- 无标题文档
查看论文信息

中文题名:

 新疆地区光肩星天牛分布区域及其化学防治关键技术的研究    

姓名:

 张全成    

学号:

 20202012074    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 090402    

学科名称:

 农学 - 植物保护 - 农业昆虫与害虫防治    

学生类型:

 硕士    

学位:

 农学硕士    

学位类型:

 学术学位    

学位年度:

 2023    

学校:

 石河子大学    

院系:

 农学院    

专业:

 植物保护    

研究方向:

 农业昆虫与害虫防治    

第一导师姓名:

 王俊刚    

第一导师单位:

 石河子大学    

完成日期:

 2022-12-30    

答辩日期:

 2023-05-11    

外文题名:

 Study on the Distribution of Anoplophora glabripennis and its Key Technology of Chemical Control in Xinjiang    

中文关键词:

 光肩星天牛 ; 适生区 ; 高压喷施 ; 注干施药 ; 飞机喷雾     

外文关键词:

 Anoplophora glabripennis ; suitable area ; airblast ; trunk  ; injection ; aerially spraying     

中文摘要:

光肩星天牛(Anoplophora glabripennis Motschulsky)作为一种入侵性极强的林业蛀干害虫,在新疆局部地区传入多年,以杨树为绝对优势的防护林健康受到巨大威胁。尽管前期采取了生物和化学防治,光肩星天牛的虫口基数并未得到有效压制,危害仍然十分严重。为此,本研究通过MaxEnt软件预测光肩星天牛及其重要天敌的适生区;调查光肩星天牛在树干上的危害痕迹,建立光肩星天牛在杨树树干上的分布模型;通过机车高压喷施、注干施药、飞机喷雾,评估不同施药方式的防效;探索药剂在树体的传导规律,评估直升机喷雾作业质量,为光肩星天牛的综合防治提供理论基础和技术支撑。取得的研究结果如下:

1. 基于MaxEnt预测了光肩星天牛及其重要天敌(花绒寄甲、大斑啄木鸟)的适生区。模型结果表明,3个物种在未来气候阶段(2050和2090)均有向北迁移的趋势,且光肩星天牛质心转移的纬度范围远高于花绒寄甲和大斑啄木鸟。尽管在当前气候阶段,新疆、内蒙古等光肩星天牛严重危害的区域不适合引入天敌进行防治,但在未来气候阶段,这些地方将成为天敌防控光肩星天牛的潜在适生区域。

2. 调查了光肩星天牛在新疆杨和俄罗斯杨树干上的垂直分布规律。结果表明,光肩星天牛的危害痕迹与树高、胸径之间有显著的回归关系。相较于俄罗斯杨,光肩星天牛对新疆杨的危害更轻;相较于纯林,光肩星天牛对混交林的危害更轻。光肩星天牛在新疆杨树干上10 m以下的虫口率为81.76%-86.89%,俄罗斯杨树干上10 m以下的虫口率在74.11%-76.49%。

3. 评估了两种地面化学防控方式(高压喷施和注干施药)和两种常用杀虫剂(噻虫啉和吡虫啉)对光肩星天牛幼虫的防治效果。从连续两年的试验观察结果来看,噻虫啉和吡虫啉均能够降低光肩星天牛幼虫在树干内的存活率,且主要集中在药后30 d内挥发效果;通过对比噻虫啉和吡虫啉、高压喷施和注干施药的防效,结论为:噻虫啉>吡虫啉、注干施药>高压喷施。结果认为,可在今后防治选用噻虫啉注干施药的方式防治光肩星天牛幼虫。

4. 研究了噻虫啉注干施药后在树体内的传导分布规律。噻虫啉注入木质部导管运输后,依靠蒸腾拉力的作用,随水分向上传导运输,传导过程中发生径向扩散,使药液分布到冠层不同方位的枝叶中,此后部分药液又会随着韧皮部的养分运输途径向下传导,因此,结论认为噻虫啉在青杨和竹柳体内既存在双向传导,也存在径向扩散。噻虫啉整体分布规律为叶片>韧皮部>木质部的含量,树体的东南方位叶片的药液含量高于其它方位,向阳面树干内的药液含量高于背阴面。

5. 评估直升机R44对防护林和行道树喷雾作业后的雾滴质量及着药量检测。经飞机喷雾后,噻虫啉的雾滴数量的变化规律表现为上部>中部>下部>地面,雾滴直径的变化表现为从上到下逐渐降低。飞机喷雾时,防护林比行道树更易受雾滴飘移影响。噻虫啉含量在树体分布的趋势为:上部<中部<下部<树干,且药液渗透后的内吸传导并未显著造成药液向上部富集,而更多取决于药剂在初始时的沉积量。

6. 评估连续两年注干施药、飞机防治以及立体式化学防控技术对光肩星天牛的防治效果。剖干检查发现,注干施用噻虫啉的有效高度(对光肩星天牛有致死效果)在7.2-7.8 m。单一防控技术(注干施药、飞机防治)的防治效果只对降低当年的虫口密度有效,连续两年施用后,光肩星天牛的自然种群密度基本保持稳定;而立体式防控技术的防效表明,光肩星天牛的虫口密度逐年降低,且第二年的虫口密度比第一年显著降低了66.31%-92.84%。在3种化学防控措施中,立体式化学防控技术对光肩星天牛的防治效果最好。

外文摘要:

The Asian longhorned beetle (Anoplophora glabripennis Motschulsky), as a highly invasive forest stem borer, has been introduced into local areas of Xinjiang for many years, and the health of shelter forest with poplar as the absolute advantage is greatly threatened. Despite the previous biological and chemical control, the population base of A. glabripennis has not been effectively suppressed, and the damage is still very serious. Therefore, this study predicted the suitable areas of A. glabripennis and its important natural enemies by MaxEnt software, investigated the damage traces of A. glabripennis on poplar, and established the distribution model of A. glabripennis on poplar trunk. Through airblast, trunk injection and aerially spraying, the control effect of different application methods was evaluated, the transmission law of pesticides in trees was explored, and the quality of helicopter spraying was evaluated, which provided theoretical basis and technical support for the comprehensive control of A. glabripennis. The results are as follows:

1. Based on MaxEnt, the suitable areas of A. glabripennis and its important natural enemies (Dastarcus helophoroides and Dendrocopos major) were predicted. The model results showed that the three species had a tendency to migrate northward in the future climate stages (2050 and 2090), and the latitude range of the centroid shift of A. glabripennis was much higher than that of D. helophoroides and D. major. Although in the current climate stage, Xinjiang, Inner Mongolia and other areas seriously endangered by A. glabripennis are not suitable for the introduction of natural enemies for prevention and control. In the future climate stage, these areas will become potential suitable areas for natural enemies to prevent and control A. glabripennis.

2. The vertical distribution of A. glabripennis on the trunk of Populus alba var. pyramidalis and P. russkii were studied. The results showed that there was a significant regression relationship between the damage traces of A. glabripennis and tree height and diameter at breast height. Compared with P. russkii, A. glabripennis is less harmful to P. alba var. pyramidalis; compared with pure forest, A. glabripennis is less harmful to mixed forest. The population rate of A. glabripennis below 10 m on trunks in P. alba var. pyramidalis was 81.76% -86.89%, and the population rate of A. glabripennis below 10 m on trunks in P. russkii was 74.11 % -76.49 %.

3. The control effects of two ground chemical control methods (airblast and trunk injection) and two commonly used insecticides (thiacloprid and imidacloprid) on A. glabripennis larvae were evaluated. From the results of two consecutive years of experimental observation, thiacloprid and imidacloprid could reduce the survival rate of A. glabripennis larvae in the trunk, and mainly concentrated in the volatilization effect within 30 days after treatment. The thiacloprid control effect higher than imidacloprid, and trunk injection control effect higher than airblast. It concluded that thiacloprid could be used to control A. glabripennis larvae.

