| 中文题名: |
苯炔和硫代磺酸酯参与C-S键构建反应研究
|
| 姓名: |
郑亚婷
|
| 学号: |
20202007105
|
| 保密级别: |
公开
|
| 论文语种: |
chi
|
| 学科代码: |
081704
|
| 学科名称: |
工学 - 化学工程与技术 - 应用化学
|
| 学生类型: |
硕士
|
| 学位: |
工学硕士
|
| 学位类型: |
学术学位
|
| 学位年度: |
2023
|
| 学校: |
石河子大学
|
| 院系: |
化学化工学院
|
| 专业: |
化学工程与技术
|
| 研究方向: |
应用化学
|
| 第一导师姓名: |
何林
|
| 第一导师单位: |
石河子大学化学化工学院
|
| 第二导师姓名: |
蔡志华
|
| 完成日期: |
2023-05-16
|
| 答辩日期: |
2023-05-08
|
| 外文题名: |
Research on the involvement of benzynes and thiosulfonates in C-S bond construction reaction
|
| 中文关键词: |
苯炔 ; 硫代磺酸酯 ; 磺酰胺 ; 非对称砜 ; N-磺酰基硫亚胺
|
| 外文关键词: |
Benzynes ; Thiosulfonates ; Sulfonamides ; Asymmetric sulfones ; N-sulfilimines
|
| 中文摘要: |
︿
有机硫化合物广泛存在于药物化学、生物化学、有机合成和材料科学领域中。尤其是有机硫化物中的砜类化合物和含硫亚胺类物质在药物中有着很好的应用。因此,在有机分子中构建这类C-S键在药物化学中有重要意义。苯炔作为一种高活性的亲电试剂,被广泛应用于C-S键的构建,常通过与烯丙基亚砜、二芳基亚砜,磺酰氟等发生插入、偶联反应一锅法形成C-S键,此类反应条件温和,操作简便。本文主要描述了苯炔和硫代磺酸酯参与C-S键构建反应研究,主要包括以下两部分内容:
第一部分主要介绍了无过渡金属催化的苯炔与硫代磺酸酯合成非对称芳基砜反应研究。通过改变硫代磺酸酯和苯炔前体上的取代基对反应进行了底物普适性研究,以中等至优异的产率成功构筑了25种化合物。通过控制实验、同位素标记实验及气相色谱-质谱联用仪对反应机理进行了研究,对该反应提出了一条可能的反应机理。本实验还对该反应进行了克级规模的反应研究,产率为93%。该实验开发了一种无过渡金属参与的,反应条件温和的快速构建C-S键的新方法。
第二部分介绍了苯炔参与的三组分反应合成N-磺酰基硫亚胺类化合物的反应研究。通过廉价易得的苯炔、硫代磺酸酯和磺酰胺三组分一锅法反应快速构建一系列硫亚胺化合物。该反应具有良好的底物普适性,共合成目标化合物52种,产率中等至良好,所有的产物结构均经过核磁共振氢谱、碳谱、高分辨质谱进行确认了。该反应能进行克级规模放大,产率为82%。该方法为在温和且无过渡金属催化条件下,高效合成硫亚胺提供了一种新途径。
﹀
|
| 外文摘要: |
︿
Organic sulfur compounds exist widely in the fields of pharmaceutical chemistry, biochemistry, organic synthesis and material science. In particular, sulfone compounds in organic sulfides and sulfilimines have good applications in drugs. Therefore, the construction of this kind of C-S bond in organic molecules is of great significance in pharmaceutical chemistry. As a highly active electrophilic reagent, benzyne is widely used in the construction of C-S bond. It is often intercalated with allyl sulfoxide, diaryl sulfoxide and sulfonyl fluoride to form C-S bond by one-pot reaction. This kind of reaction conditions are mild and easy to operate. This thesis mainly describes the participation of benzyne and thiosulfonate in the construction of C-S bond, which mainly includes the following two parts:
The first part mainly introduces the synthesis of asymmetric aryl sulfone from benzyne and thiosulfonate without transition metal catalysis. The substrate universality of the reaction was studied by changing the substituents on the thiosulfonates and benzyne precursors, and 25 compounds were successfully constructed in medium to excellent yields. The reaction mechanism was studied by control experiment, isotope labeling experiment and gas chromatography-mass spectrometry (GC-MS), and a possible reaction mechanism was proposed. In this experiment, the reaction was also studied on the gram scale, and the yield was 93%. In this experiment, a new method for rapid construction of C-S bond without transition metal participation and mild reaction conditions was developed.
The second part introduces the study on the synthesis of N-sulfilimines by the three-component reaction of benzyne. A series of sulfilimines compounds were quickly constructed by the one-pot reaction of benzynes, thiosulfonates and sulfonamides. The reaction has good substrate universality. 52 target compounds were synthesized with medium to good yields. The structures of all the products were confirmed by 1H NMR,13 C NMR and HRMS. The reaction can be enlarged on a gram scale and the yield is 82%. This method provides a new way for efficient synthesis of N-sulfilimines under mild and non-transition metal catalysis conditions.
