- 无标题文档
查看论文信息

中文题名:

 奶牛乳房炎源金黄色葡萄球菌耐药性分析及其与溶源性噬菌体相互作用初探    

姓名:

 张小玉    

学号:

 20202013033    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 090602    

学科名称:

 农学 - 兽医学 - 预防兽医学    

学生类型:

 硕士    

学位:

 农学硕士    

学位类型:

 学术学位    

学位年度:

 2023    

学校:

 石河子大学    

院系:

 动物科技学院    

专业:

 兽医学    

研究方向:

 预防兽医学    

第一导师姓名:

 屈勇刚    

第一导师单位:

 石河子大学    

第二导师姓名:

 李彦芳    

完成日期:

 2023-10-20    

答辩日期:

 2023-10-18    

外文题名:

 Analysis of Drug Resistance of Staphylococcus aureus from Cow Mastitis and the Interaction with lysogenic Phages    

中文关键词:

 奶牛乳房炎 ; 金黄色葡萄球菌 ; 溶源性噬菌体 ; 全基因组 ; 相互作用     

外文关键词:

 Cow mastitis ; Staphylococcus aureus ; Lysogenic bacteriophages ; Genome-wide ; Interaction     

中文摘要:

目的:金黄色葡萄球菌是奶牛乳房炎的主要致病菌之一。由于抗生素的大量使用,越来越多的金黄色葡萄球菌呈现出多重耐药,给临床治疗奶牛乳房炎带来了巨大挑战。在此背景下,采用噬菌体防治细菌性感染的研究和应用越来越多。然而,在噬菌体治疗中,除了病原菌会对噬菌体产生抗性,影响治疗的效果外,噬菌体会与病原菌发生其他复杂的相互作用,其机制仍不明晰。本研究在对新疆某规模化奶牛场奶牛乳房炎源金黄色葡萄球菌分离株耐药性分析的基础上,以分离株为宿主菌,分离噬菌体,并对其生物学特性及基因组特征进行分析;以其中一株多重耐药奶牛乳房炎源金黄色葡萄球菌和一株溶源性噬菌体为研究对象,通过对噬菌体作用前后菌株的形态变化,在溶源性噬菌体和/或抗菌药物压力下菌株的生长能力、生物被膜形成能力及转录组学变化等方面进行分析,初步探索金黄色葡萄球菌与溶源性噬菌体间的相互作用,为将来噬菌体制剂的开发和应用提供理论依据。

方法:

1.从新疆地区某规模化奶牛场收集的患奶牛乳房炎乳样中分离鉴定金黄色葡萄球菌,采用K-B法和MIC法测定分离株对常用抗菌药物的敏感性,采用PCR方法检测分离株的耐药基因携带情况。

2.以分离的金黄色葡萄球菌分离株为宿主菌,采用点滴法和双层琼脂平板法,从奶牛场的污水样品中分离纯化烈性噬菌体,利用丝裂霉素C诱导分离株中的溶源性噬菌体;通过透射电镜观察噬菌体形态;对噬菌体的裂解谱、最佳感染复数、一步生长曲线、热稳定性、酸碱耐受性、紫外线耐受性等生物学特性进行研究。对分离的烈性噬菌体和溶原性噬菌体进行全基因组测序,通过多项在线软件和工具全面分析噬菌体的遗传信息,并对其进行比较基因组学分析和遗传进化分析。

3.通过电镜观察、细菌体外生长曲线和药敏试验等方法测定溶源性噬菌体作用后菌株的形态变化;通过测定金黄色葡萄球菌在溶原性噬菌体和不同抗菌药物(甲氧西林和四环素)单一因素或两个因素下的体外生长能力和生物被膜形成能力,分析溶原性噬菌体对金黄色葡萄球菌的抑菌作用及生物被膜形成能力的影响,以及评估溶原性噬菌体与抗菌药物间的交互作用;通过转录组学测序分析金黄色葡萄球菌在溶源性噬菌体作用下不同生长时期的基因表达谱变化,初步探索金黄色葡萄球菌与其溶原性噬菌体间的相互作用机制。

结果:

1.从138份奶牛乳房炎乳样中分离得到74株金黄色葡萄球菌,分离率为53.62%。90.5%的分离株为多重耐药菌株,对15种抗菌药物均呈现不同程度的耐药性,其中,对万古霉素、甲氧西林、磺胺异噁唑、林可霉素、青霉素、恩诺沙星的耐药率分别为97.30%、82.43%、79.73%、71.62%、67.57%、67.57%。耐3种及以上抗菌药物的菌株占90.5%,耐9种及以上抗菌药物的菌株占56.8%,其中1个分离株对所有受检的抗菌药物均耐受。奶牛乳房炎源金黄色葡萄球菌分离株中共检测到blaZ、linA、ermB、aacA-aphD、aac6-aph2、Aph(3’)-a和tetM等7种耐药基因,其中氨基糖苷类耐药基因aacA-aphD的检出率最高,为8.10%,其余耐药基因的检出率在2.70%-4.05%之间。

2.本试验共分离到3株金黄色葡萄球菌噬菌体,其中,2株为烈性噬菌体,分别命名为P50-1和P74;1株为溶原性噬菌体,命名为P51。3株噬菌体均属于有尾噬菌体目、长尾噬菌体科。P51、P50-1、P74噬菌体对78株奶牛乳房炎源金黄色葡萄球菌的裂解率分别为34.62%、20.51%、25.64%。P51、P50-1、P74的最佳MOI分别为0.1、0.01、0.01;平均裂解量分别约为83 PFU/cell、72 PFU/cell、86 PFU/cell。在温度低于50℃,pH 6.0~10.0条件下,3株噬菌体仍具有较高活性。在UV长时间照射时,3株噬菌体仍可以保留部分活性。烈性噬菌体P50-1和溶原性噬菌体P51的全基因组大小分别为43895bp、42263bp;GC含量分别为33.65%、33.85%。2株噬菌体均未携带耐药基因和毒力基因,在基因水平上安全性较好。2株噬菌体基因组中均有许多未知功能的基因。比较基因组学分析发现,P50-1与金黄色葡萄球菌噬菌体StauST398-2的同源性最高,P51与金黄色葡萄球菌噬菌体vB_SauS_320的同源性最高。基于末端酶大亚基和主要衣壳蛋白的遗传进化分析发现,P50-1与金黄色葡萄球菌噬菌体phiSa2wa_st72的亲缘关系最为接近;P51分别与金黄色葡萄球菌噬菌体R4和vB SauS phi2的亲缘关系最为接近。