4. The conduction distribution of thiacloprid in trees after trunk injection was evaluated. The results showed that after the injection of thiacloprid into the xylem, it was transported upwards with water by the action of transpiration tension, and the radial diffusion occurred during the conduction process, so that the liquid was distributed to the branches and leaves in different directions of the canopy. After that, some of the liquid was transmitted downwards with the nutrient transport pathway of the phloem. Therefore, it is concluded that thiacloprid has both longitudinal transport and transverse transport in P. cathayana and Salix hybrid, and bidirectional conduction also occurs. The overall distribution of thiacloprid was leaf > phloem > xylem. The content of pesticide solution in the southeast of the tree was higher than that in other directions, and the content of pesticide solution in the sunny trunk was higher than that in the shade.

5. The droplet quality and dosage of helicopter R44 after spraying shelter forest and street trees were evaluated. After aerially spraying, the variation of the number of thiacloprid droplets was upper > middle > lower > ground, and the change of droplet diameter was gradually reduced from top to bottom. When the aerially sprays, the protective forest is more likely to drift than the street trees. The distribution trend of thiacloprid content in the tree was as follows: upper < middle < lower < trunk, and the internal absorption and conduction after the penetration of the liquid did not significantly cause the liquid to accumulate to the upper part, but more depended on the initial deposition of the agent.

6. The control effects of trunk injection, aerially control and tridimensional chemical control technology on A. glabripennis were evaluated for two consecutive years. It was found that the effective height of thiacloprid was about 7.2-7.8 m. The control effect of single prevention and control technology (trunk injection and aerially control) was only effective in reducing the population density of the year. After two consecutive years of application, the natural population density of A. glabripennis remained basically stable. The control effect of the tridimensional chemical control technology showed that the population density of A. glabripennis decreased year by year, and the population density in the second year was significantly lower than that in the first year by 66.31%-92.84%. Among the three chemical control measures, the tridimensional chemical control technology had the best control effect on A. glabripennis.

参考文献:

巴哈提古丽·木沙巴依. 新疆黄斑星天牛虫瘿冠层分布研究[J]. 防护林科技, 2021, (5): 66–68.

宝山, 李丰, 李忠, 等. 几种杨树对光肩星天牛的抗性研究[J]. 北京林业大学学报, 1999, 21(4): 97–100.

曹川健, 马晖, 吴宏, 等. 17个杨树品种对光肩星天牛抗性的调查鉴定[J]. 内蒙古林业科技, 2003, (2): 46–48.

柴正群, 陈国华, 朱建青, 等. 咖啡灭字脊虎天牛在普洱咖啡树干上的分布规律及其种群动态研究[J]. 西南农业学报, 2020, 33(11): 2519–2523.

陈树萍, 刘英姿. 光肩星天牛几种药剂试验及成本分析[J]. 林业与生态科学, 2021, 36(3): 285–292, 327.

仇慧娟, 王辉, 邹芹, 等. 树皮穿透剂搭载药剂防治松褐天牛幼虫试验 [J]. 中国森林病虫, 2020, 39(5): 53–54.

邓珅钏, 游江, 周蒲, 等. 8种杀虫剂对松树松褐天牛的田间防效[J]. 中国植保导刊, 2021, 41(7): 77–79, 52.

杜和芬, 王佩星, 徐华潮, 等. 光肩星天牛对山核桃挥发物组分的触角电位分析[J]. 浙江农林大学学报, 2016, 33 (1): 166–171.

范丽清, 严善春, 孙宗华, 等. 光肩星天牛对植物源挥发物的触角电位和行为反应[J]. 生态学杂志, 2013, 32(1): 142–148.

付林巨, 刘和平, 张艳, 等. 噻虫啉等几种药剂打孔注药防治光肩星天牛成虫效果对比[J]. 内蒙古林业科技, 2015, 41(1): 36–38.

高娜, 姚洪锡, 李超, 等. 松褐天牛产卵刻痕在黑松树干上分布规律的研究[J]. 环境昆虫学报, 2013, 35(1): 33–38.

高瑞桐, Wang B D, Victor C M, et al. 树冠喷药毒杀光肩星天牛成虫效果及农药残留分析[J]. 林业科学, 2005, 41(3): 202–205.

高瑞桐, 秦锡祥, 陈德钧, 等. 光肩星天牛危害对杨树损失的研究[J]. 林业科学研究, 1993, 6(2): 189–193.

高尚坤, 唐艳龙, 张彦龙, 等. 松褐天牛在马尾松树干上的分布规律[J]. 林业科学研究, 2015, 28(5): 708–712.

管凌君, 陈小军, 沈殿晶, 等. 防治光肩星天牛膏剂的制备及保湿性能研究[J]. 林业与环境科学, 2020, 36(2): 26–32.

国家林业和草原局. 中国森林覆盖率22.96%[OL]. 2019-06-17. http://www.forestry.gov.cn/.

国家林业和草原局. 我国林业有害生物防控形势严峻[OL]. 2017-12-26. http://www.forestry.gov.cn/.

国家林业和草原局. 国家林业和草原局公告(2022年第6号)(2022年松材线虫病疫区)[OL]. 2022-03-18. http://www.forestry.gov.cn/.

国家林业和草原局. 国家林业和草原局公告(2019年第20号)(全国林业有害生物普查情况)[OL]. 2019-12-12. http://www.forestry.gov.cn/.

国家和林业草原局. 中国森林资源报告[M]. 北京: 中国林业出版社, 2019.

韩水兴. 4种药剂林间注干防治松墨天牛幼虫试验[J]. 生物灾害科学, 2017, 40(2): 93–96.

韩振泰, 李如华, 高瑞桐. 反相高效液相色谱法测定绒毛白蜡中噻虫啉残留量[J]. 现代科学仪器, 2007, (1): 64–65.

黄素芳, 王振亮, 李开森, 等. 树干注药后阿维菌素在枣树体内的传导分布及消长动态[J]. 中国森林病虫, 2019a, 38(3): 15–19, 24.

黄素芳, 王振亮, 李开森, 等. 树干注药后吡虫啉和阿维菌素在枣树树冠内的传导[J]. 中国果树, 2019b, (3): 43–47.

黄素芳, 王振亮, 李开森, 等. 树干注药后吡虫啉在枣树不同部位的传导分布动态[J]. 林业与生态科学, 2019c, 34(2): 176–180, 195.

贾进伟. 甲维盐注干施用对松材线虫病防治机理初探[D]. 浙江农林大学, 2014.

解全荣, 吴庆杰, 郭晋保, 等. 飞机超低量喷洒噻虫啉防治松褐天牛应用报告[J]. 安徽林业科技, 2019, 45(1): 13–15, 23.

李成德. 森林昆虫学[M]. 北京: 中国林业出版社, 2003.

李广伟, 陈秀琳, 尚天翠, 等. 光肩星天牛气味结合蛋白AglaOBP1的克隆、表达及结合特性[J]. 环境昆虫学报, 2017c, 39(4): 919–929.

李广伟, 陈秀琳, 尚天翠. 光肩星天牛气味结合蛋白AglaOBP12的基因克隆、表达及配体结合特征[J]. 昆虫学报, 2017d, 60(10): 1141–1154.

李广伟, 陈秀琳, 尚天翠. 黄斑星天牛雌虫触角气味结合蛋白基因的鉴定及组织分布[J]. 生态学杂志, 2017b, 36(6): 1678–1689.

李广伟, 芦屹, 陈秀琳, 等. 五角枫挥发物的提取鉴定及黄斑星天牛对主要组分的触角电位反应[J]. 河南师范大学学报(自然科学版), 2017a, 45(2): 53–59.

李国宏, 高瑞桐, Smith M T, 等. 光肩星天牛种群扩散规律的研究[J]. 林业科学研究, 2010, 23(5) : 678–684.

