- 无标题文档
查看论文信息

题名:

 [NN]-型Zn配合物催化CO2偶联反应和N-杂环化合物脱氢反应    

作者:

 李烟    

学号:

 20202107061    

保密级别:

 秘密3年后开放    

语种:

 chi    

学科代码:

 085602    

学科:

 工学 - 材料与化工 - 化学工程    

学生类型:

 硕士    

学位:

 工程硕士    

学位类型:

 专业学位    

学位年度:

 2023    

学校:

 石河子大学    

院系:

 化学化工学院    

专业:

 材料与化工    

研究方向:

 化学工程    

导师姓名:

 刘宁    

导师单位:

  石河子大学    

完成日期:

 2023-05-10    

答辩日期:

 2023-05-11    

外文题名:

 CO2 coupling reaction and dehydrogenation of N-heterocyclic compounds catalyzed by [NN]-type Zn complex    

关键词:

 Zn配合物 ; 二氧化碳 ; 环氧化物 ; 丙炔胺 ; N-杂环类     

外文关键词:

 Zn complex ; carbon dioxide ; Epoxide ; Propargylamine ; N-heterocyclic compound     

摘要:

随着工业生产活动的增多,产生大量温室气体,引起了一系列环境问题。因此将CO2转化为高附加值化学品引起了广泛关注,其中CO2转化为环状碳酸酯是一种原子经济100%的方法。并且由于CO2是惰性气体,CO2的转化需要高温、高压的严苛条件。本文设计了一类Zn配合物用于催化CO2偶联反应、N-杂环类化合物脱氢反应。

1.针对常用于环氧化物和CO2环加成反应的Zn金属催化剂存在着配体不稳定、合成过程复杂、无水、无氧的苛刻条件和产率较低的问题。在课题组配体合成的基础上,合成了[NN]-型Zn配合物。该配合物的合成步骤简单,在空气氛围中能够快速合成,通过过滤、干燥即可得到纯净的化合物。

2.将配合物应用在CO2和环氧化物的偶联反应时,能够在常温、常压,较低的催化剂和季铵盐负载量的条件下催化末端环氧化物生成环状碳酸酯,适当的升高温度和压力也同样适用于内部环氧化物和植物油基环氧化物底物。通过控制实验、高分辨质谱研究发现,将催化剂、TBAI和环氧化物三者反应时,发现了催化剂和环氧化物配位的中间体,因此,提出了催化剂和TBAI发生阴离子交换后的产物是真正起催化作用的活性物质。

3.随后将[NN]-型Zn配合物应用到CO2和丙炔胺的环加成反应,成功制备了一系列噁唑烷酮化合物。底物普适性研究得出,苄基取代基底物表现出中等偏上的产率,而高位阻底物在升高温度后也可获得中等产率。在机理探究实验中,采用红外谱图、高分辨质谱来探究机理,发现Zn配合物主要起到活化丙炔胺的炔基氢的作用。

4.为了拓展[NN]-型Zn配合物应用性,选择将其应用到N-杂环类化合物(吲哚啉和1,2,3,4-四氢喹啉)的脱氢反应中,常用的脱氢催化剂是Ir、Ru、Pd等催化剂,但上述催化剂均属于贵金属催化剂。本文以Zn配合物为催化剂,叔丁基过氧化氢为氧化剂,在温度110 oC下反应24 h,生成相应的不饱和脱氢产物,并探究了一系列不同取代基底物的反应效果。通过控制实验确定化合物的脱氢位点,高分辨质谱监测反应过程的中间体,推测出Zn配合物催化N-杂环类化合物脱氢的反应机理。

外摘要要:

With the increase of industrial production activities, a large amount of greenhouse gases are generated, causing a series of environmental problems. Therefore, the conversion of CO2 into chemicals with high added value has attracted wide attention, and the conversion of CO2 into cyclic carbonate is a 100% atom economy method. And since CO2 is an inert gas, its conversion requires harsh conditions of high temperature and pressure. In this paper, a class of Zn complexes were designed to catalyze CO2 coupling reaction and dehydrogenation of N-heterocyclic compounds.

1. The Zn metal catalyst commonly used in epoxide and CO2 cycloaddition reaction has the problems of unstable ligand, complex synthesis process, anhydrous and oxygen free harsh conditions and low yield. On the basis of ligand synthesis in the research group, [NN] - type Zn complexes were synthesized. The synthesis steps of this complex are simple and can be quickly synthesized in an air atmosphere. Pure compounds can be obtained by filtration and drying.

2. When the complex is applied to the coupling reaction of CO2 and epoxides, it can catalyze the end epoxides to generate cyclic carbonate under the conditions of normal temperature, normal pressure, low catalyst and quaternary ammonium salt loading. Appropriate temperature and pressure rise are also applicable to the internal epoxides and vegetable oil-based epoxides substrates. Through controlled experiments and high-resolution mass spectrometry studies, it was found that when the catalyst, TBAI, and epoxide were reacted, intermediates were found to coordinate between the catalyst and epoxide. Therefore, it was proposed that the product of anion exchange between the catalyst and TBAI is the active substance that truly plays a catalytic role.

