- 无标题文档
查看论文信息

中文题名:

 金属卟啉仿生催化氧化N-取代苄胺的反应研究    

姓名:

 闫晓旺    

学号:

 20172007031    

学科代码:

 0817    

学科名称:

 化学工程与技术    

学生类型:

 硕士    

院系:

 化学化工学院    

专业:

 化学工程与技术    

研究方向:

 仿生催化    

第一导师姓名:

 顾承志    

第一导师单位:

 石河子大学    

完成日期:

 2020-06-12    

外文题名:

 Study on the Biomimetic Catalytic Oxidation of N-Substituted Benzylamine by Metalloporphyrin    

中文关键词:

  5 ; 10 ; 15 ; 20-四(五氟苯基)氯化铁卟啉 (F20TPPFeCl) ; 接力氧化 ; 仿生催化 ; 异喹啉-1-酮 ; 异吲哚啉-1-酮 ; 环状苄胺    

外文关键词:

  5 ; 10 ; 15 ; 20-tetrakis(pentafluorophenyl) ferric chloride porphyrin (F20TPPFeCl) ; biomimetic catalysis ; isoquinoline-1-one ; isoindolin-1-one ; cyclic benzylamine      

中文摘要:

异吲哚啉-1-酮和异喹啉-1-酮作为核心骨架广泛存在天然产物和重要的药物分子结构中,从绿色化学和分子多样性角度出发,开展构建此类结构的温和、通用方法尤为重要。众所周知,合成金属卟啉作为仿酶催化剂在苄型C-H键的羟基化反应中广泛应用,同样,N-羟基邻苯二甲酰亚胺 (NHPI)能有有效介导氧气的活化也广泛应用于各种有机物的氧化,在实验室前期工作基础上,基于上述思路,本文拟组合5,10,15,20-四(五氟苯基)氯化铁卟啉 (F20TPPFeCl)和NHPI成接力氧化催化体系,以O2为终端氧化剂,室温下实现环状苄胺的仿生氧化,从而发展构建异吲哚啉-1-酮和异喹啉-1-酮的绿色方法学。

本论文主要内容包括以下三个部分:

本论文的第一部分综述了异吲哚啉-1-酮和异喹啉-1-酮的合成进展,并对金属卟啉作为仿酶催化剂在氧化反应中的应用进行了总结,提出了本课题开展的思路。

本论文的第二部分开展了以F20TPPFeCl/NHPI/O2为催化体系对N-取代-3,4-二氢异喹啉类化合物进行氧化研究。发现该反应选择性高度依赖于N-取代类型,烷基和芳基不发生反应,只有拉电子的酰基才是适合的底物。通过对反应条件的优化和N-取代基的选择,优化条件如下:N-取代-3,4-二氢异喹啉:0.5 mmol、F20TPPFeCl: 1 mol%、NHPI:0.1equiv.、乙酸乙酯(EA):10 mL、室温、反应8小时,N-乙酰基-3,4-二氢异喹啉-1-酮的产率达到96%。在最优条件下,对1,2,3,4-四氢异喹啉进行底物拓展,合成了相应的N-取代-3,4-二氢异喹啉-1-酮衍生物,产率51%~96%。并开展了N-乙酰基-3,4-二氢异喹啉-1-酮衍生物水解研究,丰富了后官能团化的途径。最后通过机理实验,提出了环状苄胺的可能接力氧化机理。

本论文的第三部分主要开展了F20TPPFeCl/NHPI/O2体系对N-取代-异吲哚啉的催化氧化研究。进一步拓展了该催化氧化体系的底物适用范围。首先我们通过对异吲哚啉的酰化以及邻二甲苯衍生物的卤化、胺环合反应合成一系列N-取代-异吲哚啉底物,并在最优条件下对其进行了氧化研究,合成了一系列的异吲哚啉-1-酮衍生物,产率27%~82%。

实验结果表明,该催化体系对N-取代苄胺类底物具有良好的适用性,催化剂及催化体系环境友好,用量少,具有广阔的应用前景。

外文摘要:

Isoindolin-1-one and isoquinolin-1-one are widely used as core backbones in natural products and important drug molecular structures. From the perspective of green chemistry and molecular diversity, it is particularly useful to develop general methods for constructing such structures. It is well known that synthetic metalloporphyrins are widely used as enzyme-like catalysts in the hydroxylation of benzyl C-H bonds. Similarly, N-hydroxyphthalimide (NHPI) can effectively mediate the activation of oxygen and be also widely used.  Based on the previous work in the laboratory, this paper intends to combine 5,10,15,20-tetrakis(pentafluorophenyl) ferric chloride porphyrin (F20TPPFeCl) and NHPI to form a relay oxidation catalyst system, O2 is used as the terminal oxidant, the method that the bionic oxidation of cyclic benzylamine is realized at room temperature, it is very important to develop a green methodology for the construction of isoindolin-1-one and isoquinolin-1-one.