李浩培, 吕飞, 毕拥国, 等. 我国林业重要蛀干害虫光肩星天牛研究进展[J]. 林业与生态科学, 2020, 35(1): 1–9.

李鸿筠, 刘浩强, 胡军华, 等. 噻虫啉喷雾对柑桔星天牛的防治效果[J]. 中国南方果树, 2020, 49(3): 29–31.

李建光, 金幼菊, 骆有庆, 等. 光肩星天牛不同寄主树种挥发性物质的比较分析[J]. 北京林业大学学报, 2002, 24(5): 165–169.

李孟楼, 郭新荣, 庄世宏, 等. 混交林的多样性及其光肩星天牛的抗性研究[J]. 林业科学, 2005, 41(1): 157–164.

李敏, 任颖, 屈海学, 等. 光肩星天牛几种防治措施筛选[J]. 河北林业科技, 2016, (1): 36, 45.

李硕, 高薇, 程相称, 等. 光肩星天牛对复叶槭挥发物的触角电位及行为反应[J]. 中国森林病虫, 2016, 35(2): 9–14.

李硕, 孙红, 周艳涛, 等. 2021年全国主要林业有害生物发生情况及2022年发生趋势预测[J]. 中国森林病虫, 2022, 41(2): 44–47.

李晓冬, 王越, 周艳涛, 等. 2019年全国主要林业有害生物发生情况及2020年发生趋势预测[J]. 中国森林病虫, 2020, 39(3): 44–48.

李秀华. 三北防护林杨树天牛的危害及防治策略[J]. 防护林科技, 2021, (4): 77–78, 80.

刘爱华, 张新平, 岳朝阳, 等. 飞机超低量喷雾防治天山野果林苹果小吉丁防效研究[J]. 新疆农业科学, 2016, 53(11): 2083–2089

刘兴春, 刘桂萍. 关于新疆巴州地区光肩星天牛危害与防治措施的思考[J]. 农业灾害研究, 2021, 11(12): 3–4.

刘长青, 雷勇辉, 董宁, 等. 兵团林业有害生物防治管理工作现状、问题与对策[J]. 防护林科技, 2020, (10): 68–71.

刘忠军. 新疆外来林业有害生物入侵现状及趋势分析[J]. 新疆林业, 2019, (2): 37–41, 48.

卢桦, 陈元生, 罗致迪, 等. 松褐天牛在松材线虫病病死树上的垂直分布规律[J]. 福建农业学报, 2019, 34(2): 229–234.

骆有庆, 刘荣光, 许志春, 等. 防护林杨树天牛灾害的生态调控理论与技术[J]. 北京林业大学学报, 2002, 24(Z1): 164–168.

吕飞, 海小霞, 王志刚, 等. 光肩星天牛成虫4种活动行为日节律[J]. 东北林业大学学报, 2015, 43(9): 90–95.

吕全, 张苏芳, 林若竹, 等. 中国主要林业入侵生物的发生现状及其研究趋势[J]. 植物保护, 2022, 48(4): 21–38.

牛振荣. 三种不同品种杨树对光肩星天牛抗性对比分析[J]. 内蒙古林业, 2015, (4): 13.

乔海莉, 骆有庆, 冯晓峰, 等. 新疆主要造林树种对光肩星天牛的抗性[J]. 昆虫知识, 2007, 44(5): 660–664.

桑巴叶, 朱玉伟. 林间药剂喷雾防治新疆光肩星天牛的药效试验[J]. 防护林科技, 2019, (3): 10–12.

时勇, 范立淳, 张彦龙, 等. 云杉花墨天牛幼虫在红松树干上的分布规律[J]. 林业科学, 2022, 58(7): 128–133.

史开奇, 李斌, 廖小龙, 等. 光肩星天牛危害现状及防治技术探析[J]. 防护林科技, 2021, (6): 77–78.

宋昱东, 丁子玮, 王聪, 等. 中国林业外来入侵昆虫名录及分析[J]. 植物检疫, 2022, 36(5): 1–12.

孙红, 周艳涛, 李晓冬, 等. 2020年全国主要林业有害生物发生情况及2021年发生趋势预测[J]. 中国森林病虫, 2021, 40(2): 45–48.

覃海文, 黄梦伊, 石娟. 光肩星天牛和星天牛的分子快速鉴定[J]. 植物保护学报, 2019, 46(3): 709–710.

唐桦, 韩玉英, 茹建华, 等. 利用生命表评价不同防治措施对光肩星天牛的效果[J]. 西北林学院学报, 2020, 35(4): 101–107.

唐艳龙, 杨忠岐, 姜静, 等. 栗山天牛幼虫和蛹在辽东栎树干上的分布规律[J]. 林业科学, 2011, 47(3): 117–123.

田鹏鹏. 树干注射吡虫啉在树体内的吸收传导分布研究[D]. 杨凌: 西北农林科技大学, 2008.

王福贵, 周嘉熹, 杨雪彦. 混交林中黄斑星天牛选择寄主的行为与寄主抗虫性关系的研究[J]. 林业科学, 2000, 36(1): 58–65.

王辉, 仇慧娟, 徐俊, 等. 噻虫啉飞机喷雾防治松褐天牛现状与应用展望[J]. 世界林业研究, 2019, 32(5): 34–40.

王辉. 飞机喷雾防治松褐天牛短期效果与持续效果研究[D]. 南昌: 江西农业大学, 2020.

王嘉冰, 王琪, 严善春, 等. 3种杀虫剂对光肩星天牛成虫的室内防治试验[J]. 东北林业大学学报, 2017a, 45(5): 117–120.

王嘉冰, 徐智文, 薛羿, 等. 3种内吸性杀虫剂对光肩星天牛幼虫的林间防治效果[J]. 北京林业大学学报, 2017b, 39(7): 62–68.

王菁桢, 胡平, 骆有庆, 等. 光肩星天牛性信息素结合蛋白AglaPBP1和AglaPBP2基因鉴定和表达分析[J]. 应用昆虫学报, 2017, 54(1): 45–55.

王瑞勤, 李凤兰, 黄一平, 等. Ⅰ-69杨和大官杨对光肩星天牛抗性的研究[J]. 北京林业大学学报, 1993, 15(1): 85–91, 132.

王涛, 温俊宝, 许志春, 等. 新疆杨不同混交模式对天牛危害和林木生长的影响[J]. 林业科学研究, 2006, 19(4): 504–508.

王志刚, 苏智, 刘明虎, 等. 新疆杨与北抗杨抗光肩星天牛特性的比较[J]. 林业科学, 2018, 54(9): 89–96.

王紫薇, 徐华潮, 汪云珍,等. 树皮内含物对光肩星天牛取食与刻槽产卵量的影响[J]. 环境昆虫学报, 2016a, 38(5): 942–949.

王紫薇, 徐华潮, 张娓娓, 等. 光肩星天牛对寄主的选择及主要寄主挥发物的化学成分分析[J]. 浙江农林大学学报, 2016b, 33(4): 558–563.

魏建荣, 苏智, 董丽君. 花绒寄甲辨别光肩星天牛蛀食不同树木所产生虫粪的挥发性化学信号[J]. 生态学杂志, 2015, 34(10): 2814–2820.

魏建荣, 闫诗谣, 李臻, 等. 2种抗光肩星天牛杨树树皮和木质部生化物质分析[J].西北林学院学报, 2022, 37(5): 230–235.

温俊宝, 许志春, 骆有庆, 等. 光肩星天牛危害导致箭杆杨枯梢的数量指标初探[J]. 北京林业大学学报, 1999, 21(4): 24–27.

邬颖, 王德朋, 和东旭, 等. 基于COI序列的光肩星天牛快速分子鉴定[J]. 植物检疫, 2014, 28(4): 46–49.

许志春, 田海燕, 陈学英, 等. 吡虫啉在杨树中持留量的动态变化研究[J]. 北京林业大学学报, 2004, 26(1): 62–65.

