- 无标题文档
查看论文信息

中文题名:

 基于区块链技术的政务审批数据可信方法研究及系统实现    

姓名:

 杨景雯    

学号:

 20222108002    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0854    

学科名称:

 工学 - 电子信息    

学生类型:

 硕士    

学位:

 工学硕士    

学位类型:

 专业学位    

学位年度:

 2025    

学校:

 石河子大学    

院系:

 信息科学与技术学院(网络空间安全学院)    

专业:

 电子信息    

研究方向:

 计算机技术    

第一导师姓名:

 高攀    

第一导师单位:

 石河子大学    

完成日期:

 2025-05-30    

答辩日期:

 2025-05-19    

外文题名:

 Research on Trustworthy Methods for Government Approval Data Based on Blockchain Technology and System Implementation    

中文关键词:

 政务审批 ; 数据可信 ; 区块链 ; 默克尔树 ; 布隆过滤器     

外文关键词:

 Government approval ; Data trust ; Blockchain ; Merkle Tree ; Bloom Filter     

中文摘要:

随着信息技术的不断发展,当前政务审批系统面临数据存储量激增、敏感信息泄露风险高、篡改行为难追溯等问题,制约了审批服务的实时性与可信性。区块链技术凭借其去中心化、不可篡改和数据透明的特性,为政务审批领域提供了新的解决思路。本文设计一种基于区块链链上链下协同的政务数据可信架构,旨在通过链上链下协同机制,保障审批数据的真实性、完整性和安全性。研究主要内容如下:

(1)针对政务审批数据易被篡改且缺乏可信验证的问题,设计了一种基于区块链链上链下协同的政务数据可信方法,结合分层加密与改进数据结构实现高效验证与隐私保护。根据数据敏感度(公开层、内部层、敏感层)设计分层加密模型,结合密文策略属性基加密(CP-ABE)算法实现动态权限控制。其次,提出改进的 Merkle-Radix-BloomFilter 树(MRBT),通过 Radix 树压缩存储节点、布隆过滤器预筛无效查询,实现高效存储与毫秒级验证。在模拟政务审批场景(10万条数据,1000并发用户数的)下,实验结果表明,本文方法达到99.2%的检测率,哈希匹配率达到99.5%,较四叉 Merkle 树方案分别提升0.3和1.3个百分点,吞吐量超传统区块链方案6倍,有效保障为政务审批数据的可信性。

(2)针对传统 PBFT 共识算法在政务审批场景中存在低效主节点选举、通信开销大及抗恶意攻击能力不足的问题,设计了一种基于动态权益调整机制的分层 PBFT 共识算法。该算法通过节点行为评分机制动态计算权益权重,结合固定周期轮换与异常触发机制,实现主节点的高效选举与恶意节点快速隔离;设计分层验证流程降低通信复杂度。实验表明,在总节点数为50时,改进 PBFT 共识算法吞吐量较 DS-PBFT 提升36.7%,共识延迟降低34%,容错性更优,为政务审批提供了高吞吐、低延迟、强安全的技术支持。

(3)基于上述提出的方案,进行政务审批系统的设计并使 Hyperledger Fabric 实现政务审批系统,系统集成了上述的方法和架构。搭建完整的链下数据库与链上 Hyperledger Fabric 网络环境,并在系统中部署智能合约,支持审批申请提交流程管理、审批状态更新等核心操作,设计用例完成系统测试,为政务审批在大规模场景中的应用提供了可行性和实用价值的佐证。

外文摘要:

With the continuous development of information technology, current government approval systems face challenges such as large data storage volumes, cumbersome approval processes, susceptibility to data tampering, and difficulties in quickly verifying data authenticity. These issues severely impact the efficiency and credibility of government approvals. Blockchain technology, with its decentralized, tamper-resistant, and transparent characteristics, offers a new solution for the field of government approval. Based on blockchain technology, this thesis proposes a trustworthy method for government approval data, aiming to ensure the authenticity, integrity, and security of approval data through an on-chain and off-chain collaborative mechanism. The main research contents are as follows:

