butyrolactone catalyzed by a cyclic trimeric phosphazene base [J]. Angewandte Chemie International Edition, 2017, 56(42): 12987-12990.

[10] (a) Kaljurand I.; Kutt A.; Soovali L.; et al. Extension of the self-consistent spectrophotometric basicity scale in acetonitrile to a full span of 28 pKa units: unification of different basicity scales [J]. Journal of Organic Chemistry, 2005, 70(3): 1019-1028; (b) Tshepelevitsh S.; Kütt A.; Lõkov M.; et al. On the basicity of organic bases in different media [J]. European Journal of Organic Chemistry, 2019, 2019(40): 6735-6748; (c) Lemaire C. F.; Aerts J. J.; Voccia S.; et al. Fast production of highly reactive no-carrier-added fluoride for the labeling of radiopharmaceuticals [J]. Angewandte Chemie International Edition, 2010, 49(18): 3161-3164; (d) Dworniczak M.; T. Leffek K. Proton transfer reactions between 4-nitrophenylphenylcyanomethanes and cyclic nitrogen bases in acetonitrile solvent [J]. Canadian Journal of Chemistry, 1990, 68(10): 1657-1661; (e) Boyle P. H.; Convery M. A.; Davis A. P.; et al. Deportonation of nitroalkanes by bicyclic amidine and guanidine bases; evidence for molecular recognition within a catalytic cycle for C–C bond formation [J]. Journal of the Chemical Society Chemical Communications, 1992, 14(3): 239-242.

[11] (a) Chu, Y.; Deng, H.; Cheng, J. P. An acidity scale of 1,3-dialkylimidazolium salts in dimethyl sulfoxide solution [J]. Journal of Organic Chemistry, 2007, 72(4): 7790-7793. (b) Darrin M. Flanigan; Fedor Romanov-Michailidis; Nicholas A.; et al. Organocatalytic reactions enabled by N?heterocyclic carbenes, [J]. Chemical Reviews, 2015, 115(17): 9307-9387.

[12] Naka H.; Koseki D.; Kondo Y. Catalytic deprotonative functionalization of propargyl silyl ethers with imines [J]. Advanced Synthesis & Catalysis, 2008, 350(11): 1901-1906.

[13] Verkade J. G. Main group atranes: chemical and structural features [J]. Coordination Chemistry Reviews, 1994, 137: 233-295.

[14] Verkade J. G.; Kisanga P. B. Proazaphosphatranes: a synthesis methodology trip from their discovery to vitamin [J]. Tetrahedron, 2003, 59(40): 7819-7858.

[15] Wadhwa K.; Verkade J. G. P(i-PrNCH2CH2)3N as a Lewis base catalyst for the synthesis of β-hydroxynitriles using TMSAN [J]. Journal of Organic Chemistry, 2009, 74(15): 5683-5686.

[16] Wadhwa K.; Chintareddy V. R.; Verkade J. G. P(PhCH2NCH2CH2)3N: an efficient Lewis base catalyst for the synthesis of propargylic alcohols and Morita-Baylis-Hillman adducts via aldehyde alkynylation [J]. Journal of Organic Chemistry, 2009, 74(17): 6681-6690.

[17] Chintareddy V. R.; Wadhwa K.; Verkade J. G. P(PhCH2NCH2CH2)3N catalysis of Mukaiyama aldol reactions of aliphatic, aromatic, and heterocyclic aldehydes and trifluoromethyl phenyl ketone [J]. Journal of Organic Chemistry, 2009, 74(21): 8118-8132.

[18] Wadhwa K.; Verkade J. G. P(i-PrNCH2CH2)3N: efficient catalyst for synthesizing β-hydroxyesters and α, β-unsaturated esters using α-trimethylsilylethylacetate (TMSEA) [J]. Journal of Organic Chemistry, 2009, 74(11): 4368-4371.