杨桦, 刘子雄, 杨伟, 等. 飞机喷洒噻虫啉林内雾滴分布及着药量检测[J]. 中国森林病虫, 2013, 32(4): 34–35, 42.

杨晓华. 三北防护林杨树天牛危害现状及防治对策[J]. 防护林科技, 2020, (12): 78–79.

杨忠岐, 王小艺, 张翌楠, 等. 以生物防治为主的综合控制我国重大林木病虫害研究进展[J]. 中国生物防治学报, 2018, 34(2): 163–183.

于斌, 乔秀荣, 张俊娥. 秦皇岛地区光肩星天牛的危害调查与噻虫啉防治效果[J]. 中国森林病虫, 2021, 40(6): 36–39.

余汉鋆, 王子楠, 覃海文, 等. 引诱剂对光肩星天牛在浙江沿海防护林的诱捕效果分析[J]. 环境昆虫学报, 2017, 39(3): 694–700.

岳朝阳, 张新平, 刘爱华, 等. 光肩星天牛在新疆的风险分析[J]. 西北林学院学报, 2011, 26(5): 153–156.

岳朝阳, 张新平, 张静文, 等. 焉耆盆地林地释放花绒寄甲防治光肩星天牛效果初探[J]. 新疆农业科学, 2013, 50(11): 2085–2091.

张风娟, 金幼菊, 陈华君, 等. 光肩星天牛对4种不同槭树科寄主植物的选择机制[J]. 生态学报, 2006, 26(3): 871–875.

张静文, 岳朝阳, 张新平, 等. 焉耆盆地光肩星天牛不育试验研究初报[J]. 防护林科技, 2013, (12): 11–12, 16.

张媛媛, 张胜男, 刘佳奇, 等. 飞机喷洒噻虫啉防治松墨天牛效果调查[J]. 中国森林病虫, 2016, 35(4): 36–38.

赵博光, 李周直, 葛庆杰. 光肩星天牛在杨树上产卵部位的选择[J]. 北京林业大学学报, 1997, 19(3): 29–33.

赵宏, 徐荣, 孙慧芳, 等. 不同药剂树干打孔注药防治光肩星天牛对比试验[J]. 黑龙江农业科学, 2010, (7): 67–68.

赵蓬晖, 张江涛, 王念. 欧美杨豫林K-38号对光肩星天牛的抗性研究[J]. 安徽农业科学, 2007, 35(8): 2308–2310.

赵新民, 李滔滔, 彭晓赟, 等. 光肩星天牛气味结合蛋白AglaOBP12同源建模及与乙酸-顺-3-己烯酯的分子对接研究[J]. 应用昆虫学报, 2019, 56(2): 290–297.

浙江省林业局. 世界著名生态工程——中国“三北防护林体系建设工程”[OL]. 2021-12-31. http://lyj.zj.gov.cn/.

周艳涛, 李硕, 孟昭军, 等. 光肩星天牛诱捕器颜色的改进及其引诱剂最佳缓释量的确定[J]. 林业科学, 2017, 53(6): 168–174.

朱宁, 张冬勇, 吴利平, 等. 聚集信息素和寄主植物挥发物对光肩星天牛和星天牛的引诱作用[J]. 昆虫学报, 2017, 60(4): 421–430.

熊举乾, 杨志刚, 楚光明. 兵团林果业绿色发展现状及实现途径探讨[J]. 新疆农垦科技, 2021, 44(2): 63–65.

吴雪海, 董宁. 兵团2020年主要林业虫害发生情况及2021年发生趋势预测[J]. 农家参谋, 2021, 10(20): 171–172.

中国政府网. 中共中央办公厅、国务院办公厅印发《关于全面推行林长制的意见》[OL]. 2021-01-12. http://www.gov.cn/.

栾海洋. 光肩星天牛生物学特性研究[J]. 内蒙古林业调查设计, 2016, 39(2): 86–90.

Aćimović S G, VanWoerkom A H, Garavaglia T, et al. Seasonal and cross-seasonal timing of fungicide trunk injections in apple trees to optimize management of apple scab [J]. Plant disease, 2016, 100(8): 1606–1616.

Aćimović S G, VanWoerkom A H, Reeb P D, et al. Spatial and temporal distribution of trunk-injected imidacloprid in apple tree canopies [J]. Pest Management Science, 2014, 70(11): 1751–1760.

Aidoo O F, Souza P G C, da Silva R S, et al. Climate-induced range shifts of invasive species (Diaphorina citri Kuwayama) [J]. Pest Management Science, 2022, 78: 2534–2549.

Archer L, Crane J H, Albrecht U, et al. Trunk injection as a tool to deliver plant protection materials—An overview of basic principles and practical considerations [J]. Horticulturae, 2022, 8(6): 552.

Ayayee P, Rosa C, Ferry J G, et al. Gut microbes contribute to nitrogen provisioning in a wood-feeding Cerambycid [J]. Environmental Entomology, 2014, 43(4): 903–912.

Baio F H R, Antuniassi U R, Castilho B R, et al. Factors affecting aerial spray drift in the Brazilian Cerrado [J]. PLoS One, 2019, 14(2): e0212289.

Beck J, Böller M, Erhardt A, et al. Spatial bias in the GBIF database and its effect on modeling species’ geographic distributions [J]. Ecological Informatics, 2014, 19: 10–15.

Berger C, Laurent F. Trunk injection of plant protection products to protect trees from pests and diseases [J]. Crop Protection, 2019, 124: 104831.

Bhandari B P, Cheng Z Q. Trunk injection of systemic insecticides to control stem and leaf gall wasps, Josephiella species (Hymenoptera: Agaonidae), on Chinese banyan (Rosales: Moraceae) in Hawaii [J]. Florida Entomologist, 2016, 99(2): 172–177.

Brown J L. SDM toolbox: a python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses [J]. Methods in Ecology and Evolution, 2014, 5: 694–700.

Byeon D, Kim S, Jung J, et al. Climate‐based ensemble modelling to evaluate the global distribution of Anoplophora glabripennis (Motschulsky) [J]. Agricultural and Forest Entomology, 2021, 23: 569–583.

Byrne F J, Almanzor J, Tellez I, et al. Evaluation of trunk-injected emamectin benzoate as a potential management strategy for Kuroshio shot hole borer in avocado trees [J]. Crop Protection, 2020, 132: 105136.

Byrne F J, Krieger R I, Doccola J, et al. Seasonal timing of neonicotinoid and organophosphate trunk injections to optimize the management of avocado thrips in California avocado groves [J]. Crop Protection, 2014, 57: 20–26.

Byrne F J, Urena A A, Robinson L J, et al. Evaluation of neonicotinoid, organophosphate and avermectin trunk injections for the management of avocado thrips in California avocado groves [J]. Pest Management Science, 2012, 68(5): 811–817.

Cao L M, Wang X Y, Gould Juli-Ruth, et al. Bracon planitibiae sp. nov. (Hymenoptera: Braconidae), a new parasitoid of Asian longhorned beetle (Anoplophora glabripennis) [J]. Zootaxa, 2019, 4671(3): 427–433.

Carter M, Smith M, Harrison R. Genetic analyses of the Asian longhorned beetle (Coleoptera, Cerambycidae, Anoplophora glabripennis), in North America, Europe and Asia [J]. Biological Invasions, 2010, 12(5): 1165–1182.

Chaney W R. Anatomy and physiology related to chemical movement in trees [J]. Arboriculture Journal, 1986, 12: 85–91.

Chen P, Douzals J P, Lan Y, et al. Characteristics of unmanned aerial spraying systems and related spray drift: A review [J]. Frontiers in Plant Science, 2022, 13: 870956.