The main content of this paper includes the following three parts:

In the first part of this paper, it is reviewed that the synthesis progress of isoindolin-1-one and isoquinolin-1-one and the application of metalloporphyrins as imitation enzyme catalysts in oxidation reactions. Based on these designs, this subject of the paper was proposed and we would carry out these ideas.

In the second part of this paper, we explored the method about the oxidation of N-substituted-3,4-dihydroisoquinoline compounds using F20TPPFeCl/NHPI/O2 as the catalytic system. We found that the reaction is highly dependent on the N-substitution type. The alkyl group and the aryl group do not react, and only the acyl group which is pull electrons is the suitable substrates. Through optimization of the reaction conditions and selection of N-substituents, it was finally determined the acetyl and propionyl as the most suitable substituents, and N-substituted-3,4-dihydroisoquinoline: 0.5 mmol, F20TPPFeCl : 1 mol%, NHPI: 0.05 equiv., ethyl acetate (EA): 10 mL, room temperature, reaction for 8 hours, the yield of N-acetyl-3,4-dihydroisoquinolin-1-one reached 96%. Under the optimal conditions, we synthesized that the substrate extension of 1,2,3,4-tetrahydroisoquinoline and the corresponding N-substituted-3,4-dihydroisoquinolin-1-one derivatives, we had gotten the yield nearly 51% ~ 96%. The research on the hydrolysis of N-acetyl-3,4-dihydroisoquinolin-1-one derivatives was carried out, which enriched the pathway of post-functionalization.

In the third part of this paper, we continue to explore the method about the catalytic oxidation of N-substituted-isoindolin by F20TPPFeCl/NHPI/O2 system. The scope of the substrate for the catalytic oxidation system was further expanded. Firstly, we synthesized a series of N-substituted-isoindolin substrates through the acylation of isoindolin, the halogenation of o-xylene derivatives, and the amine cyclization reaction, and carried out oxidation studies on the optimal conditions. A series of isoindolin-1-one derivatives were synthesized with a yield of 27% ~ 82%.

Based on the above reaction results, we proposed that a possible relay oxidation mechanism of cyclic benzylamine.

The experimental results show that the catalytic system has good applicability to N-substituted benzylamine substrates, the catalyst and the catalytic system are environmentally friendly, the amount is small, and it has broad application prospects.

参考文献:

[1] Theophil Eicher, Siegfried Hauptmann, Andreas Speicher. The Chemistry of Heterocycles: Structure, Reactions, Syntheses, and Applications[M]. Federal Republic of Germany, 2003, 5-8.

[2]Saurabh Mehta, Dhirendra Brahmchari. Phosphazene Superbase-Mediated Regio- and Stereoselective Iodoaminocyclization of 2-(1-Alkynyl)benzamides for the Synthesis of Isoindolin-1-ones[J]. J. Org. Chem., 2019, 84(9): 5492-5503.

[3] Alfred Mertens, Harald Zilch, Bernhard Koenig, Wolfgang Schaefer, Thomas Poll, Wolfgang Kampe, Hans Seidel, Ulrike Leser, Herbert Leinert. Selective Non-nucleoside HIV-1 Reverse Transcriptase Inhibitors. New 2,3-Dihydrothiazolo[2,3-a]isoindol-5(9bH)-ones and Related Compounds with Anti-HIV-1 Activity[J]. J. Med. Chem., 1993, 36(17): 2526-2535.

[4] Edward C. Lawson, Diane K. Luci, Shyamali Ghosh, William A. Kinney, Charles H. Reynolds, Jenson Qi, Charles E. Smith,Yuanping Wang, Lisa K. Minor, Barbara J. Haertlein, Tom J. Parry, Bruce P. Damiano, and Bruce E. Maryanoff. Nonpeptide Urotensin-II Receptor Antagonists:A New Ligand Class Based on Piperazino-Phthalimide and Piperazino-Isoindolinone Subunits[J]. J. Med. Chem., 2009, 52(23): 7432-7445.

[5] Jaco C. Breytenbach, Sandra van Dyk, Ilse van den Heever, Steven M. Allin, Claire C. Hodkinson, Christopher J. Northfield, Micheal I. Page. Synthesis and Antimicrobial Activity of Some Isoindolin-1-ones Derivatives[J]. Bioorganic Med. Chem. Lett., 2000, 10(15): 1629-1631.

[6] Caterina Maugeri, Maria A. Alisi, Claudia Apicella, Luciano Cellai, Patrizia Dragone, Elena Fioravanzo, Saverio Florio, Guido Furlotti, Giorgina Mangano, Rosella Ombrato, Renzo Luisi, Raffaello Pompei, Vito Rincicotti, Vincenzo Russo, Marco Vitiello, Nicola Cazzolla. New Anti-viral Drugs for the Treatment of the Common Cold[J]. Bioorg. Med. Chem., 2008, 16(6): 3091-3107.