3.透射电子显微镜观察发现,溶源性噬菌体作用后,试验菌株J57a的体积明显变小,菌体周围的外分泌物明显减少,在体外的生长能力没有明显改变,但对克林霉素、呋喃妥因、头孢吡肟、头孢噻肟等4种抗菌药物的敏感度有所增强。溶原性噬菌体P51和不同浓度的抗菌药物(甲氧西林和四环素)对J57的生长均有明显抑制作用。与抗菌药物相比,噬菌体P51对J57的抑菌能力更强。抗菌药物对J57的抑菌能力与其浓度呈正相关。一定浓度的甲氧西林会协助增强噬菌体P51对J57的抑菌能力;但是,一定浓度的四环素会拮抗噬菌体P51对J57的抑菌能力。溶原性噬菌体P51对J57生物被膜的形成有明显抑制作用,四环素会拮抗噬菌体P51对J57生物被膜形成的抑制作用。转录组学分析发现,溶源性噬菌体P51可以诱导金黄色葡萄球菌J57中氨基糖苷类ant6ie、四环素类mepa等8个耐药基因的上调表达,下调糖肽类vanra、vanrg等12个耐药基因,P51和甲氧西林会在平稳期协同诱导J57中青霉素类耐药基因的上调表达;四环素可以长时间诱导J57中四环素类tet38、氨基糖苷类aadd、aad9ib等8个耐药基因的上调表达,在四环素存在的条件下,P51对J57中耐药基因的表达水平与四环素处理组无明显差异。金黄色葡萄球菌J57在溶源性噬菌体P51作用下,在潜伏期阶段,与生物合成相关酶大量合成,为噬菌体在宿主菌中合成自身相关蛋白做准备;在裂解爆发阶段,与细菌细胞壁降解相关的蛋白质LysM肽聚糖结合域(J57_ GM0000759)在裂解过程中上调表达,辅助噬菌体大量裂解细菌。

结论:

1.新疆地区某规模化奶牛场的奶牛乳房炎源金黄色葡萄球菌分离株携带有多种耐药基因,对常见抗菌药物的耐药率较高,且表现为多重耐药。奶牛乳房炎源金黄色葡萄球菌分离株的耐药表型与耐药基因的符合率较低。

2.本试验分离的3株噬菌体的裂解谱宽、裂解能力强,有较强的热稳定性和耐碱能力,且对紫外线具有一定的耐受能力。3株噬菌体的全基因组中均无耐药基因和毒力基因,基因水平的安全性良好。

3.溶源性噬菌体作用后,菌株形成的生物被膜明显减少,对一些抗菌药物的敏感度有所增强。噬菌体与不同抗生素在抑制金黄色葡萄球菌生长中有不同的交互作用。溶原性噬菌体可以诱导金黄色葡萄球菌中多种抗生素耐药基因的上调表达;在不同抗生素压力下,溶原性噬菌体调节金黄色葡萄球菌耐药基因表达的能力有所不同。

外文摘要:

Object: Staphylococcus aureus (S. aureus) is one of the main causative agents of mastitis in dairy cows. Due to the massive use of antibiotics, more and more Staphylococcus aureus are showing multi-drug resistance, which poses a great challenge to the clinical treatment of dairy cow mastitis. In this context, the use of phages to combat bacterial infections has been increasingly researched and applied. However, in phage therapy, in addition to the fact that pathogenic bacteria will develop resistance to phages and affect the effectiveness of treatment, phages will have  complex interactions with pathogenic bacteria, and their mechanisms are still unclear. In this study, on the basis of drug resistance analysis of isolates of Staphylococcus aureus of mastitis origin from dairy cows in a large-scale dairy farm in Xinjiang, phages were isolated with the Staphylococcus aureus isolates as the host bacteria, and their biological properties and genomic characteristics were analysed. One strain of multi-drug-resistant Staphylococcus aureus of mastitis origin from dairy cows and one lysogenous phage were taken as the objects of the study, and the morphology change of the strains before and after phages infection was investigated. By analyzing the morphological changes of the strain before and after phage infection, the growth ability, biofilm formation ability and transcriptomic changes of the strain under the pressure of lysogenic phage and/or antimicrobial drugs, the interactions between Staphylococcus aureus and lysogenic phage were preliminarily explored, which will provide theoretical basis for the development and application of phage preparations in the future.

Methods:

1. Staphylococcus aureus was isolated and identified from milk samples of cows suffering from mastitis collected from a large-scale dairy farm in Xinjiang region. The susceptibility of the isolates to commonly used antimicrobial drugs was determined by the K-B method and the MIC method, and the carriage of drug-resistant genes of the isolates was detected by PCR.

2. Using the  S. aureus isolates as host bacteria, the lytic phage was isolated and purified from the sewage samples of dairy farms by using the spot-drop method and the double-layer agar plate method, the lysogenic phage was induced in these isolates by using mitomycin C; the morphology of phage was observed by transmission electron microscopy. The biological characteristics of phage, such as the lysate spectrum of phage, the optimal multiplicity of infection, the one-step growth curve,  the thermal stability, the acid and alkali tolerance, and ultraviolet tolerance, etc. were investigated. The whole genomes of the lytic and lysogenic phages were sequenced and comprehensively analyzed by using several online software and tools, and the whole genomes were also be comparative genomics analyzed and genetic evolutionary analyzed.

3.  The morphological changes of the strains after the lysogenic phage infection wrere determined by electron microscopy, in vitro bacterial growth curves and drug sensitivity tests. The inhibitory effect on the ability of Staphylococcus aureus growth and biofilm formation were analyzed by determining the growth capacity and biofilm formation of Staphylococcus aureus in the conditions of lysogenic phage and / or different antimicrobial drugs (methicillin and tetracycline), to analyse the effect of lysogenic phage on the  vitro growth ability  and biofilm formation ability of S. aureus, and to assess the interaction between lysogenic phage and antibacterial drugs. S. aureus during different growth periods under the condition of lysogenic phage infection were transcriptome sequenced to analyze the gene expression profiles of S. aureus , in order to explore the interaction mechanism between S. aureus and its lysogenic phage.