﹀
|
| 参考文献: |
︿
[1]Stoermer R, Kahlert B. Ueber das 1- und 2-Brom-cumaron[J]. European Journal of Inorganic Chemistry, 1902, 35(2):1633-1640. [2]Bachmann W E, Clarke H T. The Mechanism of the Wurtz−Fittig Reaction[J]. Journal of the American Chemical Society, 1927, 49(8):2089−2098. [3]Wittig G, Phenyl-Lithium. der Schlüssel zu einer neuen Chemie metallorganischer Verbindungen[J]. Naturwissenschaften, 1942, 30(46): 696−703. [4]Roberts J D, Simmons H E, et al. Rearrangement in the Reaction of Chlorobenzene-14C with Potassium Amide[J]. Journal of the American Chemical Society, 1953, 75(13):3290−3291. [5]Stiles M, Miller R G. Decomposition of Benzenediazonium-2-carboxylate[J]. Journal of the American Chemical Society, 1960, 82(14):3802-3802. [6]Stiles M, Miller R G, Burckhardt U. Reactions of benzyne intermediates in non-basic media[J]. Journal of the American Chemical Society, 1963, 85(12):1792-1797. [7]Wittig G, Hoffmann R W. Dehydrobenzol aus 1.2.3-Benzothiadiazol-1.1-dioxyd[J]. Chemische Berichte, 1962, 95(11):2718-2728. [8]Campbell C D, Rees C W. A New Synthesis of benzyne[J]. Proceedings of the Chemical Society, 1964, 296-296. [9]Campbell C D, Rees C W. Reactive Intermediates. Part I.Synthesis and Oxidation of 1, 2-Aminobenzotriazole[J]. Journal of the Chemical Society C, 1969(5):742-747. [10]Himeshima Y, Sonoda T, Kobayashi H. Fluoride-Induced 1, 2-Elimination of o-Trimethylsilylphenyl Triflate to Benzyne under Mild Conditions[J]. Chemistry Letters, 1983, 12(8):1211−1214. [11]Dubrovskiy A V, Markina N A, Larock R C. Use of Benzynes for the Synthesis of Heterocycles[J]. Organic& Biomolecular Chemistry, 2013, 11(2):191-218. [12]Liu S, Li Y, Lan Y. Mechanistic Study of the FluorideInduced Activation of a Kobayashi Precursor: Pseudo-SN2 Pathway via a Pentacoordinated Silicon Ate Complex[J]. European Journal of Organic Chemistry, 2017, 2017(42):6349-6353. [13]Rondan N G, Domelsmith L N, Houk K N, et al. The relative rates of electron-rich and electron-deficient alkene cycloadditions to benzyne. Enhanced electrophilicity as a consequence of alkyne bending distortions[J].Tetrahedron Letters, 1979, 20(35):3237-3240. [14]袁文揆. 苯炔、β-芳甲酰基二硫代羧酸酯、异腈参与的有机反应研究[D].山东:青岛科技大学, 2015. [15]Saputra A, Fan R, Yao T. Synthesis of 2-(Arylthio)indolenines via Chemoselective Arylation of Thio-Oxindoles with Arynes[J]. Advanced Synthesis & Catalysis, 2020, 362(13):2683-2688. [16]Zhao J, Larock R. One-pot synthesis of xanthones and thioxanthones by the tandem coupling-Cyclization of arynes and salicylates[J]. Organic letters, 2005, 7(19):4273-4275. [17]Zhao J, Larock R. Synthesis of xanthones, thioxanthones, and acridones by the coupling of arynes and substituted benzoates[J]. Journal of Organic Chemistry, 2007, 72(2):583-588. [18]Zhang L, Li X, Sun Y, et al. Mild synthesis of triarylsulfonium salts with arynes[J]. Organic & Biomolecular Chemistry, 2017, 15(34):7181-7189. [19]Li X, Yan S, Huang X, et al. Synthesis of o-Aryloxy Triarylsulfonium Salts via Aryne Insertion into Diaryl Sulfoxides[J]. Organic Letters, 2017, 19(4):838-841. [20]Shi J, Qiu D, Wang J, et al. Domino aryne precursor: efficient construction of 2,4-disubstituted benzothiazoles[J]. Journal of the American Chemical Society, 2015, 137(17):5670-5673. [21]Cheng B, Li Y, Wang T, et al. Application of Pyridinium 1, 4-Zwitterionic Thiolates: Synthesis of Benzopyridothiazepines and Benzothiophenes[J]. The Journal of Organic Chemistry, 2020, 85(10):6794-6802. [22]Matsuzawa T, Hosoya T, Yoshida S. One-step synthesis of benzo[b]thiophenes by aryne reaction with alkynyl sulfides[J]. Chemical science, 2020, 11(35):9691-9696. [23]Yoshida H, Terayama T, Ohshita J, et al. Thiostannylation of arynes with stannyl sulfides: synthesis and reaction of 2-(arylthio)arylstannanes[J]. Chemical Communications, 2004(17):1980-1981. [24]Okuma K, Shiki K, Shioji K, et al. Reaction of Thiopivalophenones with Benzyne. Formation of 2H-Benzo[b]thietes[J]. Chemistry Letters, 1998, 27(1):79-80. [25]Garg P, Singh A. Unmasking Dipole Character of Acyl Ketene Dithioacetals via a Cascade Reaction with Arynes: Synthesis of Benzo[b]thiophenes[J]. Organic Letters, 2018, 20(5):1320-1323. [26]Lei M, Miao H, Wang X, et