Chihaoui-Meridja S, Harbi A, Abbes K, et al. Systematicity, persistence and efficacy of selected insecticides used in endotherapy to control the red palm weevil Rhynchophorus ferrugineus (Olivier, 1790) on Phoenix canariensis [J]. Phytoparasitica, 2020, 48(1):75–85.

Clifton E H, Gardescu S, Behle R W, et al. Asian longhorned beetle bioassays to evaluate formulation and dose-response effects of Metarhizium microsclerotia [J]. Journal of Invertebrate Pathology, 2019a, 163: 64–66.

Clifton E H, Gardescu S, Behle R W, et al. Optimizing application rates of Metarhizium brunneum (Hypocreales: Clavicipitaceae) microsclerotia for infecting the invasive Asian longhorned beetle (Coleoptera: Cerambycidae) [J]. Journal of Economic Entomology, 2020a, 113(6): 2650–2656.

Clifton E H, Jaronski S T, Hajek A E. Virulence of commercialized fungal entomopathogens against Asian longhorned beetle (Coleoptera: Cerambycidae) [J]. Journal of Insect Science, 2020b, 20(2): 1–6.

Clifton E H, Cortell J, Ye L Q, et al. Impacts of Metarhizium brunneum F52 infection on the flight performance of Asian longhorned beetles, Anoplophora glabripennis [J]. PloS One. 2019b, 14(9): e0221997.

Cobos M E, Peterson A T, Barve N, et al. kuenm: an R package for detailed development of ecological niche models using Maxent [J]. PeerJ, 2019, 7: e6281.

Cook S P, Sloniker B D, Rust M L. Efficacy of two bole-injected systemic insecticides for protecting Douglas-fir from damage by Douglas-fir tussock moth and fir coneworm [J]. Western Journal of Applied Forestry, 2013, 28: 166–169.

Coslor C C, Sundin G W, Wise J C, et al. The efficacy of trunk injections of emamectin benzoate and phosphorous acid for control of obliquebanded leafroller and apple scab on semi-dwarf apple [J]. Crop Protection, 2019, 118: 44–49.

Coslor C C, Vandervoort C, Wise J C, et al. Control of insect pests using trunk injection in a newly established apple orchard [J]. International Journal of Fruit Science, 2019, 19(2): 151–164.

Coslor C C, Vandervoort C, Wise J C, et al. Insecticide dose and seasonal timing of trunk injection in apples influence efficacy and residues in nectar and plant parts [J]. Pest Management Science, 2018, 75(5): 1453–1463.

Coyle D R, Trotter R T, Bean M S, et al. First recorded Asian longhorned beetle (Coleoptera: Cerambycidae) infestation in the Southern United States [J]. Journal of Integrated Pest Management, 2021, 12(1): 10.

Crook D J, Lance D R, Mastro V C. Identification of a potential third component of the male-produced pheromone of Anoplophora glabripennis and its effect on behavior [J]. Journal of Chemical Ecology, 2014, 40: 1241–1250.

Daniela L, Riccardo F, Costanza J, et al. Reproductive biology of Sclerodermus brevicornis, a European parasitoid developing on three species of invasive longhorn beetles [J]. Biological Control, 2017, 105: 40–48.

Demidko D A, Demidko N N, Mikhaylov P V, et al. Biological strategies of invasive bark beetles and borers species [J]. Insects, 2021, 12: 367–367.

Dodds K J, Orwig D A. An invasive urban forest pest invades natural environments - Asian longhorned beetle in northeastern US hardwood forests [J]. Canadian Journal of Forest Research, 2011, 41(9): 1729–1742.

Duan J J, Aparicio E, Tatman D, et al. Potential new associations of north American parasitoids with the invasive Asian longhorned beetle (Coleoptera: Cerambycidae) for biological control [J]. Journal of Economic Entomology, 2016, 109(2): 699–704.

Elith J, Phillips S J, Hastie T, et al. A statistical explanation of MaxEnt for ecologists [J]. Diversity and Distributions, 2011, 17: 43–57.

Elmes A, Rogan J, Williams C, et al. Modeling the potential dispersal of Asian longhorned beetle using circuit theory [J]. The Professional Geographer, 2019, 71(4): 580–594.

Favaro R, Wichmann L, Ravn H P, et al. Spatial spread and infestation risk assessment in the Asian longhorned beetle, Anoplophora glabripennis [J]. Entomologia Experimentalis et Applicata, 2015, 155(2): 95–101.

Fernández J E, Durán P J, Palomo M J, et al. Calibration of sap flow estimated by the compensation heat pulse method in olive, plum and orange trees: relationships with xylem anatomy [J]. Tree Physiology, 2006, 26: 719–728.

Fettig C J, Burnside R E, Schultz M E. Injection of emamectin benzoate protects paper birch from birch leafminer (Hymenoptera: tenthredinidae) for two field seasons [J]. Journal of Entomological Science, 2013, 48: 166–168.

Fettig C J, Munson A S, Grosman D M, et al. Evaluations of emamectin, benzoate and propiconazole for protecting individual Pinus contorta from mortality attributed to colonization by Dendroctonus ponderosae and associated fungi [J]. Pest Management Science, 2014, 70 (5), 771–778.

Fick S E, Hijmans R J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas [J]. International Journal of Climatology, 2017, 37: 4302– 4315.

Fisher J J, Hajek A E. Influence of mating and age on susceptibility of the beetle Anoplophora glabripennis to the fungal pathogen Metarhizium brunneum [J]. Journal of Invertebrate Pathology, 2016, 136: 142–148.

Gardescu S, Hajek A E, Goble T A, et al. Metarhizium microsclerotia and hydrogel versus hydromulch: esting fungal formulations against Asian longhorned beetles [J]. Biocontrol Science and Technology, 2017, 27(8): 918–930.

Ge X Z, Zong S X, He S Y, et al. Areas of China predicted to have a suitable climate for Anoplophora chinensis under a climate-warming scenario [J]. Entomologia Experimentalis et Applicata, 2014, 153: 256–265.

Geib S M, Scully E D, Jimenez-Gasco M M, et al. Phylogenetic analysis of Fusarium solani associa ted with the Asian longhorned beetle, Anoplophora glabripennis [J]. Insects, 2012, 3(1): 141–160.

Goble T A, Gardescu S, Fisher J J, et al. Conidial production, persistence and pathogenicity of hydromulch formulations of Metarhizium brunneum F52 microsclerotia under forest conditions [J]. Biological Control, 2016, 95: 83–93.

Goble T A, Gardescu S, Jackson M A, et al. Evaluating Metarhizium brunneum F52 microsclerotia in hydromulch formulations using different tackifiers under forest and orchard conditions[J]. BioControl, 2017, 62(6): 769–778.

Goble T A, Rehner S A, Long S J, et al. Comparing virulence of North American Beauveria brongniartii and commercial pathogenic fungi against Asian longhorned beetles [J]. Biological Control, 2014, 72: 91–97.

Golec J R, Duan J J, Hough-Goldstein J. Influence of temperature on the reproductive and developmental biology of Ontsira mellipes (Hymenoptera: Braconidae): Implications for biological control of the Asian longhorned beetle (Coleoptera: Cerambycidae) [J]. Environmental Entomology, 2017, 46(4): 978–987.

Gould J R, Aflague B, Murphy T C, et al. Collecting nontarget wood-boring insects for host-specificity testing of natural enemies of Cerambycids: A case study of Dastarcus helophoroides (Coleoptera: Bothrideridae), a parasitoid of the Asian longhorned beetle (Coleoptera: Cerambycidae) [J]. Environmental Entomology, 2018, 47: 1440–1450.

Haack R A, Hérard F, Sun J H, et al. Managing invasive populations of Asian longhorned beetle and citrus longhorned beetle: a worldwide perspective [J]. Annual Review of Entomology, 2010, 55: 521–546.

Hall L P, Graves F, Myrick A, et al. Labial and maxillary palp recordings of the Asian longhorned beetle, Anoplophora glabripennis, reveal olfactory and hygroreceptive capabilities [J]. Journal of Insect Physiology, 2019, 117: 103905.