(1)To address the issue of government approval data being easily tampered with and lacking reliable verification, a blockchain-based method for trustworthy government data is proposed. This method combines on-chain and off-chain collaboration, using layered encryption and an improved data structure to achieve efficient verification and privacy protection. A layered encryption model is designed based on data sensitivity (public layer, internal layer, and sensitive layer), and dynamic access control is implemented using the ciphertext-policy attribute-based encryption (CP-ABE) algorithm. Furthermore, an improved Merkle-Radix-BloomFilter Tree (MRBT) is proposed. It compresses storage nodes through a Radix tree and uses Bloom filters to pre-screen invalid queries, ensuring efficient storage and millisecond-level verification. In a simulated government approval scenario with 100,000 data entries and 1,000 concurrent users, experimental results show that the proposed method achieves a detection rate of 99.2% and a hash match rate of 99.5%, improving by 0.3 and 1.3 percentage points compared to the quaternary Merkle tree solution, respectively. Its throughput is 6 times higher than traditional blockchain solutions, effectively ensuring the trustworthiness of government approval data.

(2)To address the issues of inefficient main node election, large communication overhead, and insufficient resistance to malicious attacks in the traditional PBFT consensus algorithm in government approval scenarios, a layered PBFT consensus algorithm based on a dynamic rights adjustment mechanism is proposed. This algorithm dynamically calculates the rights weight of nodes through a node behavior scoring mechanism, combined with fixed-period rotation and abnormal triggering mechanisms, achieving efficient main node election and rapid isolation of malicious nodes. A layered verification process is designed to reduce communication complexity. Experimental results show that, with 50 total nodes, the improved PBFT consensus algorithm achieves a throughput improvement of 36.7% compared to DS-PBFT, a 34% reduction in consensus delay, and better fault tolerance, providing high throughput, low latency, and strong security for government approval.

(3) Based on the above proposed solution, a government approval system is designed and implemented using Hyperledger Fabric. The system integrates the methods and architecture mentioned above. A complete off-chain database and on-chain Hyperledger Fabric network environment are built, and smart contracts are deployed in the system to support core operations such as approval application submission management and approval status updates. Test cases are designed to complete system testing, providing feasibility and practical value for the application of government approval in large-scale scenarios.

参考文献:

[1]United Nations. E-Government Survey 2024[R/OL].[2025-5-19].https://publicadministration.un.org/egovkb/en-us/Reports/UN-E-Government-Survey-2024.

[2]国家互联网信息办公室.《中国区块链创新应用发展报告(2023)》[R/OL].[2025-5-19].https://www.cac.gov.cn/2024-02/22/c_1710016970183267.htm.

[3]肖炯恩,吴应良.基于区块链的政务系统协同创新应用研究[J].管理现代化,2018,38(05):60-65.

[4]Alkraiji A I. Citizen Satisfaction With Mandatory E-Government Services: A Conceptual Framework and an Empirical Validation[J].IEEE Access,2020,8:117253-117265.

[5]Rodriguez-Hevía L F, Navío-Marco J, Ruiz-Gómez L M. Citizens ’ Involvement in E-Government in the European Union: The Rising Importance of the Digital Skills:Sustainability[Z].2020:12.

[6]Alexopoulos C, Charalabidis Y, Loutsaris M A, et al. How Blockchain Technology Changes Government: A Systematic Analysis of Applications[J]. International Journal of Public Administration in the Digital Age (IJPADA),2021,8(1):1-20.

[7]Semenzin S, Rozas D, Hassan S. Blockchain-Based Application at a Governmental Level:Disruption or Illusion? The Case of Estonia[J]. Policy and Society,2022,41(3):386-401.

[8]葛伟军, 方懿. 区块链智能合约下加密数字藏品的法律属性与内生风险[J]. 上海大学学报(社会科学版),2023,40(02):20-35.

[9]Petratos P N, Ljepava N, Salman A. Blockchain technology, sustainability and business:A literature review and the case of Dubai and UAE[C]//Sustainable Development and Social Responsibility—Volume 1: Proceedings of the 2nd American University in the Emirates International Research Conference, AUEIRC'18–Dubai, UAE 2018. Springer International Publishing,2020:87-93.

[10]Lykidis I, Drosatos G, Rantos K. The Use of Blockchain Technology in e-Government Services[J]. Computers,2021,10(12):168.

[11] Suganthi S, Sree Kala T. A novel secure aware privacy preserved data sharing framework in an E-government system based on a consortium blockchain[J]. Journal of Control and Decision,2024,11(4):614-632.

[12]Malik S, Dedeoglu V, Kanhere S, et al. PrivChain: Provenance and Privacy Preservation in Blockchain enabled Supply Chains[Z].Ithaca:2021.