3. Subsequently, [NN] - type Zn complexes were applied to the cycloaddition reaction of CO2 and propionamide, and a series of oxazolidinones were successfully prepared. Studies on the universality of substrates have shown that benzyl substituted substrates exhibit moderate to high yields, while high-order hindered substrates can also achieve moderate yields at elevated temperatures. In the mechanism exploration experiment, infrared spectroscopy and high-resolution mass spectrometry were used to explore the mechanism, and it was found that Zn complexes can mainly activate the acetyl hydrogen of propargylamine.

4. In order to expand the application of [NN] - type Zn complex, it is selected to be applied to the dehydrogenation of N-heterocyclic compounds (indoline and 1,2,3,4-tetrahydroquinoline). The commonly used dehydrogenation catalysts are Ir, Ru, Pd and other catalysts, but the above catalysts are noble metal catalysts. This article uses Zn complex as catalyst and tert butyl hydrogen peroxide as oxidant to react at 110 ° C for 24 h to generate corresponding unsaturated dehydrogenation products, and explores the reaction effects of a series of different substituted substrates. By controlling experiments to determine the dehydrogenation sites of compounds and monitoring the intermediates in the reaction process using high-resolution mass spectrometry, the reaction mechanism of Zn complexes catalyzing the dehydrogenation of N-heterocyclic compounds is inferred.

参考文献:

[1] Ge Y, Liu W, Zou Y, et al. A solid Zn complex catalyst for efficient transformation of CO2 to cyclic carbonates at mild conditions[J]. Tetrahedron, 2022, 119.

[2] Rehman A, Saleem F, Javed F, et al. Recent advances in the synthesis of cyclic carbonates via CO2 cycloaddition to epoxides[J]. Journal of Environmental Chemical Engineering, 2021, 9(2).

[3] Bobbink F D, Gruszka W, Hulla M, et al. Synthesis of cyclic carbonates from diols and CO2 catalyzed by carbenes[J]. Chem Commun (Camb), 2016, 52(71): 10787-10790.

[4] Zhang Y, Zhang HGao K. Borane-trimethylamine complex as a reducing agent for selective methylation and formylation of amines with CO2[J]. Org Lett, 2021, 23(21): 8282-8286.

[5] Riemer D, Hirapara PDas S. Chemoselective synthesis of carbamates using co CO2 as carbon source[J]. ChemSusChem, 2016, 9(15): 1916-1920.

[6] Huang W B, Ren F Y, Wang M W, et al. Cu(ii)-catalyzed phosphonocarboxylative cyclization reaction of propargylic amines and phosphine oxide with CO2[J]. J Org Chem, 2020, 85(21): 14109-14120.

[7] Shao P, Wang S, Chen C, et al. Cp2ticl2-catalyzed regioselective hydrocarboxylation of alkenes with CO2[J]. Org Lett, 2016, 18(9): 2050-2053.

[8] Kuge K, Luo Y, Fujita Y, et al. Copper-catalyzed stereodefined construction of acrylic acid derivatives from terminal alkynes via CO2 insertion[J]. Org Lett, 2017, 19(4): 854-857.

[9] Subramanian S, Park J, Byun J, et al. Highly efficient catalytic cyclic carbonate formation by pyridyl salicylimines[J]. ACS Applied Materials & Interfaces, 2018, 10(11): 9478-9484.

[10] Wu X, Chen C, Guo Z, et al. Metal- and halide-free catalyst for the synthesis of cyclic carbonates from epoxides and carbon dioxide[J]. ACS Catalysis, 2019, 9(3): 1895-1906.

[11] Kim Y, Hyun K, Ahn D, et al. Efficient aluminum catalysts for the chemical conversion of CO2 into cyclic carbonates at room temperature and atmospheric CO2 pressure[J]. ChemSusChem, 2019, 12(18): 4211-4220.

[12] Meléndez J, North MPasquale R. Synthesis of cyclic carbonates from atmospheric pressure carbon dioxide using exceptionally active aluminium(salen) complexes as catalysts[J]. European Journal of Inorganic Chemistry, 2007, 2007(21): 3323-3326.

[13] North M, Achard TClutterbuck L. Asymmetric catalysis of carbon-carbon bond-forming reactions using metal(salen) complexes[J]. Synlett, 2005, 2005(12): 1828-1847.

[14] Melendez J, North MVilluendas P. One-component catalysts for cyclic carbonate synthesis[J]. Chem Commun (Camb), 2009, (18): 2577-2579.

[15] Clegg W, Harrington R W, North M, et al. Cyclic carbonate synthesis catalysed by bimetallic aluminium-salen complexes[J]. Chemistry, 2010, 16(23): 6828-6843.

[16] Kang Y, Wang B, Nan R, et al. Cyclic carbonate synthesis from epoxides and CO2 catalyzed by aluminum-salen complexes bearing a nido-C2B9 carborane ligand[J]. Inorg Chem, 2022, 61(23): 8806-8814.