Results:

1. 74 strains of Staphylococcus aureus were isolated from 138 milk samples of dairy cows with mastitis, with an isolation rate of 53.62%. 90.5% of the isolates were multi-resistant strains, which showed varying degrees of resistance to 15 antimicrobial drugs. the resistance rates of these strains to vancomycin, methicillin, sulfisoxazole, lincomycin, penicillin, and enrofloxacin were 97.30%,  82.43%, 79.73%, 71.62%, 67.57%, 67.57%, respectively. Strains resistant to three or more antimicrobial drugs accounted for 90.5%, strains resistant to nine or more antimicrobial drugs accounted for 56.8%, and one isolate was resistant to all examined antimicrobial drugs. A total of seven drug-resistant genes, including blaZ, linA, ermB, aacA-aphD, aac6-aph2, Aph(3')-a and tetM, were detected in S. aureus isolates of dairy cow mastitis origin, among which the detection rate of aminoglycoside-resistant gene aacA-aphD was the highest, 8.10%, and the detection rates of the remaining resistance genes ranged from 2.70% to 4.05%.

2. 3 strains of Staphylococcus aureus phages were isolated in this experiment, among which, 2 strains were lytic phages, named P50-1 and P74, and 1 strain was a lysogenic phage named P51. 3 strains of phages belonged to the order of tailed phages and the family of long-tailed phages. the lytic rates of phages P51, P50-1, and P74 against 78 strains of Staphylococcus aureus were 34.62%, 20.51%, and 25.64%, respectively. the optimal MOI of P51, P50-1, and P74 were 0.1, 0.01, and 0.01, respectively; the average lytic amounts were about 83 PFU/cell, 72 PFU/cell and 86 PFU/cell, respectively. 3 phage strains still had high activity in the conditions of the temperature ≤50℃ and the pH 6.0 ~ 10.0, and 3 phage strains could still retain part of their activity under prolonged UV irradiation. The whole genome sizes of lytic phage P50-1 and lysogenic phage P51 were 43895bp and 42263bp, respectively; the GC contents were 33.65% and 33.85%, respectively. 2 phages strains did not carry drug resistance genes and virulence genes, which were safe at the gene level. 2 phages strains had many genes with unknown functions in their genomes. Comparative genomics analysis revealed that P50-1 had the highest homology with Staphylococcus aureus phage StauST398-2, and P51 had the highest homology with Staphylococcus aureus phage vB_SauS_320. Genetic evolutionary analysis based on the large subunits of the terminal enzymes and the major coat proteins revealed that P50-1 was closest to S. aureus phage phiSa2wa_st72; P51 was closest to S. aureus phage R4 and vB SauS phi2, respectively.

3. Transmission electron microscopy observation revealed that after the lysogenic phage infection, the size of the test strain J57a was significantly smaller, the biofilm around the bacterium was significantly reduced, and there was no significant change in the growth ability in vitro, but the sensitivity to four kinds of antimicrobial drugs such as clindamycin, furantoin, cefepime, and cefotaxime was enhanced. Both lysogenic phage P51 and different concentrations of antimicrobial drugs (methicillin and tetracycline) significantly inhibited the growth of J57. The inhibitory ability of Phage P51 on J57 was stronger than antimicrobial drugs. The inhibitory ability of antimicrobial drugs on J57 was positively correlated with its concentration. A certain concentration of methicillin would assist in enhancing the inhibitory ability of phage P51 on J57; however, a certain concentration of tetracycline would antagonise the inhibitory ability of phage P51 on J57. Lysogenic phage P51 significantly inhibited the biofilm formation of J57. Transcriptomic analysis revealed that lysogenic phage P51 could induce the up-regulation of 8 resistance genes, such as aminoglycoside ant6ie and tetracycline mepa, and the down-regulation of 12 resistance genes, such as glycopeptide vanra and vanrg, in S. aureus J57. P51 and methicillin synergistically induced the up-regulation of penicillin-resistant genes in J57 at the plateau stage; tetracycline can induce the up-regulation of 8 resistance genes, such as tetracycline tet38, aminoglycoside aadd, aad9ib, in J57 for a long period of time, and the expression level of resistance genes in J57 at the group of P51 and tetracycline was not significantly different from that of the tetracycline-treated group. Under the action of lysogenic bacteriophage P51, Staphylococcus aureus J57 synthesizes a large amount of biosynthesis related enzymes during the incubation period, preparing for the bacteriophage to synthesize its own related proteins in the host bacteria; During the lysis burst stage, the LysM peptidoglycan binding domain (J57_GM0000759), a protein related to bacterial cell wall degradation, is upregulated during the lysis process, assisting in the large-scale lysis of bacteria by bacteriophages. Conclusion:

1. Isolates of Staphylococcus aureus of mastitis origin from cows in a large-scale dairy farm in Xinjiang region carried multiple drug-resistant genes, had a high rate of resistance to common antimicrobial drugs, and showed multi-drug resistance. The resistance phenotype of S. aureus isolates from dairy cow mastitis sources had a low compliance rate with resistance genes.

2. The three phage strains isolated in this experiment had wide lysis spectrum, strong lytic ability, strong thermal stability and alkali resistance, and a certain degree of tolerance to ultraviolet rays. All three phage strains did not have drug-resistance genes and virulence genes in the whole genome, and the safety at the gene level was good.

3. After the lysogenic phage infection, the formed biofilm of  the strains was significantly reduced, and the sensitivity to some antimicrobial drugs was enhanced. There are different interactions between phages and different antibiotics in inhibiting the growth of S. aureus. Lysogenic phages could induce the up-regulation of the expression of several antibiotic resistance genes in S. aureus; the ability of lysogenic phages to regulate the expression of S. aureus resistance genes varied under different antibiotic pressures.

参考文献:

[1]Ogston A. Report upon micro-organisms in surgical diseases[J]. British medical journal, 1881, 1(1054): 369. b2.