al. Trifluoromethyl aryl sulfonates (TFMS): An applicable trifluoromethoxylation reagent[J]. Tetrahedron Letters, 2019, 60(20):1389-1392. [27]Sun C H, Yi L, Zhang Q, et al. Selective S-arylation of 2-oxazolidinethiones and selective N-arylation of 2-benzoxazolinones/2-benzimidazolinones[J]. Organic & Biomolecular Chemistry, 2017, 15(19):4058-4063. [28]Shigetomi T, Soejima H, Nibu Y, et al. Synthesis and Reaction of α-Dithiolactone[J]. Chemistry - A European Journal, 2006, 12(29):7742-7748. [29]Liu F L, Chen J R, Zou Y Q, et al. Three-Component Coupling Reaction Triggered by Insertion of Arynes into the S=O Bond of DMSO[J]. Organic Letters, 2014, 16(14):3768-3771. [30]Dong Y, Liu B, Chen P, et al. Palladium-catalyzed C-S activation/aryne insertion/coupling sequence: synthesis of functionalized 2-quinolinones[J]. Angewandte Chemie International Edition, 2014, 53(13):3442-3446. [31]Li H Y, Xing L J, et al. Reaction of Arynes with Sulfoxides[J]. Organic Letters, 2015, 17(5):1098-1101. [32]Li Y, Qiu D, Gu R, et al. Aryne 1, 2, 3-Trifunctionalization with Aryl Allyl Sulfoxides[J]. Journal of the American Chemical Society, 2016, 138(34):10814-10817. [33]Peng X, Ma C, Tung C H, et al. Cu-Catalyzed Three-Component Coupling of Aryne, Alkyne, and Benzenesulfonothioate: Modular Synthesis of o-Alkynyl Arylsulfides[J]. Organic Letters, 2016, 18(17):4154-4157. [34]Matsuzawa T, Uchida K, Yoshida S, et al. Synthesis of Diverse o-Arylthio-Substituted Diaryl Ethers by Direct Oxythiolation of Arynes with Diaryl Sulfoxides Involving Migratory O-Arylation[J]. Organic Letters, 2017, 19(20):5521-5524. [35]Li Y, Studer A. Reaction of Arynes with Vinyl Sulfoxides: Highly Stereospecific Synthesis of ortho-Sulfinylaryl Vinyl Ethers[J]. Organic Letters, 2017, 19(3):666-669. [36]Ahire M M, Khan R, Mhaske S B. Synthesis of o-Methyl Trifluoromethyl Sulfide Substituted Benzophenones via 1, 2-Difunctionalization of Aryne by Insertion into the C-C Bond[J]. Organic Letters, 2017, 19(8):2134-2137. [37]Ahire M M, Thoke M B, Mhaske S B. Application of Sulfur Ylides in 1, 2-Difunctionalization of Arynes via Insertion into a C-S σ-Bond[J]. Organic Letters, 2018, 20(3):848-851. [38]Kwon J, Kim B M. Synthesis of Arenesulfonyl Fluorides via Sulfuryl Fluoride Incorporation from Arynes[J]. Organic Letters, 2019, 21(2):428-433. [39]Gaykar R N, Bhattacharjee S, Biju A T. Transition-Metal-Free Thioamination of Arynes Using Sulfenamides[J]. Organic Letters, 2019, 21(3):737-740. [40]Nakamura Y, Yoshihiro M, Keisuke U, et al. 3-Thioaryne Intermediates for the Synthesis of Diverse Thioarenes[J]. Organic letters, 2019, 21(13):5252-5258. [41]Feng S, Li S, Li J, et al. Palladium-catalyzed annulation of N-alkoxy benzsulfonamides with arynes by C-H functionalization: access to dibenzosultams[J]. Organic Chemistry Frontiers, 2019, 6(4):517-522. [42]An Y, Xu G, Cai M, et al. Efficient formation of C-S bond using heterocyclic thiones and arynes[J]. Tetrahedron, 2020, 79(3):131829-131842. [43]Bhattacharjee S, Guin A, Gaykar R N, et al. Thiophenols as Protic Nucleophilic Triggers in Aryne Three-Component Coupling[J]. Organic Letters, 2020, 22(22):9097-9101. [44]Gaykar R N, George M, Guin A, et al. An Umpolung Oxa-[2, 3] Sigmatropic Rearrangement Employing Arynes for the Synthesis of Functionalized Enol Ethers[J]. Organic Letters, 2021, 23(9):3447-3452. [45]Hu Y, Huang Y, Zhao X, et al. A three-component reaction of arynes, sodium sulfinates, and aldehydes toward 2-sulfonyl benzyl alcohol derivatives[J]. Organic & Biomolecular Chemistry, 2021, 19(32):7066-7073. [46]Iranpoor N, Firouzabadi H, Jamalian A. Deoxygenation of Sulfoxides and Reductive Coupling of Sulfonyl Chlorides, Sulfinates and Thiosulfonates Using Silphos [PCl3-n(SiO2)n] as a Heterogeneous Phosphine Reagent[J]. Synlett, 2005, 9(2005):1447-1449. [47]Girijavallabhan V, Alvarez C, Njoroge F G. Regioselective cobalt-catalyzed addition of sulfides to unactivated alkenes[J]. The Journal of Organic Chemistry, 2011, 76(15):6442-6446. [48]Li H, Shan C, et al. Dual gold and photoredox catalysis: visible light-mediated intermolecular atom transfer thiosulfonylation of alkenes[J]. Chemical science, 2017, 8(4):2610-2615. [49]Shyam