[7] Zhao Xuezhi, Kasthuraiah Maddali, Christophe Marchand, YvesPommier, Terrence R. Burke Jr. Diketoacid-genre HIV-1 Integrase Inhibitors Containing Enantiomeric Arylamide Functionality[J]. Bioorg. Med. Chem., 2009, 17(14): 5318-5324.

[8] McCarthy, Philip L., Owzar, Kouros, Hofmeister, Craig C., Hurd, David D., Hassoun, Hani, Richardson, Paul G., Giralt, Sergio, Stadtmauer, Edward A., Weisdorf, Daniel J., Vij, RaviLenalidomide after Stem-Cell Transplantation for Multiple Myeloma[J]. Boston Medical and Surgical Journal, 2012, 366(19): 1770-1781.

[9] Maurizio Anzini, Andrea Cappelli, Salvatore Vomero, Gianluca Giorgi, Thierry Langer, Giancarlo Bruni, Maria R. Romeo, Anthony S. Basile. Molecular Basis of Peripheral vs Central Benzodiazepine Receptor Selectivity in a New Class of Peripheral Benzodiazepine Receptor Ligands Related to Alpidem[J]. J. Med. Chem., 1996, 39(21): 4275-4284.

[10] Chen Mingde, He Mingzhu, Zhou Xiang, Huang Liqiang, Ruan Yuanping, Huang Peiqiang. Studies on the Diastereoselective Reductive Alkylation of (R)-phenylglycinol Derived Phthalimide: Observation of Stereoelectronic Effects[J]. Tetrahedron, 2005, 61(5): 1335-1344.

[11] H Berry, L Fernandes, A K Clarke, E B Hamilton, J Davies, A J Dixon. Indoprofen and Naproxen in the Treatment of Rheumatoid Arthritis: A Clinical Trial[J]. Brit. Med. J., 1978, 1(6108): 274-276.

[12] Usha Ghosh, Rituparna Bhattacharyya, Ashish Keche. Mild and Efficient Syntheses of Diverse Isoindolinones from Ortho-phthaldehydic Acid Methylthiomethyl Ester[J]. Tetrahedron, 2010, 66(12): 2148-2155.

[13] Herbert Y. Meltzer. Novel Approaches to the Pharmacotherapy of Schizophrenia [J]. Drug Dev. Res., 1986, 9(1): 23-40.

[14] Hussain S. Fazal, Minard Robert D., Freyer Alan J., Shamma Maurice. New Alkaloids From Fuma

[1] Theophil Eicher, Siegfried Hauptmann, Andreas Speicher. The Chemistry of Heterocycles: Structure, Reactions, Syntheses, and Applications[M]. Federal Republic of Germany, 2003, 5-8.

[2]Saurabh Mehta, Dhirendra Brahmchari. Phosphazene Superbase-Mediated Regio- and Stereoselective Iodoaminocyclization of 2-(1-Alkynyl)benzamides for the Synthesis of Isoindolin-1-ones[J]. J. Org. Chem., 2019, 84(9): 5492-5503.

[3] Alfred Mertens, Harald Zilch, Bernhard Koenig, Wolfgang Schaefer, Thomas Poll, Wolfgang Kampe, Hans Seidel, Ulrike Leser, Herbert Leinert. Selective Non-nucleoside HIV-1 Reverse Transcriptase Inhibitors. New 2,3-Dihydrothiazolo[2,3-a]isoindol-5(9bH)-ones and Related Compounds with Anti-HIV-1 Activity[J]. J. Med. Chem., 1993, 36(17): 2526-2535.

[4] Edward C. Lawson, Diane K. Luci, Shyamali Ghosh, William A. Kinney, Charles H. Reynolds, Jenson Qi, Charles E. Smith,Yuanping Wang, Lisa K. Minor, Barbara J. Haertlein, Tom J. Parry, Bruce P. Damiano, and Bruce E. Maryanoff. Nonpeptide Urotensin-II Receptor Antagonists:A New Ligand Class Based on Piperazino-Phthalimide and Piperazino-Isoindolinone Subunits[J]. J. Med. Chem., 2009, 52(23): 7432-7445.

[5] Jaco C. Breytenbach, Sandra van Dyk, Ilse van den Heever, Steven M. Allin, Claire C. Hodkinson, Christopher J. Northfield, Micheal I. Page. Synthesis and Antimicrobial Activity of Some Isoindolin-1-ones Derivatives[J]. Bioorganic Med. Chem. Lett., 2000, 10(15): 1629-1631.