[2]Ogston A. Micrococcus poisoning[J]. Journal of anatomy and physiology, 1882, 16(Pt 4): 526.

[3]Cowan S T, Shaw C, Williams R E O. Type strain for Staphylococcus aureus Rosenbach[J]. Microbiology, 1954, 10(1): 174-176.

[4]Cowan S T. Classification of staphylococci by slide agglutination[J]. Journal of Pathology and Bacteriology, 1939, 48: 169-173.

[5]Foster T J. Staphylococcus aureus[J]. Molecular Medical Microbiology, 2002, 2: 839-888.

[6]Turner N A, Sharma-Kuinkel B K, Maskarinec S A, et al. Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research[J]. Nature Reviews Microbiology, 2019, 17(4): 203-218.

[7]Diekema D J, Pfaller M A, Schmitz F J, et al. Survey of infections due to Staphylococcus species: frequency of occurrence and antimicrobial susceptibility of isolates collected in the United States, Canada, Latin America, Europe, and the Western Pacific region for the SENTRY Antimicrobial Surveillance Program, 1997-1999[J]. Clin Infect Dis, 2001, 32 (Suppl 2):S114-132.

[8]Schito G C. The importance of the development of antibiotic resistance in Staphylococcus aureus[J]. Clinical microbiology and infection, 2006, 12: 3-8.

[9]Rammelkamp C H, Maxon T. Resistance of Staphylococcus aureus to the action of penicillin[J]. Proceedings of the Society for Experimental Biology and Medicine, 1942, 51(3): 386-389.

[10]Baron S. Medical microbiology[J]. 1996.

[11]Jevons M P. “Celbenin”-resistant staphylococci[J]. British medical journal, 1961, 1(5219): 124.

[12]Uhlemann A C, Otto M, Lowy F D, et al. Evolution of community-and healthcare-associated methicillin-resistant Staphylococcus aureus[J]. Infection, genetics and evolution, 2014, 21: 563-574.

[13]Lee A S, De Lencastre H, Garau J, et al. Methicillin-resistant Staphylococcus aureus[J]. Nature reviews Disease primers, 2018, 4(1): 1-23.

[14]Zigo F, Elečko J, Farkašová Z, et al. Preventive methods in reduction of mastitis pathogens in dairy cows[J]. Occurrence and prevention of mastitis in dairy farms situated in marginal regions, 2019, 1(1):51-65.

[15]Krishnamoorthy P, Suresh K P, Jayamma K S, et al. An understanding of the global status of major bacterial pathogens of milk concerning bovine mastitis: A systematic review and meta-analysis (scientometrics)[J]. Pathogens, 2021, 10(5): 545.

[16]Duse A, Persson-Waller K, Pedersen K. Microbial aetiology, antibiotic susceptibility and pathogen-specific risk factors for udder pathogens from clinical mastitis in dairy cows[J]. Animals, 2021, 11(7): 2113.

[17]Keane O M. Symposium review: Intramammary infections—Major pathogens and strain-associated complexity[J]. Journal of dairy science, 2019, 102(5): 4713-4726.

[18]Ren Q, Liao G, Wu Z, et al. Prevalence and characterization of Staphylococcus aureus isolates from subclinical bovine mastitis in southern Xinjiang, China[J]. Journal of dairy science, 2020, 103(4): 3368-3380.

[19]Liao G, Wu Z, Lv J, et al. Investigation of clonal diversity, virulence genes, and antibiotic resistance of Staphylococcus aureus recovered from raw cow milk in southern Xinjiang, China[J]. Folia Microbiologica, 2022, 67(2): 245-252.

[20]Molineri A I, Camussone C, Zbrun M V, et al. Antimicrobial resistance of Staphylococcus aureus isolated from bovine mastitis: Systematic review and meta-analysis[J]. Preventive veterinary medicine, 2021, 188: 105261.

[21]Zaatout N, Hezil D. A meta‐analysis of the global prevalence of methicillin‐resistant Staphylococcus aureus (MRSA) isolated from clinical and subclinical bovine mastitis[J]. Journal of Applied Microbiology, 2022, 132(1): 140-154.

[22]Mullarky I K, Su C, Frieze N, et al. Staphylococcus aureus agr genotypes with enterotoxin production capabilities can resist neutrophil bactericidal activity[J]. Infection and immunity, 2001, 69(1): 45-51.

[23]Lammers A. Pathogenesis of Staphylococcus aureus mastitis in vitro studies on adhesion, invasion and gene expression[D]. 2000.

[24]Erskine R J, Wagner S, DeGraves F J. Mastitis therapy and pharmacology[J]. Veterinary Clinics: Food Animal Practice, 2003, 19(1): 109-138.

[25]Zhao X, Lacasse P. Mammary tissue damage during bovine mastitis: causes and control[J]. Journal of animal science, 2008, 86(suppl_13): 57-65.

[26]García-Álvarez L, Holden M T G, Lindsay H, et al. Meticillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: a descriptive study[J]. The Lancet infectious diseases, 2011, 11(8): 595-603.

[27]Mŀynarczyk A, Mŀynarczyk G, Jeljaszewicz J. The genome of Staphylococcus aureus: a review[J]. Zentralblatt für Bakteriologie, 1998, 287(4): 277-314.

[28]Jorgensen J H. Mechanisms of methicillin resistance in Staphylcoccus aureus and methods for laboratory detection[J]. Infection Control & Hospital Epidemiology, 1991, 12(01): 14-19.

[29]Tomasz A, Drugeon H B, De Lencastre H M, et al. New mechanism for methicillin resistance in Staphylococcus aureus: clinical isolates that lack the PBP 2a gene and contain normal penicillin-binding proteins with modified penicillin-binding capacity[J]. Antimicrobial Agents and Chemotherapy, 1989, 33(11): 1869-1874.

[30]Argudín M A, Roisin S, Nienhaus L, et al. Genetic diversity among Staphylococcus aureus isolates showing oxacillin and/or cefoxitin resistance not linked to the presence of mec genes[J]. Antimicrobial agents and chemotherapy, 2018, 62(7):91-118.

[31]Zeng D, Debabov D, Hartsell T L, et al. Approved glycopeptide antibacterial drugs: mechanism of action and resistance[J]. Cold Spring Harbor perspectives in medicine, 2016, 6(12):026989.