[13]Boualouache A, Sedjelmaci H, Engel T. Consortium Blockchain for Cooperative Location Privacy Preservation in 5G-Enabled Vehicular Fog Computing[J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY,2021,70(7):7087-7102.

[14]Sharma P, Namasudra S, Chilamkurti N, et al. Blockchain-Based Privacy Preservation for IoT-Enabled Healthcare System[J]. ACM Transactions on Sensor Networks,2023,19(3):1-17.

[15]Barnawi A, Aggarwal S, Kumar N, et al. Path Planning for Energy Management of Smart Maritime Electric Vehicles: A Blockchain-Based Solution[J]. IEEE Transactions on Intelligent Transportation Systems,2023,24(2):2282-2295.

[16]管荣黎, 陈良飞. 政务区块链发展综述[J]. 科学与信息化,2022(6):82-85.

[17]东青. 海淀区探索基于区块链共识技术的跨省通办新模式[J].数据,2021(04):37.

[18]谷宁静. 基于区块链的电子政务数据共享设计研究[J].信息安全与通信保密,2020(04):91-97.

[19]WANG K, YU L, YAN Y, et al. Capitalization and Trading System Design of Power Data Based on Blockchain[J]. Journal of Northeastern University (Natural Science),2021,42(2):166.

[20]胡剑, 戚湧. 基于区块链跨链机制的政务数据安全治理体系研究[J].现代情报,2023,43(9):85-97,164.

[21]Patil V T, Shyamasundar R K. Evolving Role of PKI in Facilitating Trust[C]//2022 IEEE International Conference on Public Key Infrastructure and its Applications (PKIA),2022:1-7.

[22]Mahmoud AH, Issa HH, Shaker NH, Shehata KA. Customized AES for Securing Data in Sensitive Networks and Applications[C]//2022 39th National Radio Science Conference (NRSC),Cairo,Egypt,2022.

[23]Oladoyinbo T O, Oladoyinbo O B, Akinkunmi A I. The Importance Of Data Encryption Algorithm In Data Security[J]. Current Journal of International Organization of Scientific Research Journal of Mobile Computing & Application (IOSR-JMCA),2024,11(2):10-16.

[24]Atadoga A, Akoh, et al. A Comparative Review of Data Encryption Methods in the USA and Europe[J]. Computer Science & IT Research Journal,2024,5(2):447-460.

[25]Ahmed MM. Digital Signature with RSA Public Key Cryptography for Data Integrity in SOSE-Based E-Government Systems[J]. International Journal of Management,Technology and Social Sciences (IJMTS),2022,7(1):59-70.

[26]Chandrika S U, Perumal T P. Modified ECC for Secure data transfer in multi-tenant cloud computing[J]. International Journal of Computer Network and Information Security,2022,9(6):76.

[27]Peeran M, Shanavas A R M. E-governance security via public key cryptography using elliptic curve cryptography[J]. Materials Today: Proceedings,2022,49:3568-3573.

[28]Mahajan H B, Junnarkar A A. Smart healthcare system using integrated and lightweight ECC with private blockchain for multimedia medical data processing[J].Multimedia Tools and Applications,2023,82(28):44335-44358.

[29]Shankar G, Ai-Farhani L H, Anitha Christy Angelin P, et al. Improved Multisignature Scheme for Authenticity of Digital Document in Digital Forensics Using Edward-Curve Digital Signature Algorithm[J]. Security and Communication Networks,2023(1):2093407.

[30]Hamza R, Hassan A, Ali A, et al. Towards Secure Big Data Analysis via Fully Homomorphic Encryption Algorithms[J]. Entropy,2022,24:519.

[31]Singh VK, Chauhan AS, Singh A, Thakur R. Homomorphic Encryption: Hands Inside the Gloves[C]//2023 3rd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA),2023:248-253.

[32]Marandi A, Alves P G M R, Aranha D F, et al. Lattice-Based Homomorphic Encryption For Privacy-Preserving Smart Meter Data Analytics[J]. The Computer Journal, 2024,67(5): 1687-1698.

[33]Bavdekar R, Chopde J, Agrawal A, et al. Post Quantum Cryptography: A Review of Techniques, Challenges and Standardizations[C]//2023 International Conference on Information Networking (ICOIN),2023:146-151.