Hoover K, Keena M, Nehme M, et al. Sex-specific trail pheromone mediates complex mate finding behavior in Anoplophora glabripennis [J]. Journal of Chemical Ecology, 2014, 40: 169–180.

Hu J F, Angeli S, Schuetz S, et al. Ecology and management of exotic and endemic Asian longhorned beetle Anoplophora glabripennis [J]. Agricultural and Forest Entomology, 2009, 11(4): 359–375.

Hu J, Jiang J, Wang N, et al. Control of citrus Huanglongbing via trunk injection of plant defense activators and antibiotics [J]. Phytopathology, 2018, 108(2): 186–195.

Hu J, Wang N. Evaluation of the spatiotemporal dynamics of oxytetracycline and its control effect against Citrus Huanglongbing via trunk injection [J]. Phytopathology, 2016, 106: 1495–1503.

Hu P, Wang J Z, Cui M M, et al. Antennal transcriptome analysis of the Asian longhorned beetle Anoplophora glabripennis [J]. Scientific Reports, 2016, 6: 26652.

Huang J X, Qu B R, Fang G F, et al. The drivers of the Asian longhorned beetle disaster show significant spatial heterogeneity [J]. Ecological Indicators, 2020, 117: 106680.

Huang J, Zhang J, Li Y, et al. Evaluation of the effectiveness of insecticide trunk injections for control of Latoia lepida (Cramer) in the sweet olive tree Osman fragrans [J]. PeerJ, 2016, 4: e2480.

Jactel H, Moreira X, Castagneyrol B. Tree diversity and forest resistance to insect pests: patterns, mechanisms and prospects [J]. Annual Review of Entomology, 2020, 66: 277–296.

Javal M, Lombaert E, Tsykun T, et al. Deciphering the worldwide invasion of the Asian long-horned beetle: a recurrent invasion process from the native area together with a bridgehead effect [J]. Molecular Ecology, 2019, 28: 951–967.

Jimenez-Valverd A. Insights into the area under the receiver operating characteristic curve (AUC) as a discriminationmeasure in species distribution modelling [J]. Global Ecology and Biogeography, 2012, 21 498–507.

Keena M A, Sánchez V. Reproductive behaviors of Anoplophora glabripennis (Coleoptera: Cerambycidae) in the laboratory [J]. Journal of Economic Entomology, 2018, 111: 620–628.

Keena M A. Factors That Influence Flight Propensity in Anoplophora glabripennis (Coleoptera: Cerambycidae) [J]. Environmental Entomology, 2018, 47: 1233–1241.

Kiss M, Hachoumi I, Nagy V, et al. Preliminary results about the efficacy of abamectin trunk injection against the walnut husk fly (Rhagoletis completa) [J]. Journal of Plant Diseases and Protection, 2020, 128: 333–338.

Kozlowski T T, Hughes J F, Leyton L. Movement of injected dyes in gymnosperm stems in relation to tracheid alignment [J]. Forestry, 1967, 40: 207–219.

Kramer-Schadt S, Niedballa J, Pilgrim J D, et al. The importance of correcting for sampling bias in MaxEnt species distribution models [J]. Diversity and Distributions, 2013, 19: 1366–1379.

Lan Y B, Qian S C, Chen S D, et al. Influence of the downwash wind field of plant protection UAV on droplet deposition distribution characteristics at different flight heights [J]. Agronomy, 2021, 11(12): 2399.

Lecheta M C, Corrêa R C, Moura M O. Climate shapes the geographic distribution of the blowfly Sarconesia chlorogaster (Diptera: Calliphoridae): An environmental niche modeling approach [J]. Environmental Entomology, 2017, 46: 1051–1059.

Li D X, Li Z X, Liu Z W, et al. Climate change simulations revealed potentially drastic shifts in insect community structure and crop yields in China’s farmland [J]. Journal of Pest Science, 2022, 96: 55–69.

Li J Y, Kolbasov V G., Pang Z Q, et al. Evaluation of the control effect of SAR inducers against citrus Huanglongbing applied by foliar spray, soil drench or trunk injection [J]. Phytopathology Research, 2021, 3(1): 2.

Li J Y, Kolbasov V, Lee D, et al. Residue dynamics of streptomycin in citrus delivered by foliar spray and trunk injection and effect on 'Candidatus Liberibacter asiaticus' titer [J]. Phytopathology, 2020, 111(7): 1095–1103.

Li Y, Li H E, Wang Z G, et al. Cloning, localization and bioinformatics analysis of a gene encoding an odorant-binding protein (OBP) in Anoplophora glabripennis (Motschulsky) [J]. Invertebrate Neuroscience, 2018, 18: 11.

Lian Y Y, Wang A Q, Peng S H, et al. Potential global distribution area projections of the aphid Lipaphis erysimi and its predator Eupeodes corollae in the context of climate change [J]. Frontiers in Plant Science, 2022, 13: 1019693.

Lim J, Oh H, Park S, et al. First record of the family Bothrideridae (Coleoptera) in Korea represented by the wood-boring beetle ectoparasite, Dastarcus helophoroides [J]. Journal of Asia-Pacific Entomology, 2012, 15: 273–275.

Lyu F, Hai X X, Wang Z G. Green-colored paperboard enhances the Asian longhorned beetle response to host plant odor cues [J]. Journal of Pest Science, 2021, 94: 1345–1355.

MacLeod A, Evans H F, Baker R H A. An analysis of pest risk from an Asian longhorn beetle (Anoplophora glabripennis) to hardwood trees in the European community [J]. Crop Protection, 2002, 21: 635–645.

Majidpour M, Maroofpour N, Ghane-Jahromi M. Potential demographic impact of the insecticide mixture between thiacloprid and deltamethrin on the cotton aphid and two of its natural enemies [J]. Bulletin of Entomological Research, 2022, 28: 1–12.

Marchioro M, Faccoli M. Successful eradication of the Asian longhorn beetle, Anoplophora glabripennis, from north-eastern Italy: protocol, techniques and results [J]. Insects, 2021, 12: 877.

Mason C J, Campbell A M, Scully E D, et al. Bacterial and fungal midgut community dynamics and transfer between mother and brood in the Asian longhorned beetle (Anoplophora glabripennis), an invasive xylophage [J]. Microbial Ecology, 2019, 77(1): 230–242.

Meng P S, Trotter R T, Keena M A, et al. Effects of pheromone and plant volatile release rates and ratios on trapping Anoplophora glabripennis (Coleoptera: Cerambycidae) in China [J]. Environmental Entomology, 2014, 43(5): 1379–1388.

Minko G, Fagg P C. Control of some mistletoe species on eucalypts by trunk injection with herbicides [J]. Australian Forestry, 2013, 52(2): 94–102.

Mitchell R F, Hall L P, Reagel P F, et al. Odorant receptors and antennal lobe morphology offer a new approach to understanding olfaction in the Asian longhorned beetle [J]. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural & Behavioral Physiology, 2017, 203(2): 99–109.

Mokhtaryan A, Sheikhigarjan A, Arbab A, et al. The efficiency of systemic insecticides and complete fertilizer by trunk injection method against leopard moth in infested walnut trees [J]. The Journal of Basic and Applied Zoology, 2021, 82(1): 55.

Morewood W D, Hoover K, Neiner P R, et al. Host tree resistance against the polyphagous wood-boring beetle Anoplophora glabripennis [J]. Entomologia Experimentalis et Applicata, 2010, 110(1): 79–86.

Nehme M E, Keena M A, Zhang A, et al. Attraction of Anoplophora glabripennis to male-produced pheromone and plant volatiles [J]. Environmental Entomology, 2009, 38(6): 1745–1755.