P K, Son S, Jang H Y. Copper-Catalyzed Sulfonylation of Alkenes and Amines by Using Thiosulfonates as a Sulfonylating Agent[J]. European Journal of Organic Chemistry, 2017, 2017(34):5025-5031. [50]Shyam P K, Jang H Y. Synthesis of Sulfones and Sulfonamides via Sulfinate Anions: Revisiting the Utility of Thiosulfonates[J]. Journal of Organic Chemistry, 2017, 82(3):1761-1767. [51]Taniguchi N. Unsymmetrical disulfide and sulfenamide synthesis via reactions of thiosulfonates with thiols or amines[J]. Tetrahedron, 2017, 73(15):2030-2035. [52]Fang Y, Rogge T, Ackermann L, et al. Nickel-catalyzed reductive thiolation and selenylation of unactivated alkyl bromides[J]. Nature Communications, 2018, 9(1):2240-2250. [53]Huang S, Thirupathi N, Tung C-H, et al.Copper-Catalyzed Oxidative Trifunctionalization of Olefins: An Access to Functionalized β-Keto Thiosulfones[J]. The Journal of Organic Chemistry, 2018, 83(16):9449-9455. [54]Son S, Shyam P K, Park H, et al. Complementary Strategy for Regioselective Synthesis of Diverse β-Hydroxysulfones from Thiosulfonates[J]. European Journal of Organic Chemistry, 2018, 2018(5):3365-3371. [55]Bizzini L D, Zwick P, Mayor M. Versatile Method for the Preparation of Unsymmetrical Disulfides from Thioacetates and Thiosulfonates[J]. European Journal of Organic Chemistry, 2019, 2019(41):6956-6960. [56]Song T, Li H, Wei F, et al. Gold/photoredox-cocatalyzed atom transfer thiosulfonylation of alkynes: Stereoselective synthesis of vinylsulfones[J]. Tetrahedron Letters, 2019, 60(13):916-919. [57]Huang S, Li H, Xie T, et al. Scandium-Catalyzed Electrophilic Alkene Difunctionalization: Regioselective Synthesis of Thiosulfone Derivatives[J]. Organic Chemistry Frontiers, 2019, 6(10):1663-1666. [58]Ielo L, Pillari V, Miele M, et al. Consecutive C1-Homologation / Displacement Strategy for Converting Thiosulfonates into O, S-Oxothioacetals[J]. Advanced Synthesis & Catalysis, 2020, 362(23):5444-5449. [59]Ielo L, Pillari V, Gajic N, et al. Straightforward chemoselective access to unsymmetrical dithioacetals through a thiosulfonate homologation-nucleophilic substitution sequence[J]. Chemical Communications, 2020, 56(82):12395-12398. [60]Luo Z, Yang X, Tsui G C. Perfluoroalkylation of Thiosulfonates: Synthesis of Perfluoroalkyl Sulfides[J]. Organic Letters, 2020, 22(15):6155-6159. [61]Gadde K, Mampuys P, Guidetti A, et al. Thiosulfonylation of Unactivated Alkenes with Visible-Light Organic Photocatalysis[J]. ACS Catalysis, 2020, 10(15):8765-8779. [62]Zhou X, Peng Z, Wang P G, et al. Atom Transfer Radical Addition to Styrenes with Thiosulfonates Enabled by Synergetic Copper/Photoredox Catalysis[J]. Organic Letters, 2021, 23(3):1054-1059. [63]Kumari A H, Kumar J J, Krishna G R, et al. Nickel-Catalyzed Difunctionalization of Alkynyl Bromides with Thiosulfonates and N-Arylthio Succinimides: A Convenient Synthesis of 1, 2-Thiosulfonylethenes and 1, 1-Dithioethenes[J]. Synthesis, 2021, 53(16):2850-2864. [64]Luo J, Lin M, Wu L, et al. The organocatalytic synthesis of perfluorophenylsulfides via the thiolation of trimethyl(perfluorophenyl)silanes and thiosulfonates[J]. Organic & Biomolecular Chemistry, 2021, 19(42):9237-9241. [65]Liu Y, Xing S Y, Zhang J, et al. Construction of diverse C-S/C-Se bonds via nickel catalyzed reductive coupling employing thiosulfonates and a selenosulfonate under mild conditions[J]. Organic Chemistry Frontiers, 2022, 9(5):1375-1382. [66]Tong J W, Li H, Zhu Y, et al.Visible-light-induced dehydrogenative sulfonylation of tertiary amines under transition-metal- and photocatalyst-free conditions[J]. Green Chemistry, 2022, 24(5):1995-1999. [67]Luo J Y, Lin M Z, Xia D P, et al. Base-catalyzed stereoselective thiosulfonylation of ynones for the facile synthesis of thio-functionalized vinyl sulfones[J]. Organic Chemistry Frontiers, 2023, 10(5):1224-1229. [68]Stearns B A, Baccei C, Bain G, et al. Novel tricyclic antagonists of the prostaglandin D2 receptor DP2 with efficacy in a murine model of allergic rhinitis[J]. Bioorganic & medicinal chemistry letters, 2009, 19(16):4647-4651. [69]Feng M, Tang B, H. Liang S, et al. Sulfur Containing Scaffolds in Drugs: Synthesis and Application in Medicinal