[6] Caterina Maugeri, Maria A. Alisi, Claudia Apicella, Luciano Cellai, Patrizia Dragone, Elena Fioravanzo, Saverio Florio, Guido Furlotti, Giorgina Mangano, Rosella Ombrato, Renzo Luisi, Raffaello Pompei, Vito Rincicotti, Vincenzo Russo, Marco Vitiello, Nicola Cazzolla. New Anti-viral Drugs for the Treatment of the Common Cold[J]. Bioorg. Med. Chem., 2008, 16(6): 3091-3107.

[7] Zhao Xuezhi, Kasthuraiah Maddali, Christophe Marchand, YvesPommier, Terrence R. Burke Jr. Diketoacid-genre HIV-1 Integrase Inhibitors Containing Enantiomeric Arylamide Functionality[J]. Bioorg. Med. Chem., 2009, 17(14): 5318-5324.

[8] McCarthy, Philip L., Owzar, Kouros, Hofmeister, Craig C., Hurd, David D., Hassoun, Hani, Richardson, Paul G., Giralt, Sergio, Stadtmauer, Edward A., Weisdorf, Daniel J., Vij, RaviLenalidomide after Stem-Cell Transplantation for Multiple Myeloma[J]. Boston Medical and Surgical Journal, 2012, 366(19): 1770-1781.

[9] Maurizio Anzini, Andrea Cappelli, Salvatore Vomero, Gianluca Giorgi, Thierry Langer, Giancarlo Bruni, Maria R. Romeo, Anthony S. Basile. Molecular Basis of Peripheral vs Central Benzodiazepine Receptor Selectivity in a New Class of Peripheral Benzodiazepine Receptor Ligands Related to Alpidem[J]. J. Med. Chem., 1996, 39(21): 4275-4284.

[10] Chen Mingde, He Mingzhu, Zhou Xiang, Huang Liqiang, Ruan Yuanping, Huang Peiqiang. Studies on the Diastereoselective Reductive Alkylation of (R)-phenylglycinol Derived Phthalimide: Observation of Stereoelectronic Effects[J]. Tetrahedron, 2005, 61(5): 1335-1344.

[11] H Berry, L Fernandes, A K Clarke, E B Hamilton, J Davies, A J Dixon. Indoprofen and Naproxen in the Treatment of Rheumatoid Arthritis: A Clinical Trial[J]. Brit. Med. J., 1978, 1(6108): 274-276.

[12] Usha Ghosh, Rituparna Bhattacharyya, Ashish Keche. Mild and Efficient Syntheses of Diverse Isoindolinones from Ortho-phthaldehydic Acid Methylthiomethyl Ester[J]. Tetrahedron, 2010, 66(12): 2148-2155.

[13] Herbert Y. Meltzer. Novel Approaches to the Pharmacotherapy of Schizophrenia [J]. Drug Dev. Res., 1986, 9(1): 23-40.

[14] Hussain S. Fazal, Minard Robert D., Freyer Alan J., Shamma Maurice. New Alkaloids From Fumaria parviflora[J]. J. Nat. Prod., 1981, 44(2): 169-178.

[15] A.P. Geigy, J. V. Crone. Non-toxic Anticorrosive Pigments[J]. Farbe and Lack, 1966, 72, 206.

[16] 穆振义. 高档有机颜料专用中间体的合成及其应用[J]. 上海染料, 2001, 29(5):29-39.

[17] 蔡李鹏,祁晓婷,曹峰,王娟. 有机颜料黄的合成现状[J]. 化学与生物工程, 2013, 30(07):10-12.

[18] Barry D. Krane, Maurice Shamma. The Isoquinolone Alkaloids[J]. J. Nat. Prod., 1982, 45(4):377-384.

[19] Torisawa Yasuhiro, Aki Shinji, Minamikawa Jun-ichi. Conversion of Indanone Oximes Into Isocarbostyrils[J]. Bioorganic Med. Chem. Lett., 2007, 17(2): 453-455.

[20] Ng Pui Yee, Tang Yuchen, Knosp Wendy M, Stadler H. Scott, Shaw Jared T. Synthesis of Diverse Lactam Carboxamides Leading to the Discovery of a New Transcription-Factor Inhibitor[J]. Angew. Chem. Int. Edit., 2007, 46(28): 5352-5355.

[21] George R. Pettit, Yanhui Meng, Delbert L. Herald, Keith A. N. Graham, Robin K. Pettit, Dennis L. Doubek. Isolation and Structure of Ruprechstyril from Ruprechtia tangarana[J]. J. Nat. Prod., 2003, 66(8): 1065-1069.

[22] Mori Miwako, Chiba Katsumi, Ban Yoshio. Reactions and Syntheses with Organometallic Compounds. 7. Synthesis of Benzolactams by Palladium-Catalyzed Amidation[J]. J. Org. Chem., 1978, 43(9):1684-1687.