[17] Castro-Osma J A, Alonso-Moreno C, Lara-Sánchez A, et al. Synthesis of cyclic carbonates catalysed by aluminium heteroscorpionate complexes[J]. Catal. Sci. Technol., 2014, 4(6): 1674-1684.

[18] North M, Quek S C Z, Pridmore N E, et al. Aluminum(salen) complexes as catalysts for the kinetic resolution of terminal epoxides via CO2 coupling[J]. ACS Catalysis, 2015, 5(6): 3398-3402.

[19] Martinez J, Castro-Osma J A, Alonso-Moreno C, et al. One-component aluminum(heteroscorpionate) catalysts for the formation of cyclic carbonates from epoxides and carbon dioxide[J]. ChemSusChem, 2017, 10(6): 1175-1185.

[20] Meléndez D O, Lara-Sánchez A, Martínez J, et al. Amidinate aluminium complexes as catalysts for carbon dioxide fixation into cyclic carbonates[J]. ChemCatChem, 2018, 10(10): 2271-2277.

[21] Rios Yepes Y, Quintero C, Osorio Meléndez D, et al. Cyclic carbonates from CO2 and epoxides catalyzed by tetra- and pentacoordinate amidinate aluminum complexes[J]. Organometallics, 2018, 38(2): 469-478.

[22] Milani J L S, Meireles A M, Cabral B N, et al. Highly active mn(iii) meso-tetrakis(2,3-dichlorophenyl)porphyrin catalysts for the cycloaddition of CO2 with epoxides[J]. Journal of CO2 Utilization, 2019, 30: 100-106.

[23] Cabral B N, Milani J L S, Meireles A M, et al. Mn(iii)–porphyrin catalysts for the cycloaddition of CO2 with epoxides at atmospheric pressure: Effects of lewis acidity and ligand structure[J]. New Journal of Chemistry, 2021, 45(4): 1934-1943.

[24] 刘桂杰, 付正强, 陈飞, et al. N-杂环卡宾-吡啶锰配合物/tbai催化CO2和环氧化物合成环状碳酸酯(英文)[J]. 有机化学: 1-12.

[25] Della Monica F, Vummaleti S V C, Buonerba A, et al. Coupling of carbon dioxide with epoxides efficiently catalyzed by thioether-triphenolate bimetallic iron(iii) complexes: Catalyst structure-reactivity relationship and mechanistic dft study[J]. Advanced Synthesis & Catalysis, 2016, 358(20): 3231-3243.

[26] Seong E Y, Kim J H, Kim N H, et al. Multifunctional and sustainable fe-iminopyridine complexes for the synthesis of cyclic carbonates[J]. ChemSusChem, 2019, 12(2): 409-415.

[27] Della Monica F, Buonerba A, Paradiso V, et al. [OSSO]-type Fe(iii) metallate as single-component catalyst for the co2 cycloaddition to epoxides[J]. Advanced Synthesis & Catalysis, 2019, 361(2): 283-288.

[28] Cho K, Lee S M, Kim H J, et al. Iron coordination to hollow microporous metal-free disalphen networks: Heterogeneous iron catalysts for CO2 fixation to cyclic carbonates[J]. Chemistry, 2020, 26(4): 788-794.

[29] Ramidi P, Gerasimchuk N, Gartia Y, et al. Synthesis and characterization of Co(iii) amidoamine complexes: Influence of substituents of the ligand on catalytic cyclic carbonate synthesis from epoxide and carbon dioxide[J]. Dalton Trans, 2013, 42(36): 13151-13160.

[30] Suleman S, Younus H A, Ahmad N, et al. Triazole based cobalt catalyst for CO2 insertion into epoxide at ambient pressure[J]. Applied Catalysis A: General, 2020, 591.

[31] Hwang S, Ryu J Y, Jung S H, et al. Cobalt complexes containing salen-type pyridoxal ligand and dmso for cycloaddition of carbon dioxide to propylene oxide[J]. Polyhedron, 2020, 178.

[32] Li H, Chen C-y, Nguyen H, et al. Asymmetric synthesis of cyclic indole aminals via 1,3-stereoinduction[J]. The Journal of Organic Chemistry, 2014, 79(18): 8533-8540.

[33] Alhafez A, Aytar EKilic A. Enhancing catalytic strategy for cyclic carbonates synthesized from co2 and epoxides by using cobaloxime-based double complex salts as catalysts[J]. Journal of CO2 Utilization, 2022, 63.

[34] Decortes A, Martinez Belmonte M, Benet-Buchholz J, et al. Efficient carbonate synthesis under mild conditions through cycloaddition of carbon dioxide to oxiranes using a Zn(salphen) catalyst[J]. Chem Commun (Camb), 2010, 46(25): 4580-4582.

[35] Haak R M, Decortes A, Escudero-Adán E C, et al. Shape-persistent octanuclear Zinc salen clusters: Synthesis, characterization, and catalysis[J]. Inorganic Chemistry, 2011, 50(17): 7934-7936.