Chemistry[J]. Current Topics in Medicinal Chemistry, 2016, 16(11):1200-1216. [70] Patrick J, Crowley, et al. Basic and Reductive Sulfone-Directed Ring-Opening Reactions of Difluorinated Oxa[2.2.1]bicycloheptanes[J]. Organic Letters, 2002, 4(23):4125-4128. [71]Hua Y, Carter R G, Zakharov L N. Enantioselective Total Synthesis of Lycopodine[J]. Journal of the American Chemical Society, 2008, 130(29):9238-9239. [72]Soderman S C, Schwan A L. 1, 2-Dibromotetrachloroethane: an ozone-friendly reagent for the in situ Ramberg-Bcklund rearrangement and its use in the formal synthesis of E-resveratrol[J]. Journal of Organic Chemistry, 2012, 77(23):10978. [73]Wang Q G, Zhou Q Q, Deng J G, et al. An asymmetric allylic alkylation-Smiles rearrangement-sulfinate addition sequence to construct chiral cyclic sulfones[J]. Organic Letters, 2013, 15(18):4786-4789. [74]Dussart N, Trinh H V, Gueyrard D. Modified Julia Olefination on anhydrides: extension and limitations. Application to the synthesis of maculalactone B[J]. Organic Letters, 2016, 18(19):4790-4793. [75]Oka N, Mori A, Suzuki K, et al. Stereoselective Synthesis of Ribofuranoid exo-Glycals by One-Pot Julia Olefination Using Ribofuranosyl Sulfones[J]. The Journal of Organic Chemistry, 2020, 86(1):657-673. [76]Liu N W, Liang S, Manolikakes G. Recent Advances in the Synthesis of Sulfones[J]. Synthesis, 2016, 48(13):1939-1973. [77]Shaaban S, Liu N W, Liang S, et al. Synthesis of Sulfones via Selective C-H-functionalization[J]. Organic & Biomolecular Chemistry, 2017, 15(9):1947. [78]Zhu J, Yang W C, Wang X D, et al. Photoredox Catalysis in C-S Bond Construction: Recent Progress in Photo-Catalyzed Formation of Sulfones and Sulfoxides[J]. Advanced Synthesis & Catalysis, 2017, 360(3):386-400. [79]Devaneyan J, Idris M A, Chen J, et al. Recent Advances in the Catalytic Synthesis of Arylsulfonyl Compounds[J]. ACS Catalysis, 2021, 11(7):4169-4202. [80]Griffin R J, Henderson A, Curtin N J, et al. Searching for Cyclin-Dependent Kinase Inhibitors Using a New Variant of the Cope Elimination[J]. Journal of the American Chemical Society, 2006, 128(18):6012-6013. [81]Pritzius A B, Bernhard B. Asymmetric Rhodium-Catalyzed Addition of Thiols to Allenes: Synthesis of Branched Allylic Thioethers and Sulfones[J]. Angewandte Chemie International Edition, 2015, 54(10):3121-3125. [82]Cheng Z, Sun P, Tang A, et al. Switchable Synthesis of Aryl Sulfones and Sulfoxides through Solvent-Promoted Oxidation of Sulfides with O2/Air[J]. Organic Letters, 2019, 21(22):8925-8929. [83]Li X, Du J, Zhang Y, et al. Synthesis and nano-Pd catalyzed chemoselective oxidation of symmetrical and unsymmetrical sulfides[J]. Organic & Biomolecular Chemistry, 2019, 17(11):3048-3055. [84]Xu X, Yan L, Wang S, et al. Selective synthesis of sulfoxides and sulfonesviacontrollable oxidation of sulfides with N-fluorobenzenesulfonimide[J]. Organic & Biomolecular Chemistry, 2021, 19(40):8691-8695. [85]Pandey A K, Kumar S, Singh R, et al. A practical synthesis of aryl sulfones via cross-coupling of sulfonyl hydrazides with aryltriazenes using copper/ionic liquid combination[J]. Tetrahedron, 2018, 74(46):6704-6709. [86]Zhang Z, Wang S, Zhang Y, et al. Regiospecific Cleavage of S-N Bonds in Sulfonyl Azides: Sulfonyl Donors[J]. The Journal of Organic Chemistry, 2019, 84(7):3919-3926. [87]Gong X, Shen Z, Wang G, et al. Heterogeneous copper-catalyzed synthesis of diaryl sulfones[J]. Organic & Biomolecular Chemistry, 2021, 19(48):10662-10668. [88]Umierski N, Manolikakes G. Metal-Free Synthesis of Diaryl Sulfones from Arylsulfinic Acid Salts and Diaryliodonium Salts[J]. Organic Letters, 2013, 15(1):188-191. [89]Peng Y. Synthesis of symmetrical diaryl sulfone by homocoupling of sodium arylsulfinate[J]. Journal of Chemical Research, 2014, 38(5):265-268. [90]Fu R, Hao W J, Wu Y N, et al. Sulfonyl radical-enabled 6-: Endo-trig cyclization for regiospecific synthesis of unsymmetrical diaryl sulfones[J]. Organic Chemistry Frontiers, 2016, 3(11):1452-1456. [91]Dong H K, Lee J, Lee A. Visible-Light-Driven Silver-Catalyzed One-Pot Approach: A Selective Synthesis of Diaryl Sulfoxides and Diaryl Sulfones[J]. Organic Letters, 2018, 20(3):764-767. [92]Shi W, Miao