[23] David Gonzalez, Theodore Martinot, Tomas Hudlicky. A Short Chemoenzymatic Synthesis of (+)-Narciclasine[J]. Tetrahedron Lett., 1999, 40(16): 3077-3080.

[24] James H. Rigby, Umar S. M. Maharoof, Mary E. Mateo. Studies on the Narciclasine Alkaloids: Total Synthesis of (+)-Narciclasine and (+)-Pancratistatin[J]. J. Am. Chem. Soc., 2000, 122(28): 6624-6628.

[25] Bert Fraser-Reid, Wu Zufan, Uko E. Udodong, Hakan Ottosson. Armed/Disarmed Effects in Glycosyl Donors: Rationalization and Sidetracking[J]. J. Org. Chem., 1990, 55(25): 6068-6070.

[26] 张晓琦,叶文才,赵守训. 蝙蝠葛中异喹啉酮的分离与鉴定[J]. 中国药科大学学报, 2011, 32(2): 96-97.

[27] Qi Chao, Lynn Deng, Hsiencheng Shih, Lorenzo M. Leoni, Davide Genini, Dennis A. Carson, Howard B. Cottam. Substituted Isoquinolines and Quinazolines as Potential Antiinflammatory Agents. Synthesis and Biological Evaluation of Inhibitors of Tumor Necrosis Factor α[J]. J. Med. Chem., 1999, 42(19): 3860-3873.

[28] John H. Hutchinson, Jacquelynn J. Cook, Karen M. Brashear, Michael J. Breslin, Joan D. Glass, Robert J. Gould, Wasyl Halczenko, Marie A. Holahan, Robert J. Lynch, Gary R. Sitko, Maria T. Stranieri, George D. Hartman. Non-Peptide Glycoprotein IIb/IIIa Antagonists. 11. Design and in Vivo Evaluation of 3,4-Dihydro-1(1H)-isoquinolinone-Based Antagonists and Ethyl Ester Prodrugs[J]. J. Med. Chem., 1996, 39(23): 4583-4591.

[29] Toshiaki Matsui, Tsuneyuki Sugiura, Hisao Nakai, Sadahiko Iguchi, Satoshi Shigeoka, Hideo Takada, Yoshihiko Odagaki, Yuhki Nagao, Yasuyuki Ushio. Novel 5-HT3 Antagonists. Isoquinolinones and 3-Aryl-2-pyridones[J]. J. Med. Chem., 1992, 35(18): 3307-3319.

[30] Ill-Yun Jeong, Yoshimitsu Nagao. Novel Synthesis of 4-Oxo-1-isoquinolone Derivatives Utilizing Inter- and Intramolecular Tandem Carbopalladation-heterocyclic Ring Expansion[J]. Tetrahedron Lett., 1998, 39(47): 8677-8680.

[31] Sunderland Peter T,Dhami Archana,Mahon Mary F,Jones Louise A,Tully Sophie R,Lloyd Matthew D,Thompson Andrew S,Javaid Hashim,Martin Niall M B,Threadgill Michael D. Synthesis of 4-Alkyl-, 4-aryl- and 4-Arylamino-5-aminoisoquinolin-1-ones and Identification of a new PARP-2 selective inhibitor[J]. Org Biomol. Chem., 2010, 9(3): 881-891.

[32] Chan Sik Cho, Hyung Sup Shim, Heung-Jin Choi, Tae-Jeong Kim, Sang Chul Shim, Myung Chul Kimb. Synthesis of Isoindolin-1-ones via Palladium-catalyzed Intermolecular Coupling and Heteroannulation Between 2-iodobenzoyl Chloride and Imines[J]. Tetrahedron Lett., 2000, 41(20): 3891-3893.

[33] Orito Kazuhiko, Horibata Akiyoshi, Nakamura Takatoshi, Ushito Harumi, Nagasaki Hideo, Yuguchi Motoki, Yamashita Satoshi, Tokuda Masao. Preparation of Benzolactams by Pd(OAc)2-Catalyzed Direct Aromatic Carbonylation[J]. J. Am. Chem. Soc., 2004, 2016(126): 14342-14343.

[34] Khan Md Wahab, Reza A. F. G. Masud. Palladium Mediated Synthesis of Isoindolinones and Isoquinolinones[J]. Tetrahedron, 2005, 61(47): 11204-11210.

[35] Sun Caiyun, Xu Bin. A Tandem Elimination−Cyclization−Suzuki Approach: Efficient One-Pot Synthesis of Functionalized (Z)-3(Arylmethylene)isoindolin-1-ones[J]. J. Org. Chem., 2008, 73(18): 7361-7364..