[32]Colca J R, McDonald W G, Waldon D J, et al. Cross-linking in the living cell locates the site of action of oxazolidinone antibiotics[J]. Journal of Biological Chemistry, 2003, 278(24): 21972-21979.

[33]Mendes R E, Deshpande L M, Castanheira M, et al. First report of cfr-mediated resistance to linezolid in human staphylococcal clinical isolates recovered in the United States[J]. Antimicrobial agents and chemotherapy, 2008, 52(6): 2244-2246.

[34]Mlynarczyk B, Mlynarczyk A, Kmera-Muszynska M, et al. Mechanisms of resistance to antimicrobial drugs in pathogenic Gram-positive cocci[J]. Mini Reviews in Medicinal Chemistry, 2010, 10(10): 928-937.

[35]Ito T, Katayama Y, Asada K, et al. Structural comparison of three types of staphylococcal cassette chromosome mec integrated in the chromosome in methicillin-resistant Staphylococcus aureus[J]. Antimicrobial agents and chemotherapy, 2001, 45(5): 1323-1336.

[36]Trzcinski K, Cooper B S, Hryniewicz W, et al. Expression of resistance to tetracyclines in strains of methicillin-resistant Staphylococcus aureus[J]. Journal of Antimicrobial Chemotherapy, 2000, 45(6): 763-770.

[37]Argudín M A, Tenhagen B A, Fetsch A, et al. Virulence and resistance determinants of German Staphylococcus aureus ST398 isolates from nonhuman sources[J]. Applied and environmental microbiology, 2011, 77(9): 3052-3060.

[38]Lozano C, Rezusta A, Gómez P, et al. High prevalence of spa types associated with the clonal lineage CC398 among tetracycline-resistant methicillin-resistant Staphylococcus aureus strains in a Spanish hospital[J]. Journal of antimicrobial chemotherapy, 2012, 67(2): 330-334.

[39]McDougal L K, Fosheim G E, Nicholson A, et al. Emergence of resistance among USA300 methicillin-resistant Staphylococcus aureus isolates causing invasive disease in the United States[J]. Antimicrobial agents and chemotherapy, 2010, 54(9): 3804-3811.

[40]Clokie M R J, Millard A D, Letarov A V, et al. Phages in nature[J]. Bacteriophage, 2011, 1(1): 31-45.

[41]Hatfull G F, Hendrix R W. Bacteriophages and their genomes[J]. Current opinion in virology, 2011, 1(4): 298-303.

[42]Summers W C. The strange history of phage therapy[J]. Bacteriophage, 2012, 2(2): 130–133.

[43]Khan Mirzaei M, Nilsson A S. Isolation of phages for phage therapy: a comparison of spot tests and efficiency of plating analyses for determination of host range and efficacy[J]. PLoS one, 2015, 10(3): e0118557.

[44]Betts A, Gray C, Zelek M, et al. High parasite diversity accelerates host adaptation and diversification[J]. Science, 2018, 360(6391): 907-911.

[45]Miller ES, Kutter E, Mosig G, et al. Bacteriophage T4 genome[J]. Microbiol Mol Biol Rev, 2003, 67(1):86-156.

[46]Fernandes S, São-José C. Enzymes and Mechanisms Employed by Tailed Bacteriophages to Breach the Bacterial Cell Barriers[J]. Viruses, 2018, 10(8):396.

[47]Weitz JS, Poisot T, Meyer JR, et al. Phage-bacteria infection networks[J]. Trends Microbiol, 2013, 21(2):82-91.

[48]ACKERMANN H W. 5500 Phages examined in the electron microscope[J/OL]. Archives of Virology, 2007, 152(2): 227-243. DOI:10.1007/s00705-006-0849-1.

[49]Ackermann HW. Phage classification and characterization[J]. Methods Mol Biol, 2009, 501(501):127-140.

[50]Campbell A. Phage evolution and speciation[M]. The bacteriophages. Boston, MA: Springer US, 1988: 1-14.

[51]Eichhorn I, Heidemanns K, Ulrich R G, et al. Lysogenic conversion of atypical enteropathogenic Escherichia coli (aEPEC) from human, murine, and bovine origin with bacteriophage Φ3538 Δstx2:: cat proves their enterohemorrhagic E. coli (EHEC) progeny[J]. International Journal of Medical Microbiology, 2018, 308(7): 890-898.

[52]Munson-McGee J H, Snyder J C, Young M J. Archaeal viruses from high-temperature environments[J]. Genes, 2018, 9(3): 128.

[53]Casjens S. Prophages and bacterial genomics: what have we learned so far[J]. Mol Microbiol, 2003, 49(2):277-300.

[54]Filippov AA, Sergueev KV, He Y, et al. Bacteriophage-resistant mutants in Yersinia pestis: identification of phage receptors and attenuation for mice[J]. PLoS One, 2011, 6(9):e25486.

[55]Scott AE, Timms AR, Connerton PL, et al. Genome dynamics of Campylobacter jejuni in response to bacteriophage predation[J]. PLoS Pathog, 2007, 3(8):e119.

[56]Hosseinidoust Z, van de Ven TG, Tufenkji N. Evolution of Pseudomonas aeruginosa virulence as a result of phage predation[J]. Appl Environ Microbiol, 2013, 79(19):6110-6116.

[57]Davies EV, James CE, Williams D, et al. Temperate phages both mediate and drive adaptive evolution in pathogen biofilms[J]. Proc Natl Acad Sci U S A, 2016, 113(29):8266-8271.

[58]Cairns J, Frickel J, Jalasvuori M, et al. Genomic evolution of bacterial populations under coselection by antibiotics and phage[J]. Mol Ecol, 2017, 26(7):1848-1859.

[59]Koskella B, Brockhurst MA. Bacteria-phage coevolution as a driver of ecological and evolutionary processes in microbial communities[J]. FEMS Microbiol Rev, 2014, 38(5):916-931.

[60]Poranen MM, Ravantti JJ, Grahn AM, et al. Global changes in cellular gene expression during bacteriophage PRD1 infection[J]. J Virol, 2006, 80(16):8081-8088.