Nehme M E, Keena M A, Zhang A, et al. Evaluating the use of male-produced pheromone components and plant volatiles in two trap designs to monitor Anoplophora glabripennis [J]. Environmental Entomology, 2010, 39(1): 169–176.

Nehme M E, Trotter R T, Keena M A, et al. Development and evaluation of a trapping system for Anoplophora glabripennis (Coleoptera: Cerambycidae) in the United States [J]. Environmental Entomology, 2014, 43(4): 1034–1044.

Nicolas E, Torrecillas A, Ortuño M F, et al. Evaluation of transpiration in adult apricot trees from sap flow measurements [J]. Agricultural Water Management, 2005, 72: 131–145.

Ogura N, Tabata K, Wang W. Rearing of the colydiid beetle predator, Dastarcus helophoroides, on artificial diet [J]. BioControl, 1999, 44: 291–299.

Orčić S M, Čelić T V, Purać J S, et al. Acute toxicity of sublethal concentrations of thiacloprid and clothianidin to immune response and oxidative status of honey bees [J]. Apidologie, 2022, 53: 50.

Orians C M, Smith S D P, Sack L. How are leaves plumbed inside a branch? Differences in leaf-to-leaf hydraulic sectoriality among six temperate tree species [J]. Journal of Experimental Botany, 2005, 56: 2267–2273.

Pedlar J H, McKenney D W, Yemshanov D, et al. Potential economic impacts of the Asian longhorned beetle (Coleoptera: Cerambycidae) in eastern Canada [J]. Journal of Economic Entomology, 2020, 113: 839–850.

Peterson A T, Scachetti-Pereira R. Potential geographic distribution of Anoplophora glabripennis (Coleoptera: Cerambycidae) in North America [J]. American Midland Naturalist, 2004, 151: 170–178.

Petitpierre B, Kueffer C, Broennimann O, et al. Climatic niche shifts are rare among terrestrial plant invaders [J]. Science, 2012, 335: 1344–1348.

Phillips S J, Anderson R P, Dudik M, et al. Opening the black box: an open-source release of Maxent [J]. Ecography, 2017, 40: 887–893.

Phillips S J, Anderson R P, Schapire R E. Maximum entropy modeling of species geographic distributions [J]. Ecological Modelling, 2006, 190: 231–259.

Picot J J, Kristmanson D D. Forestry pesticide aerial spraying: spray droplet generation, dispersion, and deposition [M]. Springer Science & Business Media, 2012.

Poland T M, Haack R A, Petrice T R, et al. Field evaluations of systemic insecticides for control of Anoplophora glabripennis (Coleoptera: Cerambycidae) in China [J]. Journal of Economic Entomology, 2006, 99(2): 383–392.

Rim K, Golec J R, Duan J J. Host selection and potential non-target risk of Dastarcus helophoroides, a larval parasitoid of the Asian longhorned beetle, Anoplophora glabripennis [J]. Biological Control, 2018, 123: 120–126.

Russell C W, Ugine T A, Hajek A E, et al. Interactions between imidacloprid and Metarhizium brunneum on adult Asian longhorned beetles (Anoplophora glabripennis (Motschulsky)) (Coleoptera: Cerambycidae) [J]. Journal of Invertebrate Pathology, 2010, 105(3): 305–311.

Sánchez-Zamora M A, Fernández-Escobar R. Injector-size and the time of application affects uptake of tree trunk-injected solutions [J]. Scientia Horticulturae, 2000, 84: 163–177.

Schloss P D, Delalibera I, Handelsman J, et al. Bacteria associated with the guts of two wood-boring beetles: Anoplophora glabripennis and Saperda vestita (Cerambycidae) [J]. Environmental Entomology, 2006, 35(3): 625–629.

Scully E D, Geib S M, Carlson J E, et al. Functional genomics and microbiome profiling of the Asian longhorned beetle (Anoplophora glabripennis) reveal insights into the digestive physiology and nutritional ecology of wood feeding beetles [J]. Biomedcentral Genomics, 2014, 15(1): 1096–1117.

Scully E D, Geib S M, Mason C J, et al. Host-plant induced changes in microbial community structure and midgut gene expression in an invasive polyphage (Anoplophora glabripennis) [J]. Scientific Reports, 2018, 8(1): 4884–4895.

Shan C F, Wu J J, Song C C, et al. Control efficacy and deposition characteristics of an unmanned aerial spray system low-volume application on corn fall armyworm Spodoptera frugiperda [J]. Frontiers in Plant Science, 2022, 13: 900939.

Shatz A J, Rogan J, Sangermano F, et al. Characterizing the potential distribution of the invasive Asian longhorned beetle (Anoplophora glabripennis) in Worcester County, Massachusetts [J]. Applied Geography, 2013, 45: 259–268.

Shatz A J, Rogan J, Sangermano, F, et al. Modeling the risk of spread and establishment for Asian longhorned beetle (Anoplophora glabripennis) in Massachusetts from 2008-2009 [J]. Geocarto International, 2016, 31: 813–831.

Sjöman H, Ôstberg J, Nilsson J. Review of host trees for the wood-boring pests Anoplophora glabripennis and Anoplophora chinensis: an urban forest perspective [J]. Arboriculture and Urban Forestry, 2014, 40: 143–164.

Sousa E, Naves P, Vieira M, et al. Prevention of pine wilt disease induced by Bursaphelenchus xylophilus and Monochamus galloprovincialis by trunk injection of emamectin benzoate [J]. Phytoparasitica, 2013, 41(2): 143–148.

Straw N A, Fielding N J, Tilbury C, et al. History and development of an isolated outbreak of Asian longhorn beetle Anoplophora glabripennis (Coleoptera: Cerambycidae) in southern England [J]. Agricultural and Forest Entomology, 2016, 18: 280–293.

Suh D Y, Jung J, Lee S K, et al. Effect of aerial spraying of thiacloprid on pine sawyer beetles (Monochamus alternatus) and honey bees (Apis mellifera) in pine forests [J]. Entomological Research, 2020, 51(2): 83–89.

Sunamura E, Tamura S, Taki H, et al. Efficacy of two neonicotinoid insecticides against invasive wood borer Aromia bungii larvae in dietary toxicity test [J]. Insects, 2021, 12(7): 592.

Syfert M M, Smith M J, Coomes D A. The effects of sampling bias and model complexity on the predictive performance of MaxEnt species distribution models. [J] PLoS One, 2013, 8: e55158.

Tanis S R, Cregg B M, Mota-Sanchez, D, et al. Spatial and temporal distribution of trunk-injected 14C-imidacloprid in fraxinus trees [J]. Pest Management Science, 2012, 68: 529–536.

Thompson D G, Tonon A, Beltran E, et al. Inhibition of larval growth and adult fecundity in Asian long-horned beetle (Anoplophora glabripennis) exposed to azadirachtins under quarantine laboratory conditions [J]. Pest Management Science, 2018, 74: 1351–1361.

Thomson L J, Macfadyen S, Hoffmann A A. Predicting the effects of climate change on natural enemies of agricultural pests [J]. Biological Control, 2010, 52: 296–306.

Togashi K, Itabashi M. Maternal size dependency of ovariole number in Dastarcus helophoroides (Coleoptera: Colydiidae) [J]. Journal of Forest Research, 2005, 10: 373–376.

Trotter R T, Hull-Sanders H M. Quantifying dispersal of the Asian longhorned beetle (Anoplophora glabripennis, Coleoptera) with incomplete data and behavioral knowledge [J]. Biological Invasions, 2015, 17(12): 3359–3369.

Turcotte R M, Lagalante A, Jones J, et al. Spatial and temporal distribution of imidacloprid within the crown of eastern hemlock [J]. Journal of Insect Science, 2017, 17(1): 22.

Turgeon J J, Orr M, Grant C, et al. Decade-old satellite infestation of Anoplophora glabripennis Motschulsky (Coleoptera: Cerambycidae) found in Ontario, Canada outside regulated area of founder population [J]. Geocarto International, 2015, 69: 674–678.