[36] Cao Hong, McNamee Laura, Alper Howard. Syntheses of Substituted 3-Methyleneisoindolin-1-ones By a Palladium-Catalyzed Sonogashira Coupling-Carbonylation-Hydroamination Sequence in Phosphonium Salt-Based Ionic liquids[J]. Org. Lett., 2008, 10(22): 5281-5284.

[37] Lin Guoqiang, Xu Minghua, Wang, Li, Wang Zhiqian. Highly Enantioselective Synthesis of (Diarylmethyl)amines by Rhodium-Catalyzed Arylation of N-Nosylimines Using a Chiral Bicyclo[3.3.0]diene Ligand[J]. Synthesis, 2010, 2010(19): 3263-3267.

[38] Malik Hellal, Gregory D. Cuny. Microwave Assisted Copper-free Sonogashira Coupling/5-exo-dig cycloisomerization Domino Reaction: Access to 3-(Phenylmethylene)isoindolin-1-ones and Related Heterocycles[J]. Tetrahedron Lett., 2011, 52(42): 5508-5511.

[39] Ju Jia, Qi Chuanmei, Zheng Liyao, Hua Ruimao. Synthesis of 3-Methyleneisoindolin-1-ones via Palladium-catalyzed C–Cl Bond Cleavage and Cyclocarbonylation of Ortho-chloro Ketimines[J]. Tetrahedron Lett., 2013, 54(38): 5159-5161.

[40] Ma Wenbo, Ackermann Lutz. Cobalt(II)-Catalyzed Oxidative C–H Alkenylations: Regio- and Site-Selective Access to Isoindolin-1-one[J]. ACS Catal., 2015, 5(5): 2822-2825.

[41] Angel Rentería-Go?mez, Alejandro Islas-Ja?come, Alicia E. Cruz-Jime?nez, Jessica C. Manzano-Vela?zquez, Susana Rojas-Lima, J. Oscar C. Jime?nez-Halla, RocíoGa?mez-Montan?o. Synthesis of 2-Tetrazolylmethyl-isoindolin-1-ones via a One-Pot Ugi-Azide/(N-Acylation/exo Diels-Alder)/Dehydration Process[J]. ACS Omega, 2016, 1(5): 943-951.

[42] Wu Jiaqiang , Zhang Shangshi, Gao Hui, Qi Zisong, Zhou Chujun, Ji Weiwei, Yao Liu, Chen Yunyun, Li Qingjiang, Li Xingwei, Wang Honggen. Experimental and Theoretical Studies on Rhodium-Catalyzed Coupling of Benzamides with 2,2-Difluorovinyl Tosylate: Diverse Synthesis of Fluorinated Heterocycles[J]. J. Am. Chem. Soc., 2017, 139(9): 3537-3545.

[43] Wang Chengqiang, Ye Lu, Feng Chao, Loh Teck-Peng. C–F Bond Cleavage Enabled Redox-Neutral [4+1] Annulation via C–H Bond Activation[J]. J. Am. Chem. Soc., 2017, 139(5): 1762-1765.

[44] liu li, Bai Shuhua, Li Yang, Ding Xiaodan, Liu Qian, Li Jian. A Three-component Cascade Cyclization to Construct 3-(2-Oxopropyl)-2-arylisoindolinone Derivatives via Copper-catalyzed Annulation[J]. Adv. Synth. Catal., 2018, 260(8): 1617-1621.

[45] Wu Shangze, Wu Xiaoyan, Fu Chunling, Ma Shengming. Rhodium(III)-Catalyzed C–H Functionalization in Water for Isoindolin-1-one Synthesis[J]. Org. Lett., 2018, 20(10): 2831-2834.

[46] Zhang Chunhui, Ding Yongzheng, Gao Yuzhen, Li Shangda, Li Gang. Palladium-Catalyzed Direct C–H Carbonylation of Free Primary Benzylamines: A Synthesis of Benzolactams[J]. Org. Lett., 2018, 20(9): 2595-2598.

[47] Peytam Fariba, Adib Mehdi, Mahernia Shabnam, Rahmanian-Jazi Mahmoud, Jahani Mehdi, Masoudi Behrad, Mahdavi Mohammad, Amanlou Massoud. Isoindolin-1-one Derivatives as Urease Inhibitors: Design, Synthesis, Biological Evaluation, Molecular Docking and in-Silico ADME Evaluation[J]. Bioorg. Chem., 2019, 87, 1-11.

[48] Robert M. Moriarty, Radhe K. Vaid, Michael P. Duncan, Masahito Ochiai, Minako Inenaga, Yoshimitsu Nagao.. Hypervalent Iodine Oxidation of Amines Using Iodosobenzene: Synthesis of Nitriles, Ketones and Lactams[J]. Tetrahedron Lett., 1988, 29(52): 6913-6916.