[36] Yang Y, Hayashi Y, Fujii Y, et al. Efficient cyclic carbonate synthesis catalyzed by Zinc cluster systems under mild conditions[J]. Catal. Sci. Technol., 2012, 2(3): 509-513.

[37] Castro-Gomez F, Salassa G, Kleij A W, et al. A dft study on the mechanism of the cycloaddition reaction of CO2 to epoxides catalyzed by Zn(salphen) complexes[J]. Chemistry, 2013, 19(20): 6289-6298.

[38] Fuchs M A, Staudt S, Altesleben C, et al. A new air-stable zinc complex based on a 1,2-phenylene-diimino-2-cyanoacrylate ligand as an efficient catalyst of the epoxide- CO2 coupling[J]. Dalton Trans, 2014, 43(6): 2344-2347.

[39] Maeda C, Sasaki SEma T. Electronic tuning of zinc porphyrin catalysts for the conversion of epoxides and carbon dioxide into cyclic carbonates[J]. ChemCatChem, 2017, 9(6): 946-949.

[40] Zhang S, Han F, Yan S, et al. Efficient catalysts in situ generated from zinc, amide and benzyl bromide for epoxide/ CO2 coupling reaction at atmospheric pressure[J]. European Journal of Organic Chemistry, 2019, 2019(6): 1311-1316.

[41] Maeda C, Shimonishi J, Miyazaki R, et al. Highly active and robust metalloporphyrin catalysts for the synthesis of cyclic carbonates from a broad range of epoxides and carbon dioxide[J]. Chemistry, 2016, 22(19): 6556-6563.

[42] Ge Y, Cheng G, Xu N, et al. Zinc 2-n-methyl n-confused porphyrin: An efficient catalyst for the conversion of CO2 into cyclic carbonates[J]. Catalysis Science & Technology, 2019, 9(16): 4255-4261.

[43] Zahedi SSafaei E. Water soluble bifunctional complex of tetrapyridino porphyrazinato Zinc(ii) as highly efficient catalyst for CO2 insertion into epoxide cycles[J]. Journal of CO2 Utilization, 2020, 42.

[44] Virachotikul A, Laiwattanapaisarn N, Chainok K, et al. Bifunctional Zinc and magnesium schiff-base complexes containing quaternary ammonium side-arms for epoxide/ CO2 coupling reactions[J]. Dalton Transactions, 2021, 50(36): 12399-12403.

[45] Gao X-T, Gan C-C, Liu S-Y, et al. Utilization of CO2 as a c1 building block in a tandem asymmetric coupling-carboxylative cyclization sequence to 2-oxazolidinones[J]. ACS Catalysis, 2017, 7(12): 8588-8593.

[46] Liu X, Wang M Y, Wang S Y, et al. In situ generated Zinc(ii) catalyst for incorporation of CO2 into 2-oxazolidinones with propargylic amines at atmospheric pressure[J]. ChemSusChem, 2017, 10(6): 1210-1216.

[47] Murdock K C. 2-Oxazolidinones from an n-dealkylation reaction of phosgene with dialkylaminoalkanols. Isolation and reactivities of an n-acyl quaternary ammonium intermediate[J]. The Journal of Organic Chemistry, 1968, 33(4): 1367-1371.

[48] Zhang L, Fu XGao G. Anion-cation cooperative catalysis by ionic liquids[J]. ChemCatChem, 2011, 3(8): 1359-1364.

[49] Wang P, Qin J, Yuan D, et al. Synthesis of oxazolidinones from epoxides and isocyanates catalyzed by rare-earth-metal complexes[J]. ChemCatChem, 2015, 7(7): 1145-1151.

[50] Hu J, Ma J, Zhu Q, et al. Transformation of atmospheric co2 catalyzed by protic ionic liquids: Efficient synthesis of 2-oxazolidinones[J]. Angew Chem Int Ed Engl, 2015, 54(18): 5399-5403.

[51] Seo U RChung Y K. Potassium phosphate-catalyzed one-pot synthesis of 3-aryl-2-oxazolidinones from epoxides, amines, and atmospheric carbon dioxide[J]. Green Chemistry, 2017, 19(3): 803-808.

[52] Nayak P, Chandrasekar Murali A, Rao Velpuri V, et al. B−n coordinated phenanthroimidazole‐based zinc‐salen as a photocatalyst for the synthesis of oxazolidinones using carbon dioxide as a c1 source under mild reaction conditions[J]. Advanced Synthesis & Catalysis, 2023, 365(2): 230-237.

[53] Chen W D, Tang H, Wang W L, et al. Catalytic aerobic dehydrogenatin of n-heterocycles by n-hydoxyphthalimide[J]. Advanced Synthesis & Catalysis, 2020, 362(18): 3905-3911.

[54] Niu X KYang L. Manganese(iii) acetate catalyzed aerobic dehydrogenation of tertiary indolines, tetrahydroquinolines and an n-unsubstituted indoline[J]. Advanced Synthesis & Catalysis, 2021, 363(17): 4209-4215.