[19] Wadhwa K.; Verkade J. G. P(i-PrNCH2CH2)3N: an efficient catalyst for TMS-1,3-dithiane addition to aldehydes [J]. Tetrahedron Letters, 2009, 50(30): 4307-4309.

[20] Yang J.; Chatelet B.; Ziarelli F. et al. Verkade's superbase as an organocatalyst for the strecker reaction [J]. European Journal of Organic Chemistry, 2018, 2018(45): 6328-6332.

[21] Ma Y. C.; Zhang Y.; Gu C. Z.; et al. Stereoselective synthesis of α-fluoroacrylonitriles via organocatalytic cyanation of gem-difluoroalkenes and TMSCN [J]. New Journal of Chemistry, 2019, 43(27): 10985-10988.

[22] Jardel D.; Davies C.; Peruch F.; et al. Protonated phosphazenes: structures and hydrogen-bonding organocatalysts for carbonyl bond activation [J]. Advanced Synthesis & Catalysis, 2016, 358(7): 1110-1118.

[23] Li Y. G.; Zhang Y.; Du G. F.; et al. Phosphazene base-catalyzed double Michael addition: stereoselective synthesis of cyclohexanones [J]. Letters in Organic Chemistry, 2018, 16(1): 76-80.

[24] Imahori T.; Kondo Y. A new strategy for deprotonative functionalization of aromatics: transformations with excellent chemoselectivity and unique regioselectivities using t-Bu-P4 base [J]. Journal of the American Chemical Society, 2003, 125(27): 8082-8083.

[25] Imahori T.; Hori C.; Kondo Y. Functionalization of alkynes catalyzed by t-Bu-P4 base [J]. Advanced Synthesis & Catalysis, 2004, 346(910): 1090-1092.

[26] Araki Y.; Kobayashi K.; Yonemoto M.; et al. Functionalisation of heteroaromatic N-oxides using organic superbase catalyst [J]. Organic & Biomolecular Chemistry, 2011, 9(1): 78-80.

[27] Shigeno M.; Hayashi K.; Nozawa-Kumada K.; et al. Phosphazene base t-Bu-P4 catalyzed methoxy-alkoxy exchange reaction on (hetero)arenes [J]. Chemistry – A European Journal, 2019, 25(24): 6077-6081.

[28] Shigeno M.; Hayashi K.; Nozawa-Kumada K.; et al. Organic superbase t-Bu-P4 catalyzes amination of methoxy(hetero)arenes [J]. Organic Letters, 2019, 21(14): 5505-5508.

[29] Müller T. E.; Hultzsch K. C.; Yus M.; et al. Hydroamination: direct addition of amines to alkenes and alkynes [J]. Chemical Reviews, 2008, 108(9): 3795-3892.

[30] Shigeno M.; Nakamura R.; Hayashi K.; et al. Catalytic amination of β-(hetero)arylethyl ethers by phosphazene base t-Bu-P4 [J]. Organic Letters, 2019, 21(17): 6695-6699.

[31] Hirono Y.; Kobayashi K.; Yonemoto M.; et al. Metal-free deprotonative functionalization of heteroaromatics using organic superbase catalyst [J]. Chemical Communicatons, 2010, 46(40): 7623-7624.

[32] Kawai H.; Yuan Z.; Tokunaga E.; et al. A sterically demanding organo-superbase avoids decomposition of a naked trifluoromethyl carbanion directly generated from fluoroform [J]. Organic & Biomolecular Chemistry, 2013, 11(9): 1446-1450.

[33] (a) Patil N. T.; Kavthe R. D.; Shinde V. S. Transition metal-catalyzed addition of C-, N- and O-nucleophiles to unactivated C–C multiple bonds [J]. Tetrahedron, 2012, 68(39): 8079-8146; (b) Rosenfeld D. C.; Shekhar S.; Takemiya A.; et al. Hydroamination and hydroalkoxylation catalyzed by triflic acid [J]. Organic Letters, 2006, 8(19): 4179-4182; [c] Asaoka S.; Kitazawa T.; Wada T.; et al. Enantiodifferentiating anti-Markovnikov photoaddition of alcohols to 1,1-diphenylalkenes sensitized by chiral naphthalenecarboxylates [J]. Journal of the American Chemical Society, 1999, 121(37): 8486-8498.