[61]Ainsworth S, Zomer A, Mahony J, et al. Lytic infection of Lactococcus lactis by bacteriophages Tuc2009 and c2 triggers alternative transcriptional host responses[J]. Appl Environ Microbiol, 2013, 79(16):4786-4798.

[62]Doron S, Fedida A, Hernández-Prieto MA, et al. Transcriptome dynamics of a broad host-range cyanophage and its hosts[J]. ISME J, 2016, 10(6):1437-1455.

[63]De Smet J, Zimmermann M, Kogadeeva M, et al. High coverage metabolomics analysis reveals phage-specific alterations to Pseudomonas aeruginosa physiology during infection[J]. ISME J, 2016, 10(8):1823-1835.

[64]Blasdel BG, Chevallereau A, Monot M, et al. Comparative transcriptomics analyses reveal the conservation of an ancestral infectious strategy in two bacteriophage genera[J]. ISME J, 2017, 11(9):1988-1996.

[65]Fernández L, González S, Campelo AB, et al. Low-level predation by lytic phage phiIPLA-RODI promotes biofilm formation and triggers the stringent response in Staphylococcus aureus[J]. Sci Rep, 2017, 7(7):40965.

[66]Lavigne R, Lecoutere E, Wagemans J, et al. A multifaceted study of Pseudomonas aeruginosa shutdown by virulent podovirus LUZ19[J]. mBio, 2013, 4(2):e00061-13.

[67]Osterhout RE, Figueroa IA, Keasling JD, et al. Global analysis of host response to induction of a latent bacteriophage[J]. BMC Microbiol, 2007, 7(7):82.

[68]Ravantti JJ, Ruokoranta TM, Alapuranen AM, et al. Global transcriptional responses of Pseudomonas aeruginosa to phage PRR1 infection[J]. J Virol, 2008, 82(5):2324-2329.

[69]Veses-Garcia M, Liu X, Rigden DJ, et al. Transcriptomic analysis of Shiga-toxigenic bacteriophage carriage reveals a profound regulatory effect on acid resistance in Escherichia coli[J]. Appl Environ Microbiol, 2015, 81(23):8118-8125.

[70]Zhao X, Chen C, Shen W, et al. Global Transcriptomic Analysis of Interactions between Pseudomonas aeruginosa and Bacteriophage PaP3[J]. Sci Rep, 2016, 6(6):19237.

[71]Fallico V, Ross RP, Fitzgerald GF, et al. Genetic response to bacteriophage infection in Lactococcus lactis reveals a four-strand approach involving induction of membrane stress proteins, D-alanylation of the cell wall, maintenance of proton motive force, and energy conservation[J]. J Virol, 2011, 85(22):12032-12042.

[72]Fallico V, Ross RP, Fitzgerald GF, et al. Genetic response to bacteriophage infection in Lactococcus lactis reveals a four-strand approach involving induction of membrane stress proteins, D-alanylation of the cell wall, maintenance of proton motive force, and energy conservation[J]. J Virol, 2011, 85(22):12032-12042.

[73]Dendooven T, Van den Bossche A, Hendrix H, et al. Viral interference of the bacterial RNA metabolism machinery[J]. RNA Biol, 2017, 14(1):6-10.

[74]Chevallereau A, Blasdel BG, De Smet J, et al. Next-Generation "-omics" Approaches Reveal a Massive Alteration of Host RNA Metabolism during Bacteriophage Infection of Pseudomonas aeruginosa[J]. PLoS Genet, 2016, 12(7):e1006134.

[75]Aranda M, Maule A. Virus-induced host gene shutoff in animals and plants[J]. Virology, 1998, 243(2):261-267.

[76]Campoy S, Hervàs A, Busquets N, et al. Induction of the SOS response by bacteriophage lytic development in Salmonella enterica[J]. Virology, 2006, 351(2):360-367.

[77]Hänninen AL, Bamford DH, Bamford JK. Assembly of membrane-containing bacteriophage PRD1 is dependent on GroEL and GroES[J]. Virology, 1997, 227(1):207-210.

[78]Leskinen K, Blasdel BG, Lavigne R, et al. RNA-Sequencing Reveals the Progression of Phage-Host Interactions between φR1-37 and Yersinia enterocolitica[J]. Viruses, 2016, 8(4):111.

[79]Schuch R, Fischetti VA. Detailed genomic analysis of the Wbeta and gamma phages infecting Bacillus anthracis: implications for evolution of environmental fitness and antibiotic resistance[J]. J Bacteriol, 2006, 188(8):3037-3051.

[80]Hosseinidoust Z, Tufenkji N, van de Ven TG. Formation of biofilms under phage predation: considerations concerning a biofilm increase[J]. Biofouling, 2013, 29(4):457-468.

[81]Abedon ST. Spatial vulnerability: bacterial arrangements, microcolonies, and biofilms as responses to low rather than high phage densities[J]. Viruses, 2012, 4(5):663-687.

[82]Abedon ST. Bacteriophage exploitation of bacterial biofilms: phage preference for less mature targets[J]. FEMS Microbiol Lett, 2016, 363(3):246-251.

[83]Abedon ST. Phage "delay" towards enhancing bacterial escape from biofilms: a more comprehensive way of viewing resistance to bacteriophages[J]. AIMS Microbiol, 2017, 3(2):186-226.

[84]Gödeke J, Paul K, Lassak J, et al. Phage-induced lysis enhances biofilm formation in Shewanella oneidensis MR-1[J]. ISME J, 2011, 5(4):613-626.

[85]Rossmann FS, Racek T, Wobser D, et al. Phage-mediated dispersal of biofilm and distribution of bacterial virulence genes is induced by quorum sensing[J]. PLoS Pathog, 2015, 11(2):e1004653.

[86]Liu X, Li Y, Guo Y, et al. Physiological Function of Rac Prophage During Biofilm Formation and Regulation of Rac Excision in Escherichia coli K-12[J]. Sci Rep, 2015, 5(5):16074.

[87]Zegans ME, Wagner JC, Cady KC, et al. Interaction between bacteriophage DMS3 and host CRISPR region inhibits group behaviors of Pseudomonas aeruginosa[J]. J Bacteriol, 2009, 191(1):210-219.