T, et al. Selective Synthesis of Diaryl Sulfoxides and m-Arylthio Sulfones from Arylsulfinic Acids and Arenes via BF3-Promoted C-S Bond Formation[J]. Organic Letters, 2018, 20(15):4416-4420. [93]Liu N W, Liang S, Margraf N, et al.Nickel-Catalyzed Synthesis of Diaryl Sulfones from Aryl Halides and Sodium Sulfinates[J]. European Journal of Organic Chemistry, 2018, 2018(10):1208-1210. [94]Tang X, Tong L, Liang H, et al. Facile synthesis of substituted diaryl sulfones via a [3+3] benzannulation strategy[J]. Organic & Biomolecular Chemistry, 2018, 16(19):3560-3563. [95]Liu T, Liu J, Shen X, et al. Lewis Base Promoted, Direct 1, 4-Conjugate Addition to Quinone Imine Ketals: Efficient Access to Unsymmetrical Diaryl Sulfones[J]. Synthesis, 2019, 51(06):1365-1376. [96]Kamble R B, Chavan S S, Suryavanshi G. An efficient heterogeneous copper fluorapatite (CuFAP)-catalysed oxidative synthesis of diaryl sulfone under mild ligand- and base-free conditions[J]. New Journal of Chemistry, 2019, 43(3):1632-1636. [97]Chawla R, Yadav L. Organic photoredox catalysis enabled cross-coupling of arenediazonium and sulfinate salts: Synthesis of (un)symmetrical diaryl/alkyl aryl sulfones[J]. Organic & Biomolecular Chemistry, 2019, 17(19):4761-4766. [98]Liang X, Xiong M, Zhu H, et al. Aerobic Copper-Catalyzed Synthesis of (E)-Vinyl Sulfones by Direct C-S Bond Oxidative Coupling[J]. The Journal of Organic Chemistry, 2019, 84(17):11210-11218. [99]Zhao F, Wu X F. Sulfonylation of Bismuth Reagents with Sulfinates or SO2 through Bi III /Bi V Intermediates[J]. Organometallics, 2021, 40(15):2400-2405. [100]Wang X, Luo D, Wang X, et al. N, N'-Disulfonylhydrazines: A novel source of sulfonyl moieties for synthesis of diaryl sulfones[J]. Tetrahedron Letters, 2021, 87(2021):153540-153545. [101]Falconnet A, Arndt J D, et al.Triflic-Acid-Catalyzed Friedel-Crafts Reaction for the Synthesis of Diaryl Sulfones[J]. European Journal of Organic Chemistry, 2022, 2022(26):477-481. [102]Fang Y, Xu D, Yu Y, et al. Controlled Synthesis of β-keto Sulfones and Vinyl Sulfones under Electrochemical Oxidation[J]. European Journal of Organic Chemistry, 2022, 2022(13): e202200091. [103]Bizet V, Hendriks C, Bolm C. Sulfur imidations: access to sulfimides and sulfoximines[J]. Chemical Society Reviews, 2015, 44(11):3378-3390. [104]Okamura H, Bolm C. Rhodium‐Catalyzed Imination of Sulfoxides and Sulfides: Efficient Preparation of N‐unsubstituted Sulfoximines and Sulfilimines[J]. Organic Letters, 2004, 35(34):482-487. [105]Tsutomu K. Azide Compounds: Nitrogen Sources for Atom-efficient and Ecologically Benign Nitrogen-atom-transfer Reactions[J]. Chemistry Letters, 2005, 34(10):1304-1309. [106]Driver T G. Recent advances in transition metal-catalyzed N-atom transfer reactions of azides[J]. Organic & Biomolecular Chemistry, 2010, 8(17):3831-3846. [107]Frings M, Bolm C, Blum A, et al. Sulfoximines from a Medicinal Chemist's Perspective: Physicochemical and in vitro Parameters Relevant for Drug Discovery[J]. European Journal of Medicinal Chemistry, 2017, 126:225-245. [108]Hendriks C, Hartkamp J, Wiezorek S, et al. Sulfoximines as ATR inhibitors: Analogs of VE-821[J]. Bioorganic & Medicinal Chemistry Letters, 2017, 27(12):2659-2662. [109]Miyazaki I, Simizu S, Okumura H, et al. A small-molecule inhibitor shows that pirin regulates migration of melanoma cells[J]. Nature Chemical Biology, 2010, 6(9):667-673. [110]Sha Z. The Study of Novel Sulfilimines as Potential Insects Modulators[J]. Electrical Engineering in Japan, 2015, 05(1):67-73. [111]Hendriks C M M, Nuernberg P, Bolm C. Zolimidine Analogues: The Synthesis of Imidazo[1, 2-alpha]pyridine-Based Sulfilimines and Sulfoximines[J]. Synthesis, 2015, 47(08):1190-1194. [112]Marzinzik A L, Sharpless K B. A Simple Method for the Preparation of N -Sulfonylsulfilimines from Sulfides[J]. The Journal of Organic Chemistry, 2001, 66(2):594-596. [113]Kantam M L, Kavita B, Neeraja V, et al. Heterogeneous Catalytic Sulfimidation using Immobilized Cu(acac)2[J]. Advanced synthesis & catalysis, 2005, 347(5):641-645. [114]Kantam M , Chakravarti R, Neelima B, et al. Poly (N-vinyl-2-pyrrolidone)-Cu(OAc)2: An efficient and reusable catalyst for sulfimidation[J]. Applied