[34] Luo C.; Bandar J. S. Superbase-catalyzed anti-Markovnikov alcohol addition reactions to aryl alkenes [J]. Journal of the American Chemical Society, 2018, 140(10): 3547-3550.

[35] Puleo T. R.; Strong A. J.; Bandar J. S. Catalytic α-selective deuteration of styrene derivatives [J]. Journal of the American Chemical Society, 2019, 141(4): 1467-1472.

[36] Punirun T.; Soorukram D.; Kuhakarn C.; et al. Nucleophilicgem-difluoro(phenylsulfanyl)methylation of carbonyl compounds with PhSCF2H in the presence of a phosphazene as a base [J]. European Journal of Organic Chemistry, 2014, 2014(19): 4162-4169.

[37] Kondoh A.; Tasato N.; Aoki T.; et al. Bronsted base-catalyzed transformation of α,β-epoxyketones utilizing [1,2]-phospha-brook rearrangement for the synthesis of allylic alcohols having a tetrasubstituted alkene moiety [J]. Organic Letters, 2020, 22(13): 5170-5175.

[38] Kisanga P. B.; Verkade J. G. P(RNCH2CH2)3N:  An efficient promoter for the nitroaldol (henry) reaction [J]. Journal of Organic Chemistry, 1999, 64(12): 4298-4303.

[39] Kisanga P.; D' Sa B.; Verkade J. P(RNCH2CH2)3N: an efficient promoter for the direct synthesis of E-α,β-unsaturated esters [J]. Tetrahedron, 2001, 57(38): 8047-8052.

[40] Kim S.-T.; Pudasaini B.; Baik M.-H. Mechanism of palladium-catalyzed C–N coupling with 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as a base [J]. ACS Catalysis, 2019, 9(8): 6851-6856.

[41] Shigeno M.; Hayashi K.; Nozawa-Kumada K.; et al. Catalytic C(sp2)-C(sp3) bond formation of methoxyarenes by the organic superbase t-Bu-P4 [J]. Organic Letters, 2020, 22(22): 9107-9113.

[42] Mehta S.; Brahmchari D. Phosphazene superbase-mediated regio- and stereo-selective iodoaminocyclization of 2-(1-alkynyl)benzamides for the synthesis of isoindolin-1-ones [J]. Journal of Organic Chemistry, 2019, 84(9): 5492-5503.

[43] Buitrago Santanilla A.; Christensen M.; Campeau L. C.; et al. P2-Et Phosphazene: A mild, functional group tolerant base for soluble, room temperature Pd-catalyzed C-N, C-O, and C-C cross-coupling reactions [J]. Organic Letters, 2015, 17(13): 3370-3373.

[44] Masuda K.; Nakano J.; Yamashita Y.; et al. Organosuperbase-catalyzed direct-type Michael addition reactions of sulfonylimidates as ester surrogates [J]. Asian Journal of Organic Chemistry, 2013, 2(4): 303-306.

[45] Kobayashi K.; Ueno M.; Naka H.; et al. Activation of organozinc reagents with t-Bu-P4 base for transition metal-free catalytic SN2' reaction [J]. Chemical Communicatons, 2008, (32): 3780-3782.

[46] Xu J.; Hadjichristidis N. Well-defined poly(ester amide)-based homo- and block copolymers by one-pot organocatalytic anionic ring-opening copolymerization of N-sulfonyl aziridines and cyclic anhydrides [J]. Angewandte Chemie International Edition, 2021, 60(13): 6949-6954.

[47] Li B.; Liu Y.; Nie H.; et al. Phosphazene base-mediated azide–alkyne click polymerization toward 1,5-regioregular polytriazoles [J]. Macromolecules, 2019, 52(12): 4713-4720.