[55] Chen W, Tang H, Wang W, et al. Catalytic aerobic dehydrogenatin of n-heterocycles by n-hydoxyphthalimide[J]. Advanced Synthesis & Catalysis, 2020, 362(18): 3905-3911.

[56] Yoo H S, Yang Y S, Kim S L, et al. Syntheses of 1h-indoles, quinolines, and 6-membered aromatic n-heterocycle-fused scaffolds via palladium(ii)-catalyzed aerobic dehydrogenation under alkoxide-free conditions[J]. Chem Asian J, 2021, 16(21): 3469-3475.

[57] Bhattacharya A, DiMichele L M, Dolling U H, et al. Silylation-mediated oxidation of 4-aza-3-ketosteroids with ddq proceeds via ddq-substrate adducts[J]. Journal of the American Chemical Society, 1988, 110(10): 3318-3319.

[58] Nicolaou K C, Zhong Y LBaran P S. A new method for the one-step synthesis of α,β-unsaturated carbonyl systems from saturated alcohols and carbonyl compounds[J]. Journal of the American Chemical Society, 2000, 122(31): 7596-7597.

[59] Zhang X-W, Jiang G-Q, Lei S-H, et al. Iron-catalyzed α,β-dehydrogenation of carbonyl compounds[J]. Organic Letters, 2021, 23(5): 1611-1615.

[60] Yang R, Yue S, Tan W, et al. Dmso/t-buona/O2-mediated aerobic dehydrogenation of saturated n-heterocycles[J]. The Journal of Organic Chemistry, 2020, 85(11): 7501-7509.

[61] Manikpuri D, Pradhan D R, Chatterjee B, et al. Ruthenium-catalyzed acceptorless dehydrogenation of heterocycles[J]. Journal of Chemical Sciences, 2022, 134(4): 112.

[62] Stepanenko S A, Shivtsov D M, Koskin A P, et al. N-heterocyclic molecules as potential liquid organic hydrogen carriers: Reaction routes and dehydrogenation efficacy[J]. Catalysts, 2022, 12(10): 1260.

[63] Fertig R, Leowsky-Künstler F, Irrgang T, et al. Rational design of n-heterocyclic compound classes via regenerative cyclization of diamines[J]. Nature Communications, 2023, 14(1): 595.

[64] Jie X, Shang Y, Zhang X, et al. Cu-catalyzed sequential dehydrogenation–conjugate addition for β-functionalization of saturated ketones: Scope and mechanism[J]. Journal of the American Chemical Society, 2016, 138(17): 5623-5633.

[65] Shang Y, Jie X, Jonnada K, et al. Dehydrogenative desaturation-relay via formation of multicenter-stabilized radical intermediates[J]. Nature Communications, 2017, 8(1): 2273.

[66] Comerford J W, Ingram I D V, North M, et al. Sustainable metal-based catalysts for the synthesis of cyclic carbonates containing five-membered rings[J]. Green Chemistry, 2015, 17(4): 1966-1987.

[67] Della Monica FCapacchione C. Recent advancements in metal-catalysts design for co2/epoxide reactions[J]. Asian Journal of Organic Chemistry, 2022, 11(8): e202200300.

[68] Decortes A, Martínez Belmonte M, Benet-Buchholz J, et al. Efficient carbonate synthesis under mild conditions through cycloaddition of carbon dioxide to oxiranes using a zn(salphen) catalyst[J]. Chemical Communications, 2010, 46(25): 4580-4582.

[69] Martín C, Whiteoak C J, Martin E, et al. Easily accessible bifunctional zn(salpyr) catalysts for the formation of organic carbonates[J]. Catalysis Science & Technology, 2014, 4(6): 1615-1621.

[70] Fuchs M A, Staudt S, Altesleben C, et al. A new air-stable Zinc complex based on a 1,2-phenylene-diimino-2-cyanoacrylate ligand as an efficient catalyst of the epoxide–CO2 coupling[J]. Dalton Transactions, 2014, 43(6): 2344-2347.

[71] Ren Y, Chen J, Qi C, et al. A new type of lewis acid–base bifunctional m(salphen) (m=Zn, Cu and Ni) catalysts for CO2 fixation[J]. ChemCatChem, 2015, 7(10): 1535-1538.

[72] Lang X-D, Yu Y-C He L-N. Zn-salen complexes with multiple hydrogen bonding donor and protic ammonium bromide: Bifunctional catalysts for CO2 fixation with epoxides at atmospheric pressure[J]. Journal of Molecular Catalysis A: Chemical, 2016, 420: 208-215.

[73] Jiang X, Gou F, Fu X, et al. Ionic liquids-functionalized porphyrins as bifunctional catalysts for cycloaddition of carbon dioxide to epoxides[J]. Journal of CO2 Utilization, 2016, 16: 264-271.