[49] Miyamoto Masanori, Minami Yumiko, Ukaji Yutaka, Kinoshita Hideki, Inomata Katsuhiko. A New Aerobic Oxidation System Using Pd-Cu Catalysts in the Presence of CO[J]. Chem. Lett., 1994, 23(7): 1149-1152.

[50] Masahito Ochiai, Daisuke Kajishima, Takuya Sueda. Radical Oxidation of Amides and Related Compounds with Hypervalent Tert-butylperoxyiodanes: Synthesis of Imides and Tert-butylperoxyamide Acetals[J]. Tetrahedron Lett., 1999, 40(30): 5541-5544.

[51] Arthur J. Catino, Jason M. Nichols, Hojae Choi, Sidhartha Gottipamula, Michael P. Doyle Benzylic Oxidation Catalyzed by Dirhodium(II,III) Caprolactamate[J]. Org. Lett., 2005, 7(23): 5167-5170.

[52] Zhang Chi, Song Airu, Yu Jun. A Simple and Effective Synthesis of Benzolactones and Benzolactams by Noncatalytic Benzylic Oxidation of Cyclic Benzylic Ethers and N-Protected Cyclic Benzylic Amines with Sodium Chlorite as an Oxidant[J]. Synthesis, 2012, 44(18): 2903-2909.

[53] Thapa Pawan, Corral Esai, Sardar Sinjinee, Pierce Brad S., Foss Frank W.. Isoindolinone Synthesis: Selective Dioxane-Mediated Aerobic Oxidation of Isoindolines[J]. J. Org. Chem., 2019, 84(2): 1025-1034.

[54] Geng Pengxin, Tang Yurong, Pan Guanglong, Wang Wentao, Hu Jinchuan, Cai Yunfei. Ag-C3N4-based Heterogeneous Photocatalyst for Visible Light Mediated Aerobic Benzylic C–H Oxygenations[J]. Green Chem., 2019, 21(22): 6116-6122.

[55] Battersby Alan R., McDonald Edward. Origin of the Pigments of Life: the type-III Problem in Porphyrin Biosynthesis[J]. Accounts Chem. Res., 1979, 12(1): 14-22.

[56] Lionel R. Milgrom. The Colours of Life: An Introduction to the Chemistry of Porphyrins and Related Compounds [J]. J. Chem. Educ., 1998, 75(4): 420.

[57] Vohra M. Ismail, Li Dejing, Gu, Zhigang, Zhang Jian. Insight into the Epitaxial Encapsulation of Pd Catalysts in an Oriented Metalloporphyrin Network thin Film for Tandem Catalysis[J]. Nanoscale, 2017, 9(23): 7734-7738

[58] Kevin M. Smith. Porphyrins and Metalloporphyrins: A New Edition based on the Original Volume by J.E.Falk. New York, Elsevier Scientific Pub. Co., 1975.

[59] Ayub Jasat, David Dolphin. Expanded Porphyrins and Their Heterologs[J]. Chem. Rev., 1997, 97(6): 2267-2340.

[60] Chen Wentong, El-Khouly Mohamed E., Fukuzumi Shunichi. Saddle Distortion of a Sterically Unhindered Porphyrin Ring in a Copper Porphyrin with Electron-Donating Substituents[J]. Inorg. Chem., 2011, 50(2): 671-678.

[61] Guo Cancheng, Yang Weijun, Mao Yanli. Selectively Aerobic Oxidation of C=C and Allylic C-H Bonds in α-Pinene over Simple Metalloporphyrins[J]. J. Mol. Catal. A Chem., 2005, 226(2): 279-284.

[62] Michaela Shmilovits, Yael Diskin-Posner, Mikki Vinodu, Israel Goldberg. Crystal Engineering of “Porphyrin Sieves” Based on Coordination Polymers of Pd- and Pt-tetra(4-carboxyphenyl)porphyrin[J]. Cryst. Growth Des., 2003, 2(5): 855-863.

[63] Lawson Edward C., Luci Diane K., Ghosh Shyamali, Kinney William A., Reynolds Charles H., Qi Jenson, Smith Charles E., Wang Yuanping, Minor Lisa K., Haertlein Barbara J., Parry Tom J., Damia. Nanoporous Crystals of Calixarene/Porphyrin Supramolecular Complex Functionalized by Diffusion and Coordination of Metal Ions[J]. J. Am. Chem. Soc., 2009, 131(7): 2487-2489.

[64] Sophia Lipstman, Israel Goldberg. Supramolecular Crystal Chemistry of Tetra(3-pyridyl)porphyrin. 2. Two- and Three-Dimensional Coordination Networks with Cobalt and Cadmium Ions[J]. Cryst. Growth Des., 2010, 10(11): 5001-5006.

[65] Xiao Xin, Li Wenjun, Jiang Jianzhuang. Porphyrin-cucurbituril Organic Molecular Porous Material: Structure and Iodine Adsorption Properties[J]. Inorg. Chem. Commun., 2013, 35, 156-159.