[88]Rice SA, Tan CH, Mikkelsen PJ, et al. The biofilm life cycle and virulence of Pseudomonas aeruginosa are dependent on a filamentous prophage[J]. ISME J, 2009, 3(3):271-282.

[89]Tan D, Dahl A, Middelboe M. Vibriophages Differentially Influence Biofilm Formation by Vibrio anguillarum Strains[J]. Appl Environ Microbiol, 2015, 81(13):4489-4497.

[90]Krömker V, Leimbach S. Mastitis treatment-Reduction in antibiotic usage in dairy cows[J]. Reprod Domest Anim, 2017, 52 Suppl 3:21-29.

[91]Krishnamoorthy P, Suresh KP, Jayamma KS, et al. An Understanding of the Global Status of Major Bacterial Pathogens of Milk Concerning Bovine Mastitis: A Systematic Review and Meta-Analysis (Scientometrics)[J]. Pathogens, 2021, 10(5):545.

[92]Gao W, Cameron DR, Davies JK, et al. The RpoB H481Y rifampicin resistance mutation and an active stringent response reduce virulence and increase resistance to innate immune responses in Staphylococcus aureus[J]. J Infect Dis, 2013, 207(6):929-939.

[93]Ferrero L, Cameron B, Crouzet J. Analysis of gyrA and grlA mutations in stepwise-selected ciprofloxacin-resistant mutants of Staphylococcus aureus[J]. Antimicrob Agents Chemother, 1995, 39(7):1554-1558.

[94]Liu H, Li S, Meng L, et al. Prevalence, antimicrobial susceptibility, and molecular characterization of Staphylococcus aureus isolated from dairy herds in northern China[J]. J Dairy Sci, 2017, 100(11):8796-8803.

[95]Ruegg PL, Oliveira L, Jin W, et al. Phenotypic antimicrobial susceptibility and occurrence of selected resistance genes in gram-positive mastitis pathogens isolated from Wisconsin dairy cows[J]. J Dairy Sci, 2015, 98(7):4521-4534.

[96]Brakstad OG, Aasbakk K, Maeland JA. Detection of Staphylococcus aureus by polymerase chain reaction amplification of the nuc gene[J]. J Clin Microbiol, 1992, 30(7):1654-1660.

[97]张行. 奶牛乳房炎凝固酶阴性葡萄球菌耐药性及其相关基因研究[D].北京:中国农业科学院,2020.

[98]姜斌. 血流感染中分离的耐甲氧西林溶血葡萄球菌的药物敏感性、SCCmec基因分型及同源性研究[D].湖南:湖南师范大学,2021.

[99]Strommenger B, Kettlitz C, Werner G, et al. Multiplex PCR assay for simultaneous detection of nine clinically relevant antibiotic resistance genes in Staphylococcus aureus[J]. J Clin Microbiol, 2003, 41(9):4089-4094.

[100] 杜伟伟. 河北省乳源金黄色葡萄球菌耐药性检测及耐药基因的研究[D].河北:河北农业大学,2015.

[101] FarajzadehSheikh A, Veisi H, Shahin M, et al. Frequency of quinolone resistance genes among extended-spectrum β-lactamase (ESBL)-producing Escherichia coli strains isolated from urinary tract infections[J]. Trop Med Health, 2019, 47(47):19.

[102] Elghaieb H, Tedim AP, Abbassi MS, et al. From farm to fork: identical clones and Tn6674-like elements in linezolid-resistant Enterococcus faecalis from food-producing animals and retail meat[J]. J Antimicrob Chemother, 2020, 75(1):30-35.

[103] Osman KM, Ali MN, Radwan I, et al. Dispersion of the Vancomycin Resistance Genes vanA and vanC of Enterococcus Isolated from Nile Tilapia on Retail Sale: A Public Health Hazard[J]. Front Microbiol, 2016, 7(7):1354.

[104] 于美美,王佳齐,顾增辉等.金黄色葡萄球菌的表型药物敏感性与耐药基因携带性的相关分析[J].临床合理用药杂志,2021,14(07):153-156.

[105] Zhang F, Wu S, Lei T, et al. Presence and characterization of methicillin-resistant Staphylococcus aureus co-carrying the multidrug resistance genes cfr and lsa(E) in retail food in China[J]. Int J Food Microbiol, 2022, 363(363):109512.

[106] Zhang Z, Chen Y, Li X, et al. Detection of Antibiotic Resistance, Virulence Gene, and Drug Resistance Gene of Staphylococcus aureus Isolates from Bovine Mastitis[J]. Microbiol Spectr, 2022, 10(4):e0047122.

[107] 田晓英,王军,于忠娜等.天津地区乳房炎奶样中金黄色葡萄球菌耐药性研究[J].现代食品科技,2017,33(10):208-216+244.

[108] 马博,卜三平,周鸿淼等.新疆巴州地区奶牛隐性乳房炎金黄色葡萄球菌的分离鉴定与耐药性分析[J].养殖与饲料,2020(02):5-10.DOI:10.13300/j.cnki.cn42-1648/s.2020.02.002.

[109] Wang W, Lin X, Jiang T, et al. Prevalence and Characterization of Staphylococcus aureus Cultured From Raw Milk Taken From Dairy Cows With Mastitis in Beijing, China[J]. Front Microbiol, 2018, 9(9):1123.

[110] Gordillo Altamirano FL, Barr JJ. Phage Therapy in the Postantibiotic Era[J]. Clin Microbiol Rev, 2019, 32(2):e00066-18.

[111] Shore D, Dehò G, Tsipis J, et al. Determination of capsid size by satellite bacteriophage P4[J]. Proc Natl Acad Sci U S A, 1978, 75(1):400-404.

[112] Zhang M, Zhang T, Yu M, et al. The Life Cycle Transitions of Temperate Phages: Regulating Factors and Potential Ecological Implications[J]. Viruses, 2022, 14(9):1904.

[113] Werly EF, Monley A. Assay of T3 phage by plaque count[J]. J Bacteriol, 1964, 87(5):1177-1179.

[114] Raya RR, H'bert EM. Isolation of Phage via Induction of Lysogens[J]. Methods Mol Biol, 2009, 501(501):23-32.