[74] Zahedi SSafaei E. Water soluble bifunctional complex of tetrapyridino porphyrazinato Zinc(ii) as highly efficient catalyst for CO2 insertion into epoxide cycles[J]. Journal of CO2 Utilization, 2020, 42: 101308.

[75] dela Cruz J-a BHung C-H. Ni and Zn n-confused porphyrin complexes as recyclable catalysts for high efficiency solvent-free CO2 fixation into cyclic carbonates[J]. Catalysis Science & Technology, 2021, 11(6): 2144-2154.

[76] Takaishi K, Nath B D, Yamada Y, et al. Unexpected macrocyclic multinuclear zinc and nickel complexes that function as multitasking catalysts for CO2 fixations[J]. Angewandte Chemie International Edition, 2019, 58(29): 9984-9988.

[77] Luo R, Zhou X, Zhang W, et al. New bi-functional Zinc catalysts based on robust and easy-to-handle n-chelating ligands for the synthesis of cyclic carbonates from epoxides and co2 under mild conditions[J]. Green Chemistry, 2014, 16(9): 4179-4189.

[78] Bousquet B, Martinez ADufaud V. Zinc–azatrane complexes as efficient catalysts for the conversion of carbon dioxide into cyclic carbonates[J]. ChemCatChem, 2018, 10(4): 843-848.

[79] Chen J, Wu X, Ding H, et al. Tolerant bimetallic macrocyclic [osso]-type Zinc complexes for efficient co2 fixation into cyclic carbonates[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(48): 16210-16219.

[80] Ge Y, Liu W, Zou Y, et al. A solid zn complex catalyst for efficient transformation of CO2 to cyclic carbonates at mild conditions[J]. Tetrahedron, 2022, 119: 132857.

[81] Sobrino S, Navarro M, Fernández-Baeza J, et al. Efficient CO2 fixation into cyclic carbonates catalyzed by nno-scorpionate zinc complexes[J]. Dalton Transactions, 2019, 48(28): 10733-10742.

[82] Al-Qaisi F a M, Qaroush A K, Okashah I K, et al. The use of sustainable transition metals for the cycloaddition of epoxides and CO2 under mild reaction conditions[J]. European Journal of Inorganic Chemistry, 2023, 26(6): e202200357.

[83] Zhang S, Han F, Yan S, et al. Efficient catalysts in situ generated from zinc, amide and benzyl bromide for epoxide/ CO2 coupling reaction at atmospheric pressure[J]. European Journal of Organic Chemistry, 2019, 2019(6): 1311-1316.

[84] Chebolu R, Kommi D N, Kumar D, et al. Hydrogen-bond-driven electrophilic activation for selectivity control: Scope and limitations of fluorous alcohol-promoted selective formation of 1,2-disubstituted benzimidazoles and mechanistic insight for rationale of selectivity[J]. The Journal of Organic Chemistry, 2012, 77(22): 10158-10167.

[85] Milani J L S, Oliveira I S, Santos P A D, et al. Chemical fixation of carbon dioxide to cyclic carbonates catalyzed by zinc(ii) complex bearing 1,2-disubstituted benzimidazole ligand[J]. Chinese Journal of Catalysis, 2018, 39(2): 245-249.

[86] Nayak P, Murali A C, Pal P K, et al. Tetra-coordinated boron-functionalized phenanthroimidazole-based zinc salen as a photocatalyst for the cycloaddition of CO2 and epoxides[J]. Inorganic Chemistry, 2022, 61(37): 14511-14516.

[87] Li Y, Zhang X, Lan J, et al. Porous zn(bmic)(at) mof with abundant amino groups and open metal sites for efficient capture and transformation of co2[J]. Inorganic Chemistry, 2019, 58(20): 13917-13926.

[88] Wang L, Liu N, Dai B, et al. Selective c–n bond-forming reaction of 2,6-dibromopyridine with amines[J]. European Journal of Organic Chemistry, 2014, 2014(29): 6493-6500.

[89] Apohan E, Yilmaz U, Yilmaz O, et al. Synthesis, cytotoxic and antimicrobial activities of novel cobalt and zinc complexes of benzimidazole derivatives[J]. Journal of Organometallic Chemistry, 2017, 828: 52-58.

[90] Turktekin S, Akkurt M, Orhan E, et al. Dichlorobis[1-(2-ethoxyethyl)-1h-benzimidazole-[kappa]N3]cobalt(ii)[J]. Acta Crystallographica Section E, 2004, 60(9): 1220-1222.

[91] Chen F, Tao S, Liu N, et al. N-heterocyclic carbene-nitrogen molybdenum catalysts for utilization of CO2 [J]. Polyhedron, 2021, 196: 114990.

[92] Lan J, Qu Y, Xu P, et al. Novel hbd-containing Zn (dobdc) (datz) as efficiently heterogeneous catalyst for CO2 chemical conversion under mild conditions[J]. Green Energy & Environment, 2021, 6(1): 66-74.