Catalysis A: General, 2007, 333(1):136-142. [115]Fujita T, Kamiyama H, Osawa Y, et al. Photo S-N bond cleavage and related reactions of thianthrene sulfilimine derivatives[J]. Tetrahedron, 2007, 63(32):7708-7716. [116]Fujita H, Uchida T, Irie R, et al. Asymmetric Sulfimidation with cis-β Ru(salalen)(CO)2 Complexes as Catalyst[J]. Chemistry Letters, 2007, 36(9):1092-1093. [117]Giribabu L, Singh S P, Patil N M. et al. Highly Efficient Sulfimidationof 1, 3-Dithianes by Cu(I) Complexes[J]. Synthetic Communications, 2008, 38(4):619-625. [118]Leest N, Vlugt J, Bruin B D. Catalytic Chemoselective Sulfimidation with an Electrophilic [CoIII(TAML)]-Nitrene Radical Complex[J]. Chemistry-A European Journal, 2020, 27(1):371-378. [119]Annapureddy R R, Burg F, Gramueller J, et al. Silver-Catalyzed Enantioselective Sulfimidation Mediated by Hydrogen Bonding Interactions[J]. Angewandte Chemie International Edition, 2021, 60(14):7920-7926 [120]Klein M, Waldvogel S R. Anodic dehydrogenative cyanamidation of thioethers: A simple and sustainable synthesis to a broad scope of N-cyano-sulfilimines[J]. Angewandte Chemie International Edition, 2021, 60(43):23197-23201. [121]Han M, Tang Z, Li G X, et al. Electrochemical oxidation chemoselective sulfimidation of thioether with sulfonamide via catalytic iodobenzene[J]. Tetrahedron Letters, 2022, 102:153925-153930. [122]杨铭. 构建C-S/C-O键的新方法及在药物合成中的应用[D]. 杭州:杭州师范大学, 2015. [123]Bao N, Emmett E J, Willis M C. Palladium-catalyzed aminosulfonylation of aryl halides[J]. Journal of the American Chemical Society, 2010, 132(46):16372-16373. [124]Woolven H, González-Rodríguez C, Marco I, et al. DABCO-bis(sulfur dioxide), DABSO, as a convenient source of sulfur dioxide for organic synthesis: utility in sulfonamide and sulfamide preparation[J]. Organic Letters, 2011, 13(18):4876-4878. [125]Ye S, Wu J. A palladium-catalyzed reaction of aryl halides, potassium metabisulfite, and hydrazines[J]. Chemical Communications, 2012, 48(80):10037-10039. [126]Deeming A S, Emmett E J, Richards-Taylor C S, et al. Rediscovering the Chemistry of Sulfur Dioxide: New Developments in Synthesis and Catalysis[J]. Synthesis, 2014, 46(20):2701-2710. [127]Liu G, Fan C, Jie W. Fixation of sulfur dioxide into small molecules[J]. Organic & Biomolecular Chemistry, 2014, 13(6):1592-1599. [128]Ye S, Qiu G, Wu J. Inorganic sulfites as the sulfur dioxide surrogates in sulfonylation reactions[J]. Chemical Communications, 2019, 55(8):1013-1019. [129]Kanemoto K, Sakata Y, Hosoya T, et al. Synthesis of Phenoxathiins and Phenothiazines by Aryne Reactions with Thiosulfonates[J]. Chemistry Letters, 2020, 49(5):593-596. [130]Zhao X, Liu T X, Zhang G S. Synthesis of Thiosulfonates via CuI-Catalyzed Reductive Coupling of Arenesulfonyl Chlorides Using Na2SO3 or NaHSO3 as Reductants[J]. Asian Journal of Organic Chemistry, 2017, 6(6):677-681. [131]Bahrami K, Khodaei M M, Khaledian D. Synthesis of sulfonyl chlorides and thiosulfonates from H₂O₂–TiCl₄[J]. Tetrahedron Letters, 2012, 53(3):354-358. [132]Chen Q, Huang Y, Wang X, et al. Metal-free NaI/TBHP-mediated sulfonylation of thiols with sulfonyl hydrazides[J]. Organic & Biomolecular Chemistry, 2018, 16(10):1713-1719. [133]Kim D K, Um H S, Park H, et al. Silyloxymethanesulfinate as a sulfoxylate equivalent for the modular synthesis of sulfones and sulfonyl derivatives[J]. Chemical Science, 2020, 11(48):13071-13078. [134]Lee H, Lam F, So C, et al. Palladium-Catalyzed Cross-Coupling of Aryl Halides Using Organotitanium Nucleophiles[J]. Angewandte Chemie International Edition, 2009, 48(40):7436-7439. [135]Marquié J, Laporterie A, Dubac J, et al. Acylation and Related Reactions under Microwaves: Sulfonylation Reactions of Aromatics[J]. Journal of Organic Chemistry, 2001, 66(2):421-425. [136]Yang H, Li Y, Jiang M, et al. General Copper-Catalyzed Transformations of Functional Groups from Arylboronic Acids in Water[J]. Chemistry-A European Journal, 2011, 17(20):5652-5660. [137]Liu X, Li W, Zheng D Q, et al. Synthesis of sulfones via a reaction of aryldiazonium tetrafluoroborates, sulfur dioxide, and aryliodoniums[J]. Tetrahedron, 2015, 71(21):3359-3362. [138]Zhu D, Wu Q, Li H, et al. Hantzsch Ester