[115] Gu J, Xu W, Lei L, et al. LysGH15, a novel bacteriophage lysin, protects a murine bacteremia model efficiently against lethal methicillin-resistant Staphylococcus aureus infection[J]. J Clin Microbiol, 2011, 49(1):111-117.

[116] Esmael A, Azab E, Gobouri AA, et al. Isolation and Characterization of Two Lytic Bacteriophages Infecting a Multi-Drug Resistant Salmonella Typhimurium and Their Efficacy to Combat Salmonellosis in Ready-to-Use Foods[J]. Microorganisms, 2021, 9(2):423.

[117] Heo Y J, Lee C H, Baek M S, et al. Biological Characterization of a Vibrio alginolyticus-Specific Bacteriophage[J]. Korean Journal of Fisheries and Aquatic Sciences, 2012, 45(6): 654-658.

[118] Pajunen M, Kiljunen S, Skurnik M. Bacteriophage phiYeO3-12, specific for Yersinia enterocolitica serotype O:3, is related to coliphages T3 and T7[J]. J Bacteriol, 2000, 182(18):5114-5120.

[119] Verma V, Harjai K, Chhibber S. Characterization of a T7-like lytic bacteriophage of Klebsiella pneumoniae B5055: a potential therapeutic agent[J]. Curr Microbiol, 2009, 59(3):274-281.

[120] Bankevich A, Nurk S, Antipov D, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing[J]. J Comput Biol, 2012, 19(5):455-477.

[121] Mahram A, Herbordt M C. Fast and accurate NCBI BLASTP: Acceleration with multiphase FPGA-based prefiltering[C]//Proceedings of the 24th ACM International Conference on Supercomputing. 2010: 73-82.

[122] Grant JR, Stothard P. The CGView Server: a comparative genomics tool for circular genomes[J]. Nucleic Acids Res, 2008, 36(2):181-184.

[123] Sullivan MJ, Petty NK, Beatson SA. Easyfig: a genome comparison visualizer[J]. Bioinformatics, 2011, 27(7):1009-1010.

[124] Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets[J]. Mol Biol Evol, 2016, 33(7):1870-1874.

[125] 冯烨,刘军,孙洋等.噬菌体最新分类与命名[J].中国兽医学报,2013,33(12):1954-1958.

[126] 张雪丽. 奶牛乳腺炎中金黄色葡萄球菌耐药性分析及噬菌体的分离鉴定与应用[D].山东:山东农业大学,2022.

[127] 侯忠余,李传友,朱成林等.1株金黄色葡萄球菌烈性噬菌体的生物学特性及其裂解效果[J].食品科学,2022,43(08):113-120.

[128] 鞠磊,王静雪,林洪等.一株耐甲氧西林金黄色葡萄球菌噬菌体qdsa002的分离鉴定及其生理学性质研究[J].食品工业科技,2016,37(16):230-233+237.

[129] 党瑞莹,常军帅,梁晏等.奶牛乳腺炎源金黄色葡萄球菌噬菌体P82的分离及特性研究[J].中国畜牧兽医,2022,49(06):2318-2325.

[130] 陈冈,郑盼盼,高雅等.金黄色葡萄球菌噬菌体SP-2裂菌特性分析[J].中国兽医科学,2021,51(06):722-729.DOI:10.16656/j.issn.1673-4696.2021.0110.

[131] 高明明,刘慧莹,李璞媛等.金黄色葡萄球菌噬菌体vB_SauH_IME522的分离鉴定及全基因组分析[J].第三军医大学学报,2020,42(03):229-240.

[132] Poliakov A, Chang JR, Spilman MS, et al. Capsid size determination by Staphylococcus aureus pathogenicity island SaPI1 involves specific incorporation of SaPI1 proteins into procapsids[J]. J Mol Biol, 2008, 380(3):465-475.

[133] Kizziah JL, Manning KA, Dearborn AD, et al. Structure of the host cell recognition and penetration machinery of a Staphylococcus aureus bacteriophage[J]. PLoS Pathog, 2020, 16(2):e1008314.

[134] Christie G E, Matthews A M, King D G, et al. The complete genomes of Staphylococcus aureus bacteriophages 80 and 80α—implications for the specificity of SaPI mobilization[J]. Virology, 2010, 407(2): 381-390.

[135] Barasuol BM, Cargnelutti JF, Sangioni LA, et al. Characterization of novel of temperate phages of Staphylococcus aureus isolated from bovine milk[J]. Arch Microbiol, 2022, 204(11):680.

[136] Falagas M E, Karageorgopoulos D E. Pandrug resistance (PDR), extensive drug resistance (XDR), and multidrug resistance (MDR) among Gram-negative bacilli: need for international harmonization in terminology[J]. Clinical infectious diseases, 2008, 46(7): 1121-1122.

[137] Watts G. Phage therapy: revival of the bygone antimicrobial[J]. The Lancet, 2017, 390(10112): 2539-2540.

[138] Monteiro R, Pires D P, Costa A R, et al. Phage therapy: going temperate?[J]. Trends in microbiology, 2019, 27(4): 368-378.

[139] Rehman S, Ali Z, Khan M, et al. The dawn of phage therapy[J]. Reviews in medical virology, 2019, 29(4): e2041.

[140] Zhang L, Shahin K, Soleimani‐Delfan A, et al. Phage JS02, a putative temperate phage, a novel biofilm‐degrading agent for Staphylococcus aureus[J]. Letters in Applied Microbiology, 2022, 75(3): 643-654.

[141] 张瑶. 裂解酶P26ly对金黄色葡萄球菌、大肠杆菌生物被膜清除作用的研究[D].云南:昆明理工大学,2021.DOI:10.27200/d.cnki.gkmlu.2021.001690.

[142] 马东鑫. 多价噬菌体SaP7与β-内酰胺类抗生素联合治疗的拮抗作用[D].广西:广西大学,2022.DOI:10.27034/d.cnki.ggxiu.2022.000698.

[143] 叶卓幸,汤燕君,何璐茜等.四环素类抗生素耐药研究进展:质粒介导的替加环素耐药机制[J].生态毒理学报,2022,17(04):122-140.

中图分类号:

 S85    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式