Ugine T A, Gardescu S, Lewis P A, et al. Efficacy of imidacloprid, trunk-injected into Acer platanoides, for control of adult Asian longhorned beetles (Coleoptera: Cerambycidae) [J]. Journal of Economic Entomology, 2012, 105(6): 2015–2028.

VanWoerkom A H, Aćimović S G, Sundin G W, et al. Trunk injection: An alternative technique for pesticide delivery in apples [J]. Crop Protection, 2014, 65: 173–185.

Venturas M D, Sperry J S, Hacke U G. Plant xylem hydraulics: what we understand,current research, and future challenges [J]. Journal of Integrative Plant Biology, 2017, 9: 356–389.

Wang C L, Herbst A, Zeng A J, et al. Assessment of spray deposition, drift and mass balance from unmanned aerial vehicle sprayer using an artificial vineyard [J]. Science of the Total Environment, 2021, 777: 146181.

Wang C L, Liu Y, Zhang Z H, et al. Spray performance evaluation of a six-rotor unmanned aerial vehicle sprayer for pesticide application using an orchard operation mode in apple orchards [J]. Pest Management Science, 2022b, 78(6): 2449–2466.

Wang C, Hawthorne D, Qin Y J, et al. Impact of climate and host availability on future distribution of Colorado potato beetle [J]. Scientific Reports, 2017, 7: 4489.

Wang J H, Che S C, Qiu L F, et al. Efficacy of emamectin benzoate trunk injection against the Asian long-horned beetle [Anoplophora glabripennis (Coleoptera: Cerambycidae] [J]. Journal of Economic Entomology, 2020c, 113: 340–347.

Wang J Z, Gao P, Luo Y Q, et al. Characterization and expression profiling of odorant-binding proteins in Anoplophora glabripennis Motsch [J]. Gene, 2019a, 693: 25–36.

Wang L X, Li C C, Wang X, et al. Gut lignocellulose activity and microbiota in Asian longhorned beetle and their predicted contribution to larval nutrition [J]. Frontiers in Microbiology, 2022a, 13: 899865.

Wang X G, Aparicio E M, Duan J J, et al. Optimizing parasitoid and host densities for efficient rearing of Ontsira mellipes (Hymenoptera: Braconidae) on Asian longhorned beetle (Coleoptera: Cerambycidae) [J]. Environmental Entomology, 2020b, 49(5): 1041–1048.

Wang X G, Aparicio E M, Murphy T C, et al. Assessing the host range of the North American parasitoid Ontsira mellipes: Potential for biological control of Asian longhorned beetle [J]. Biological Control, 2019b, 137: 104028.

Wang X G, Aparicio E M. Reproductive traits of Ontsira mellipes (Hymenoptera: Braconidae), a North American parasitoid, as a novel biological control agent for exotic Anoplophora glabripennis (Coleoptera: Cerambycidae) [J]. Journal of Economic Entomology, 2020a, 113(5): 2112–2119.

Wang X G, Faucher J, Dhandapani R K, et al. Potential effects of RNA interference of Asian longhorned beetle on its parasitoid [J]. Pest Management Science, 2022c, 79(4): 1557–1565.

Warren D L, Seifert S N. Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria [J]. Ecological Applications, 2011, 21: 335–342.

Wei J R, Zhou Q, Hall L, et al. Olfactory sensory neurons of the Asian longhorned beetle, Anoplophora glabripennis, specifically responsive to its two aggregation-sex pheromone components [J]. Journal of Chemical Ecology, 2018, 44: 637–649.

Wheeler C E, Vandervoort C, Wise J C. Organic control of pear psylla in pear with trunk injection [J]. Insects, 2020, 11(9): 650.

Wise J C, Wise A G, Rakotondravelo M, et al. Trunk injection delivery of dsRNA for RNAi-based pest control in apple trees [J]. Pest Management Science, 2022, 78(8): 3528–3533.

Wu T W, Lu Y X, Fang Y J, et al. The Beijing climate center climate system model (BCC-CSM): the main progress from CMIP5 to CMIP6 [J]. Geoscientific Model Development, 2019, 12: 1573–600.

Xu T, Hansen L, Cha D H, et al. Identification of a female-produced pheromone in a destructive invasive species: Asian longhorn beetle, Anoplophora glabripennis [J]. Journal of Pest Science, 2020, 93: 1321–1332.

Xu Y B, Li Y R, Shi F M, et al. Cloning and molecular characterization of Hsp genes from Anoplophora glabripennis and their responses to cold stress. International Journal of Molecular Sciences, 2022a, 23(19): 11958.

Xu Y B, Shi F M, Li Y R, et al. Genome-wide identification and expression analysis of the Hsp gene superfamily in Asian long-horned beetle (Anoplophora glabripennis). International Journal of Biological Macromolecules, 2022b, 200: 583–592.

Yamamoto Y, Kaneko S, Yoshimura T, et al. Effects of dinotefuran trunk injection against the red-necked longhorn beetle Aromia bungii (Coleoptera: Cerambycidae) in Japanese flowering cherry trees [J]. Journal of Forest Research, 2022, 27(6): 460–468.

Yan S Y, Zhang G, Liu J F, et al. Anoplophora glabripennis: Host choice, oviposition and performance of new hatched larvae on ‘resistant’ poplar species [J]. Journal of Applied Entomology, 2021, 146(12): 98–105.

Yasui H, Uechi N, Fujiwara-Tsujii N. Differences in male mate recognition between the invasive Anoplophora glabripennis (Coleoptera: Cerambycidae) and Japanese native A. malasiaca. Insects, 2023, 14(2): 171.

Yang C, Zhan Z Y, Zong S X, et al. The relationship between landscape patterns and populations of Asian longhorned beetles [J]. Forests, 2022, 13(12): 1981.

Zhan H, Wang C L, Li Y F, et al. Field evaluation of spray drift and non-targeted soybean injury from unmanned aerial spraying system (UASS) herbicide application under acceptable operation conditions [J]. Pest Management Science, 2022, 79(3): 1140–1153.

Zhang A J, Oliver J E, Aldrich J R, et al. Stimulatory beetle volatiles for the Asian longhorned beetle, Anoplophora glabripennis (Motschulsky) [J]. Zeitschrift für Naturforschung C, 2015, 57: 553–558.

Zhang A J, Oliver J E, Chauhan K, et al. Evidence for contact sex recognition pheromone of the Asian longhorned beetle, Anoplophora glabripennis (Coleoptera: Cerambycidae) [J]. Naturwissenschaften, 2003, 90: 410–413.

Zhang K L, Yao L J, Meng J S, et al. Maxent modeling for predicting the potential geographical distribution of two peony species under climate change [J]. Science of the Total Environment, 2018, 634: 1326–1334.

Zhang Q C, Wang J G, Lei Y H. Predicting distribution of the Asian Longhorned Beetle, Anoplophora glabripennis (Coleoptera: Cerambycidae) and its natural enemies in China [J]. Insects, 2022, 13(8): 687.

Zhang S N, Li M, Xu Y B, et al. Genome-wide identification of the odorant receptor gene family and revealing key genes involved in sexual communication in Anoplophora glabripennis. International Journal of Molecular Sciences, 2023, 24(2): 1625. 

Zhou Y T, Ge X Z, Zou Y, et al. Prediction of the potential global distribution of the Asian longhorned beetle Anoplophora glabripennis (Coleoptera: Cerambycidae) under climate change [J]. Agricultural and Forest Entomology, 2021, 23: 557–568.

Zhu G P, Li H Q, Zhao L. Incorporating anthropogenic variables into ecological niche modeling to predict areas of invasion of Popillia japonica [J]. Journal of Pest Science, 2017, 90: 151–160.

中图分类号:

 S43    

开放日期:

 2023-05-30    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式