[48] Wang X.; Liu Y.; Li Z.; et al. Organocatalyzed anionic ring-opening polymerizations of N-sulfonyl aziridines with organic superbases [J]. ACS Macro Letters, 2017, 6(12): 1331-1336.

[49] (a) Dunetz J. R.; Magano J.; Weisenburger G. A. Large-scale applications of amide coupling reagents for the synthesis of pharmaceuticals [J]. Organic Process Research & Development, 2016, 20(2): 140-177; (b) Fonseca A. C.; Gil M. H.; Simões P. N. Biodegradable poly(ester amide)s – A remarkable opportunity for the biomedical area: Review on the synthesis, characterization and applications [J]. Progress in Polymer Science, 2014, 39(7): 1291-1311; (c) Zhou Y.; Wang J.; Gu Z.; et al. Next generation of fluorine-containing pharmaceuticals, compounds currently in phase II-III clinical trials of major pharmaceutical companies: new structural trends and therapeutic areas [J]. Chemical Reviews, 2016, 116(2): 422-518.

[50] (a) Zhao S.; Mankad N. P. Synergistic copper-catalyzed reductive aminocarbonylation of alkyl iodides with nitroarenes [J]. Organic Letters, 2019, 21(24): 10106-10110. (b) Sardana M.; Bergman J.; Ericsson C.; et al. Visible-light-enabled aminocarbonylation of unactivated alkyl iodides with stoichiometric carbon monoxide for application on late-stage carbon isotope labeling [J]. Journal of Organic Chemistry, 2019, 84(24): 16076-16085; (c) Miller Y.; Miao L.; Hosseini A. S.; et al. Copper-catalyzed intramolecular alkene carboetherification: synthesis of fused-ring and bridged-ring tetrahydrofurans [J]. Journal of the American Chemical Society, 2012, 134(29): 12149-12156; (d) Zheng Z.; van der Werf A.; Deliaval M.; et al. Synthesis of fluorinated amide derivatives via a radical N-perfluoroalkylation-defluorination pathway [J]. Organic Letters, 2020, 22(7): 2791-2796.

[51] (a) Pattabiraman V. R.; Bode J. W. Rethinking amide bond synthesis [J]. Nature, 2011, 480(7378): 471-479; (b) Greenberg, A.; Breneman, C. M.; Liebman, J. F., Eds. The amide linkage: structural significance in chemistry, biochemistry, and materials science; Wiley: New York, 2000.

[52] (a) Figueiredo R. M.; Suppo J. S.; Campagne J. M. Nonclassical routes for amide bond formation [J]. Chemical Reviews, 2016, 116(19): 12029-12122; (b) Ojeda-Porras A.; Gamba-Sanchez D. Recent developments in amide synthesis using nonactivated starting materials [J]. Journal of Organic Chemistry, 2016, 81(23): 11548-11555; (c) Allen C. L.; Williams J. M. Metal-catalysed approaches to amide bond formation [J]. Chemical Society Reviews, 2011, 40(7): 3405-3415.

[53] (a) Montalbetti C. A.; Falque V. Amide bond formation and peptide coupling [J]. Tetrahedron, 2005, 61(46): 10827-10852; (b) Valeur E.; Bradley M. Amide bond formation: beyond the myth of coupling reagents [J]. Chemical Society Reviews, 2009, 38(2): 606-631; (c) Constable D. J. C.; Dunn P. J.; Hayler J. D.; et al. Key green chemistry research areas-a perspective from pharmaceutical manufacturers [J]. Green Chemistry, 2007, 9(5): 411-420; (d) Wu X.; Hu L. Efficient amidation from carboxylic acids and azides via selenocarboxylates: application to the coupling of amino acids and peptides with azides [J]. Journal of Organic Chemistry, 2007, 72(3): 765-774.