[93] Milani J L S, da Mata Á F A, Oliveira I S, et al. Single-molecule magnet behaviour and catalytic properties of tetrahedral Co(ii) complexes bearing chloride and 1,2-disubstituted benzimidazole as ligands[J]. Dalton Transactions, 2022, 51(32): 12258-12270.

[94] Caló V, Nacci A, Monopoli A, et al. Cyclic carbonate formation from carbon dioxide and oxiranes in tetrabutylammonium halides as solvents and catalysts[J]. Organic Letters, 2002, 4(15): 2561-2563.

[95] Duan S, Jing X, Li D, et al. Catalytic asymmetric cycloaddition of CO2 to epoxides via chiral bifunctional ionic liquids[J]. Journal of Molecular Catalysis A: Chemical, 2016, 411: 34-39.

[96] Darensbourg D JYarbrough J C. Mechanistic aspects of the copolymerization reaction of carbon dioxide and epoxides, using a chiral salen chromium chloride catalyst[J]. Journal of the American Chemical Society, 2002, 124(22): 6335-6342.

[97] Darensbourg D J, Lewis S J, Rodgers J L, et al. Carbon dioxide/epoxide coupling reactions utilizing lewis base adducts of zinc halides as catalysts. Cyclic carbonate versus polycarbonate production[J]. Inorganic Chemistry, 2003, 42(2): 581-589.

[98] Desens WWerner T. Convergent activation concept for CO2 fixation in carbonates[J]. Advanced Synthesis & Catalysis, 2016, 358(4): 622-630.

[99] Motokucho SMorikawa H. Poly(hydroxyurethane): Catalytic applicability for the cyclic carbonate synthesis from epoxides and co2[J]. Chem Commun (Camb), 2020, 56(73): 10678-10681.

[100] Zhou H, Wang G-X, Zhang W-Z, et al. CO2 adducts of phosphorus ylides: Highly active organocatalysts for carbon dioxide transformation[J]. ACS Catalysis, 2015, 5(11): 6773-6779.

[101] Kumatabara Y, Okada MShirakawa S. Triethylamine hydroiodide as a simple yet effective bifunctional catalyst for co2 fixation reactions with epoxides under mild conditions[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(8): 7295-7301.

[102] Liu J, Yang G, Liu Y, et al. Efficient conversion of CO2 into cyclic carbonates at room temperature catalyzed by al-salen and imidazolium hydrogen carbonate ionic liquids[J]. Green Chemistry, 2020, 22(14): 4509-4515.

[103] Chen F, Chen D, Shi L, et al. “Fiddler crab-type” imidazolium salt as remote substituents tuning organocatalyst for the cycloaddition of epoxides with carbon dioxide[J]. Journal of CO2 Utilization, 2016, 16: 391-398.

[104] Li Y-D, Cui D-X, Zhu J-C, et al. Bifunctional phase-transfer catalysts for fixation of CO2 with epoxides under ambient pressure[J]. Green Chemistry, 2019, 21(19): 5231-5237.

[105] Sopeña S, Martin E, Escudero-Adán E C, et al. Pushing the limits with squaramide-based organocatalysts in cyclic carbonate synthesis[J]. ACS Catalysis, 2017, 7(5): 3532-3539.

[106] Sinha I, Lee Y, Bae C, et al. Computer-aided rational design of Fe(iii)-catalysts for the selective formation of cyclic carbonates from CO2 and internal epoxides[J]. Catalysis Science & Technology, 2017, 7(19): 4375-4387.

[107] Tenhumberg N, Büttner H, Schäffner B, et al. Cooperative catalyst system for the synthesis of oleochemical cyclic carbonates from co2 and renewables[J]. Green Chemistry, 2016, 18(13): 3775-3788.

[108] Wang L, Qi C, Xiong W, et al. Recent advances in fixation of CO2 into organic carbamates through multicomponent reaction strategies[J]. Chinese Journal of Catalysis, 2022, 43(7): 1598-1617.

[109] Zanda N, Zhou L, Alza E, et al. Continuous organocatalytic flow synthesis of 2-substituted oxazolidinones using carbon dioxide[J]. Green Chemistry, 2022, 24(11): 4628-4633.

[110] Qiu W, Jin F, Hao Y, et al. Amine-catalyzed site- and stereo-selective coupling of epoxy amines and carbon dioxide to construct oxazolidinones[J]. Organic Chemistry Frontiers, 2022, 9(16): 4294-4300.

[111] Chen F, Tao S, Deng Q-Q, et al. Binuclear tridentate hemilabile copper(i) catalysts for utilization of CO2 into oxazolidinones from propargylic amines[J]. The Journal of Organic Chemistry, 2020, 85(23): 15197-15212.

[112] Liu X, Wang M-Y, Wang S-Y, et al. In situ generated zinc(ii) catalyst for incorporation of CO2 into 2-oxazolidinones with propargylic amines at atmospheric pressure[J]. ChemSusChem, 2017, 10(6): 1210-1216.

[113] Brunel P, Monot J, Kefalidis C E, et al. Valorization of CO2: Preparation of 2-oxazolidinones by metal–ligand cooperative catalysis with scs indenediide pd complexes[J]. ACS Catalysis, 2017, 7(4): 2652-2660.