[34]Demir BB, Altilar DT. Distributed Proxy Re-Encryption Protocol for Secure Multiparty Computation with Fully Homomorphic Encryption[C]//2024 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom),2024:199-204.

[35]徐锐.美国发布全球首批 3 个后量子加密标准[N].中国科学报,2024-08-16(001).

[36]Hussein A I, MaoLood A T, Gbashi E K. NTRU_ SSS: Anew Method Signcryption Post Quantum Cryptography Based on Shamir’s Secret Sharing[J]. Computers, Materials & Continua,2023,76(1).

[37]Gaie C. Enhancing the Efficiency and the Security of e-Government: The French Case Study of Human Resources Applications[M].Gaie C, Mehta M. Transforming Public Services—Combining Data and Algorithms to Fulfil Citizen’s Expectations. Cham:Springer Nature Switzerland,2024:223-239.

[38]杨小东,高国娟,周其旭,等.基于代理重签名的电子政务数据安全交换方案[J].计算机工程,2017,43(02):183-188.

[39]康杰.基于 DES和 RSA的电子政务信息交换加密方法的研究与设计[J].现代工业经济和信息化,2019,9(09):63-64.

[40]刘康明,艾鸽.基于无密钥签名技术的政务数据安全研究[J].网络安全技术与应

用,2020,(10):157-160.

[41]于欢欢,程慧平.基于联盟区块链的政务数据安全共享模型构建研究[J].档案与建

设,2021,(10):15-21.

[42]黄晓晖,李俊峰,何云.一种基于群签名密钥协商算法的多方参与完整性验证方案[J].信息技术与信息化,2022,(07):102-105.

[43]彭星.基于联盟链的市级政务数据安全共享机制的设计研究[C]//中国计算机学会.第38次全国计算机安全学术交流会论文集.广州市市场监督管理数据应用中心;,2023:4.

[44]马英.一种基于隐私计算的数据共享模型研究[J].信息安全研究,2022,8(02):122-128.

[45]张志宇.基于云计算平台的政务大数据信息资源共享模型构建研究[J].广东通信技术,2024,44(04):41-44.

[46]朱典,杨阳,陶峰.电子政务外网量子技术应用研究[J].信息安全研究,2023,9(02):171-179.

[47]Mustafa G, Rafiq W, Jhamat N, et al. Blockchain-based Governance Models in e-Government: a Comprehensive Framework for Legal, Technical, Ethical and Security Considerations[J]. International Journal of Law and Management,2025,67(1):37-55.

[48]Kamal Z A, Ghani R F. A Proposed Authentication Method for Document in Blockchain Based E-Government System[J]. IRAQI JOURNAL OF COMPUTERS,COMMUNICATIONS, CONTROL AND SYSTEMS ENGINEERING (IJCCCE),2022,22(4):127-139.

[49]Austria P, Kim Y, Jo J-Y. DeAuth: A Decentralized Authentication and Authorization Scheme for Secure Private Data Sharing[J]. Computer Networks and Communications,2024,2(2):190-235.

[50]Gandhi S, Kiwelekar A, Netak L, et al. A blockchain-based Data-Driven Trustworthy Approval Process System[J]. International Journal of Information Management Data Insights,2023,3(1):100162.

[51]Rexha B, Neziri V, Dervishi R. Enhancing Trustworthiness and Interoperability of Electronic Voting Systems through Blockchain Bridges[J]. HighTech and Innovation Journal,2023,4(4):749-760.

[52]Anitha V, Marquez Caro O J, Sudharsan R, et al. Transparent Voting System using Blockchain[J]. Measurement: Sensors,2023,25:100620.

[53]Daraghmi E, Hamoudi A, Abu Helou M. Decentralizing Democracy: Secure and Transparent E-Voting Systems with Blockchain Technology in the Context of Palestine[J].Future Internet,2024,16(11):388.

[54]Bustamante P, Cai M, Gomez M, et al. Government by Code? Blockchain Applications to Public Sector Governance[J]. Frontiers in Blockchain,2022,5:869665.

[55]雷建云,彭佳丽,帖军,等.基于区块链的链下数据库高吞吐量数据可信保障方法[J].中南民族大学学报(自然科学版),2023,42(04):518-525.

[56]黄敏敏,袁凌云,潘雪,等.边缘计算与区块多链下的安全可信认证模型[J].计算机科学与探索,2023,17(03):733-747.