[54] (a) Dong K.; Fang X.; Jackstell R.; et al. Rh(I)-catalyzed hydroamidation of olefins via selective activation of N-H bonds in aliphatic amines [J]. Journal of the American Chemical Society, 2015, 137(18): 6053-6058; (b) Ren L.; Li X.; Jiao N. Dioxygen-promoted Pd-catalyzed aminocarbonylation of organoboronic acids with amines and CO: A direct approach to tertiary amides [J]. Organic Letters, 2016, 18(22): 5852-5855.

[55] (a) Veatch A. M.; Alexanian E. J. Cobalt-catalyzed aminocarbonylation of (hetero)aryl halides promoted by visible light [J]. Chemical Science, 2020, 11(27): 7210-7213; (b) Lu B.; Cheng Y.; Chen L.-Y.; et al. Photoinduced copper-catalyzed radical aminocarbonylation of cycloketone oxime esters [J]. ACS Catalysis, 2019, 9(9): 8159-8164; (c) Lu M.; Lin Z.; Chen S.; et al. Visible-light-enabled oxidative coupling of alkenes with dialkylformamides to access unsaturated amides [J]. Organic Letters, 2019, 21(24): 9929-9933.

[56] Zeng L.; Li H.; Hu J.; et al. Electrochemical oxidative aminocarbonylation of terminal alkynes [J]. Nature Catalysis, 2020, 3(5): 438-445.

[57] (a) Shaifali; Sheetal; Bains R.; et al. Supported palladium catalyzed aminocarbonylation of aryl iodides employing bench-stable CO and NH3 surrogates [J]. Organic & Biomolecular Chemistry, 2020, 18(36): 7193-7200; (b) Bongers A.; Clavette C.; Gan W.; et al. Intermolecular aminocarbonylation of alkenes using concerted cycloadditions of iminoisocyanates [J]. Journal of Organic Chemistry, 2017, 82(2): 1175-1194; (c) Lavergne K.; Bongers A.; Betit L.; et al. Modular synthesis of pyrazolones using an alkene aminocarbonylation reaction [J]. Organic Letters, 2015, 17(14): 3612-3615; (d) Wu X.; Larhed M. Microwave-enhanced aminocarbonylations in water [J]. Organic Letters, 2005, 7(15): 3327-3329.

[58] Wu Z.; Cheng C.; Tang X.; et al. Phosphine‐promoted amide bond formation reactions from carboxylic acids and tetraalkylthiuram disulfides [J]. ChemistrySelect, 2018, 3(46): 13038-13041.

[59] Zhang J.; Hou Y.; Ma Y.; et al. Synthesis of amides by mild palladium-catalyzed aminocarbonylation of arylsilanes with amines enabled by copper(II) fluoride [J]. Journal of Organic Chemistry, 2019, 84(1): 338-345.

[60] (a) Jia Q.; Wang J. N-heterocyclic carbene-catalyzed convenient benzonitrile assembly [J]. Organic Letters, 2016, 18(9): 2212-2215; (b) Zhang C. L.; Ye S. N-heterocyclic carbene-catalyzed construction of 1,3,5-trisubstituted benzenes from bromoenals and α-cyano-β-methylenones [J]. Organic Letters, 2016, 18(24): 6408-6411; (c) Zhang C. L.; Gao Z. H.; Liang Z. Q.; et al. N-heterocyclic carbene-catalyzed synthesis of multi-substituted benzenes from enals and α-cyano-β-methylenones [J]. Advanced Synthesis & Catalysis, 2016, 358(18): 2862-2866.