as a Visible‐Light Photoredox Catalyst for Transition‐Metal‐Free Coupling of Arylhalides and Arylsulfinates[J]. Chemistry-A European Journal, 2020, 26(16):3484-3488. [139]Bahrami K, Khodei M M, Shahbazi F. Highly selective catalytic Friedel-Crafts sulfonylation of aromatic compounds using a FeCl3-based ionic liquid[J]. Tetrahedron Letters, 2008, 49(24):3931-3934. [140]Pandya V G, Mhaske S B. Transition-metal-free C-S bond formation: a facile access to aryl sulfones from sodium sulfinates via arynes[J]. Organic Letters, 2015, 46(14):3836-3839. [141]Edward J, EmmettBarry R, HayterMichael C. Willis. Palladium-Catalyzed Three-Component Diaryl Sulfone Synthesis Exploiting the Sulfur Dioxide Surrogate DABSO[J]. Angewandte Chemie, 2013, 52(48):12679-12683. [142]Wu, X M, Wang, Y. A Mild and Base-Free Synthesis of Unsymmetrical Diaryl Sulfones from Arylboronic Acids and Arylsulfonyl Hydrazides[J]. Synlett, 2014, 25(08):1163-1167. [143]Desikan V, Liu Y, Toscano J P, et al. Photochemistry of sulfilimine-based nitrene precursors: generation of both singlet and triplet benzoylnitrene[J]. The Journal of Organic Chemistry, 2007, 72(18):6848-6859. [144]Han Y, Xing K, Zhang J, et al. Application of sulfoximines in medicinal chemistry from 2013 to 2020[J]. European Journal of Medicinal Chemistry, 2021, 209:112885. [145]Steinkamp A D, Seling N, Lee S, et al. Synthesis of N-cyano-substituted sulfilimine and sulfoximine derivatives of S0859 and their biological evaluation as sodium bicarbonate co-transport inhibitors[J]. MedChemComm, 2015, 6(12):2163-2169. [146]Chinthakindi P K, Naicker T, Thota N, et al. Sulfonimidamides in Medicinal and Agricultural Chemistry[J]. Angewandte Chemie International Edition, 2017, 56(15):4100-4109. [147]Zhu Y, Loso M R, Watson G B, et al. Discovery and Characterization of Sulfoxaflor, a Novel Insecticide Targeting Sap-Feeding Pests[J]. Journal of Agricultural and Food Chemistry, 2011, 59(7):2950-2957. [148]Hayashi R, Shimizu A, Yoshida J I. The Stabilized Cation Pool Method: Metal- Oxidant-Free Benzylic C-H/Aromatic C-H Cross-Coupling[J]. Journal of the American Chemical Society, 2016, 138(27):8400-8403. [149]Vanacore R, Hudson B G, et al. A Sulfilimine Bond Identified in Collagen IV[J]. Science, 2009, 325(5945):1230-1234. [150]Aota Y, Kano T, Maruoka K. Asymmetric Synthesis of Chiral Sulfoximines through the S-Alkylation of Sulfinamides[J]. Angewandte Chemie International Edition, 2019, 58(49):17661-17665. [151]Lebel H, Piras H, Bartholoméüs J. Rhodium-Catalyzed Stereoselective Amination of Thioethers with N-Mesyloxycarbamates: DMAP and Bis (DMAP)CH2Cl2 as Key Additives[J]. Angewandte Chemie International Edition, 2014, 52(28):7300-7304. [152]Okamura H, Bolm C. Rhodium-Catalyzed Imination of Sulfoxides and Sulfides: Efficient Preparation of N-Unsubstituted Sulfoximines and Sulfilimines[J]. Organic Letters, 2004, 6(8):1305-1307. [153]Bizet V, Buglioni L, Bolm C. Light-Induced Ruthenium-Catalyzed Nitrene Transfer Reactions: A Photochemical Approach towards N-Acyl Sulfimides and Sulfoximines[J]. Angewandte Chemie International Edition, 2014, 53(22):5639-5642. [154]Raghuvanshi K, Zell D, Ackermann L. Ruthenium(II)-Catalyzed C-H Oxygenations of Reusable Sulfoximine Benzamides[J]. Organic Letters, 2017, 19(6):1278-1281. [155]Takada H, Nishibayashi Y, Ohe K, et al. Catalytic Asymmetric Sulfimidation[J]. Journal of Organic Chemistry, 1997, 62(19):6512-6518. [156]Ohta C, Katsuki T. Mn(salen)-catalyzed sulfimidation: what are the real active species in sulfimidation?[J]. Tetrahedron Letters, 2001, 42(23):3885-3888. [157]Lai C, Mathieu G, Gabriellitabarez L P, et al. Batch and Continuous-Flow Iron(II)-Catalyzed Synthesis of Sulfilimines and Sulfoximines using N-Mesyloxycarbamates[J]. Chemistry-A European Journal, 2019, 25(40):9423-9426. [158]Cho G Y, Bolm C. Silver-Catalyzed Imination of Sulfoxides and Sulfides[J]. Organic Letters, 2005, 7(22):4983-4985. [159]Andresini M, Spennacchio M, Colella M, et al. Sulfinimidate Esters as an Electrophilic Sulfinimidoyl Motif Source: Synthesis of N-Protected Sulfilimines from Grignard Reagents[J]. Organic letters, 2021, 23(17):6850-6854.
﹀
|
| 中图分类号: |
O62
|
| 开放日期: |
2023-05-30
|