[57]刘超,梁雪青,袁兴佳,等.基于IPFS和区块链技术的可信数据安全存储和共享系统[J].微型电脑应用,2024,40(10):143-147.

[58]刘静静,邓浩江,李杨.基于区块链的可信数据共享方案设计[J].计算机工程与设计,2023,44(06):1601-1607.

[59]王宇.区块链赋能的可信数据安全共享机制研究[J].现代商贸工业,2024,45(19):46-48.

[60]杨帆,孙奕,林玮,等.一种基于区块链的高可信流数据查询验证方案[J/OL].计算机科学,1-16[2025-5-19].http://kns.cnki.net/kcms/detail/50.1075.tp.20240709.1433.005.html.

[61]刘琨,王圆洁,申自浩,等.结合区块链的车联网隐私保护可信预测缓存架构[J].北京邮电大学学报,2022,45(06):140-146.

[62]郑李伟,王雪平.基于Merkle树的安全云存储系统[J].计算机系统应用,2022,31(04):81-90.

[63]Liu Z, Ren L, Feng Y, et.al. Data Integrity Audit Scheme Based on Quad Merkle Tree and Blockchain[J]. IEEE Access,2023,11:59263-59273.

[64]马威,曹刘洋,菅朋朋.一种基于区块链的云镜像完整性监测方法[J].河南师范大学学报(自然科学版),2023,51(04):93-99+151.

[65]何刚,杨元瑾.基于区块链的敏感数据可信存储系统实现[J].网络安全与数据治理,2024,43(08):35-39.

[66]杨晓晖,贾凯.基于区块链的医疗数据可信共享方案[J].河北大学学报(自然科学版),2024,44(03):322-328.

[67]Merkle R C. A digital signature based on a conventional encryption function[C]//Conference on the theory and application of cryptographic techniques.Berlin, Heidelberg: Springer Berlin Heidelberg,1987:369-378.

[68]Gervais A, Karame G O, Wüst K, et al. On the Security and Performance of Proof of Work Blockchains: Computer and Communications Security[C].2016.

[69]Zhang S, Lee J. Analysis of the main consensus protocols of blockchain[J]. ICT Express,2020,6(2):93-97.

[70]Castro M, Liskov B. Practical byzantine fault tolerance and proactive recovery[J]. ACM Trans.Comput.Syst.,2002,20(4):398-461.

[71]邵奇峰,金澈清,张召,等.区块链技术:架构及进展[J].计算机学报,2018,41(05):969-988.

[72]Bloom B H. Space/time trade-offs in hash coding with allowable errors[J].Communications of the ACM,1970,13(7):422-426.

[73]徐松松,过晓冰,徐恪.可验证布隆过滤器:加速区块链中的不存在查询与证明[J].中国科学:信息科学,2023,53(12):2386-2405.

[74]Linux Foundation. Hyperledger Fabric[EB/OL]. [2025-5-19].https://www.hyperledger.org/projects/fabric.

[75]Kumar T M, Karthigaikumar P.Implementation of a High-Speed and High-Throughput Advanced Encryption Standard[J].Intelligent Automation and Soft Computing,2022,31(2):1025-1036.

[76]Oracle Corporation. MySQL 8.0 Reference Manual:The InnoDB Storage Engine[EB/OL].[2025-5-19].https://dev.mysql.com/doc/refman/8.0/en/innodb-architecture.html.

[77]Linux Foundation. Hyperledger Fabric Documentation (v2.5): Architecture and Concepts[EB/OL].[2025-5-19].https://hyperledger fabric.readthedocs.io/en/release-2.5/.

[78]唐豪,易文龙,赵应丁,等.基于区块链的农产品可信检测数据存储方法[J].科学技术与工程,2022,22(24):10631-10637.

[79]Apache Software Foundation. Apache Cassandra 4.0 Architecture Guide[EB/OL].[2025-5-19].https://cassandra.apache.org/doc/4.0/architecture/.

[80]李俊吉,张佳琦.基于信誉机制的改进PBFT共识算法[J].计算机应用研究,2024,41(06):1628-1634.

[81]沈学利,李欣儒.基于节点动态评分机制的分组共识算法[J].计算机应用研究,2024,41(04):989-994.

中图分类号:

 TP3    

开放日期:

 2025-06-13    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式