[61] (a) Cong Z. S.; Li Y. G.; Du G. F.; et al. N-Heterocyclic carbene-catalyzed sulfa-Michael addition of enals [J]. Chemical Communicatons, 2017, 53(98): 13129-13132; (b) Xing F.; Feng Z. N.; Wang Y.; et al. N-heterocyclic carbene-catalyzed double Michael addition: stereoselective synthesis of spirofluorenes and sultisubstituted indanes [J]. Advanced Synthesis & Catalysis, 2018, 360(8): 1704-1710; (c) Feng Z. N.; Luo J. Y.; Zhang Y.; et al. N-heterocyclic carbene-catalyzed diastereoselective synthesis of sulfenylated indanes via sulfa-Michael-Michael (aldol) cascade reactions [J]. Organic & Biomolecular Chemistry, 2019, 17(19): 4700-4704; (d) Zhang Y.; Xing F.; Feng Z.; et al. N-heterocyclic carbene-catalyzed double Michael addition of cyano acetates and dienones: diastereoselective synthesis of multisubstituted cyclohexanones and indanes [J]. Chinese Journal of Organic Chemistry, 2020, 40(6): 1608-1617.

[62] Li Y.; Xu H.; Xing M.; et al. Iodine-promoted construction of polysubstituted 2,3-dihydropyrroles from chalcones and β-enamine ketones (esters) [J]. Organic Letters, 2015, 17(15): 3690-3693.

[63] Liu X.; Xu X.; Pan L.; et al. Efficient synthesis of trifluoromethylated cyclopentadienes/fulvenes/norbornenes from divinyl ketones [J]. Organic & Biomolecular Chemistry, 2013, 11(39): 6703-6706.

[64] Le Fouler V.; Chen Y.; Gandon V.; et al. Activating pyrimidines by pre-distortion for the general synthesis of 7-aza-indazoles from 2-hydrazonylpyrimidines via intramolecular Diels-Alder reactions [J]. Journal of the American Chemical Society, 2019, 141(40): 15901-15909.

[65] Tang P.; Wang W.; Ritter T. Deoxyfluorination of phenols [J]. Journal of the American Chemical Society, 2011, 133(30): 11482-11484.

[66] Yao Y.; Li W.; Chen J. Synthesis of α-siloxyamides by the reaction of a carbamoylsilane with ketones [J]. Chinese Journal of Organic Chemistry, 2014, 34(10): 2124-2129.

[67] Mirfarjood S.-A.; Mamaghani M.; Sheykhan M. Copper-exchanged magnetic-fap: surface catalysis in decarboxylative coupling of α-oxocarboxylic acids with formamides [J]. ChemistrySelect, 2017, 2(27): 8650-8657

[68] (a) Osada S.; Sano S.; Ueyama M.; et al. Fluoroalkene modification of mercaptoacetamide-based histone deacetylase inhibitors [J]. Bioorganic and Medicinal Chemistry, 2010, 18(2): 605-611; (b) Wang J.; Sanchez-Rosello M.; Acena J. L.; et al. Fluorine in pharmaceutical industry: fluorine-containing drugs introduced to the market in the last decade (2001-2011) [J]. Chemical Reviews, 2014, 114(4): 2432-2506;

[69] (a) Liang T.; Neumann C. N.; Ritter T. Introduction of fluorine and fluorine-containing functional groups [J]. Angewandte Chemie International Edition, 2013, 52(32): 8214-8264; (d) Song J. J.; Tan Z.; Reeves J. T.; et al. N-heterocyclic carbene catalyzed trifluoromethylation of carbonyl compounds [J]. Organic Letters, 2005, 7(11): 2193-2196.

[70] Serizawa H.; Aikawa K.; Mikami K. Direct synthesis of pentafluoroethyl copper from pentafluoropropionate as an economical C2F5 Source: application to pentafluoroethylation of arylboronic acids and aryl bromides [J]. Organic Letters, 2014, 16(13): 3456-3459.

[71] Yang S.; Li X.; Peng Z.; et al. Synthesis of pentafluoroethylated pyridines via Cu-catalyzed [3+3] cycloaddition reaction of oxime acetates [J]. Chinese Journal of Organic Chemistry, 2019, 39(6): 1623-1629.

[72] (a) Krishnamurti R.; Bellew D.

开放日期:

 2021-06-07    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式