[114] 吉文欣, 楚秀秀, 张莎莎, et al., 吡啶基铑催化剂及其制备方法和应用.

[115] Yoshida M, Mizuguchi TShishido K. Synthesis of oxazolidinones by efficient fixation of atmospheric CO2 with propargylic amines by using a silver/1,8-diazabicyclo[5.4.0]undec-7-ene (dbu) dual-catalyst system[J]. Chemistry – A European Journal, 2012, 18(49): 15578-15581.

[116] Hu J, Ma J, Zhu Q, et al. Transformation of atmospheric CO2 catalyzed by protic ionic liquids: Efficient synthesis of 2-oxazolidinones[J]. Angewandte Chemie International Edition, 2015, 54(18): 5399-5403.

[117] Wang M-Y, Song Q-W, Ma R, et al. Efficient conversion of carbon dioxide at atmospheric pressure to 2-oxazolidinones promoted by bifunctional Cu(ii)-substituted polyoxometalate-based ionic liquids[J]. Green Chemistry, 2016, 18(1): 282-287.

[118] Zhou Z, Chen KHe L. Efficient and recyclable cobalt(ii)/ionic liquid catalytic system for CO2 conversion to prepare 2‐oxazolinones at atmospheric pressure[J]. Chinese Journal of Chemistry, 2019, 37.

[119] Zhao Y, Qiu J, Tian L, et al. New copper(i)/dbu catalyst system for the carboxylative cyclization of propargylic amines with atmospheric CO2: An experimental and theoretical study[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(10): 5553-5560.

[120] Niu XYang L. Manganese(iii) acetate catalyzed aerobic dehydrogenation of tertiary indolines, tetrahydroquinolines and an n-unsubstituted indoline[J]. Advanced Synthesis & Catalysis, 2021, 363(17): 4209-4215.

[121] Li X, Yuan Z, Liu Y, et al. Nitrogen-doped carbon as a highly active metal-free catalyst for the selective oxidative dehydrogenation of n-heterocycles[J]. ChemSusChem, 2022, 15(15): e202200753.

[122] Filonenko G A, van Putten R, Hensen E J M, et al. Catalytic (de)hydrogenation promoted by non-precious metals – Co, Fe and mn: Recent advances in an emerging field[J]. Chemical Society Reviews, 2018, 47(4): 1459-1483.

[123] Sahoo M KBalaraman E. Room temperature catalytic dehydrogenation of cyclic amines with the liberation of H2 using water as a solvent[J]. Green Chemistry, 2019, 21(8): 2119-2128.

[124] Peng F, McLaughlin M, Liu Y, et al. A mild Cu(i)-catalyzed oxidative aromatization of indolines to indoles[J]. The Journal of Organic Chemistry, 2016, 81(20): 10009-10015.

[125] Yoo H-S, Yang Y-S, Kim S L, et al. Syntheses of 1H-indoles, quinolines, and 6-membered aromatic n-heterocycle-fused scaffolds via palladium(ii)-catalyzed aerobic dehydrogenation under alkoxide-free conditions[J]. Chemistry – An Asian Journal, 2021, 16(21): 3469-3475.

[126] Riemer D, Schilling W, Goetz A, et al. CO2-catalyzed efficient dehydrogenation of amines with detailed mechanistic and kinetic studies[J]. ACS Catalysis, 2018, 8(12): 11679-11687.

[127] Enders L, Casadio D S, Aikonen S, et al. Air oxidized activated carbon catalyst for aerobic oxidative aromatizations of n-heterocycles[J]. Catalysis Science & Technology, 2021, 11(17): 5962-5972.

[128] Fukazawa Y, Rubtsov A EMalkov A V. A mild method for electrochemical reduction of heterocyclic n-oxides[J]. European Journal of Organic Chemistry, 2020, 2020(22): 3317-3319.

[129] Jaiswal G, Subaramanian M, Sahoo M K, et al. A reusable cobalt catalyst for reversible acceptorless dehydrogenation and hydrogenation of n-heterocycles[J]. ChemCatChem, 2019, 11(10): 2449-2457.

[130] Petasis N AButkevich A N. Synthesis of 2h-chromenes and 1,2-dihydroquinolines from aryl aldehydes, amines, and alkenylboron compounds[J]. Journal of Organometallic Chemistry, 2009, 694(11): 1747-1753.

[131] Saggadi H, Luart D, Thiebault N, et al. Quinoline and phenanthroline preparation starting from glycerol via improved microwave-assisted modified skraup reaction[J]. RSC Advances, 2014, 4(41): 21456-21464.

[132] He K-H, Tan F-F, Zhou C-Z, et al. Acceptorless dehydrogenation of n-heterocycles by merging visible-light photoredox catalysis and cobalt catalysis[J]. Angewandte Chemie International Edition, 2017, 56(11): 3080-3084.

中图分类号:

 O62    

开放日期:

 2026-05-29    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式