[66] David Garfinkel. Studies on pig liver microsomes. I. Enzymic and Pigment Composition of Different Microsomal Fractions[J]. Arch. Biochem. Biophys., 1958, 77(2): 493-509.

[67] Martin Klingenberg. Pigments of Rat Liver Microsomes[J]. Arch. Biochem. Biophys., 1958, 75(2): 376-386.

[68] Chozo Mitoma, Herbert S. Posner, Henry C. Reitz, Sidney Udenfriend. Enzymatic Hydroxylation of Aromatic Compounds[J]. Arch. Biochem. Biophys., 1956, 61(2): 431-441.

[69] Tsuneo Omura, Ryo Sato. A New Cytochrome in Liver Microsomes[J]. J. Biol. Chem., 1962, 237(4): 1375-1376.

[70] Che Chiming, Huang Jiesheng. Metalloporphyrin-based Oxidation Systems: from Biomimetic Reactions to Application in Organic Synthesis[J]. ChemComm, 2009, (27): 3996-4015

[71] Calvete Mário J. F., Piñeiro Marta, Dias Lucas D., Pereira Mariette M.. Hydrogen Peroxide and Metalloporphyrins in Oxidation Catalysis: Old Dogs with Some New Tricks[J]. ChemCatChem, 2018, 10(17): 3615-3635.

[72] Daniel Mansuy. A Brief History of the Contribution of Metalloporphyrin Models to Cytochrome P450 Chemistry and Oxidation Catalysis[J]. C. R. Chim, 2007, 10(4-5):392-413.

[73] Simões Mário M.Q., De Paula Rodrigo, Neves M. Graça P.M.S., Cavaleiro José A.S.. Metalloporphyrins in the Biomimetic Oxidative Valorization of Natural and other Organic Substrates[J]. J. Porphyr. Phthalocyanines, 2009, 13(4n5): 589-596.

[74] Bernard Meunier. Metalloporphyrins as Versatile Catalysts for Oxidation Reactions and Oxidative DNA cleavage[J]. Chem. Rev., 1992, 92(6): 1141-1470.

[75] Nakagaki Shirley, Ferreira Gabriel, Ucoski Geani, Dias de Freitas Castro Kelly. Chemical Reactions Catalyzed by Metalloporphyrin-Based Metal-Organic Frameworks[J]. Molecules, 2013, 18(6): 7279-7308.

[76] Groves John T., Haushalter Robert C., Nakamura Mikio, Nemo Thomas E., Evans B. J.. High-valent Iron-porphyrin Complexes Related to Peroxidase and Cytochrome P-450[J]. J. Am. Chem. Soc., 1981, 103(10): 2884-2886.

[77] John T. Groves, Richard S. Myers. Catalytic Asymmetric Epoxidations with Chiral Iron Porphyrins[J]. J. Am. Chem. Soc., 1983, 105(18): 5791-5796.

[78] Groves John T., Nemo Thomas E., Myers Richard S.. Hydroxylation and Epoxidation Catalyzed by Iron-porphine Complexes. Oxygen Transfer from Iodosylbenzene[J]. J. Am. Chem. Soc., 1979, 101(4): 1032-1033.

[79] Groves John T., Nemo Thomas E.. Epoxidation Reactions Catalyzed by Iron Porphyrins. Oxygen Transfer from Iodosylbenzene[J]. J. Am. Chem. Soc., 1983, 105(18): 5786-5791.

[80] Groves John T., Nemo Thomas E.. Aliphatic Hydroxylation Catalyzed by Iron Porphyrin Complexes[J]. J. Am. Chem. Soc., 1983, 105(20): 6243-6248.

[81] Dolphin David, Traylor Teddy G., Xie Lily Y.. Polyhaloporphyrins: Unusual Ligands for Metals and Metal-catalyzed Oxidations[J]. Accounts Chem. Res., 1997, 30(6): 251-259.

[82] Maxwell J. Gunter, Peter Turner. Metalloporphyrins as Models for the Cytochromes p-450[J]. Coord Chem Rev, 1991, 108(2): 115-161.

[83] Santos da Silva Vinicius, Nakagaki Shirley, Ucoski Geani Maria, Idemori Ynara Marina, DeFreitas-Silva Gilson. New Highly Brominated Mn-porphyrin: A Good Catalyst for Activation of Inert C–H Bonds[J]. RSC Adv., 2015, 5(129): 106589-106598

[84] Huang Guan, Liu Yao, Cai Jingli, Chen Xiangfeng, Zhao Shukai, Guo Yongan, Wei Sujuan, Li Xu. Heterogeneous Biomimetic Catalysis using Iron Porphyrin for Cyclohexane Oxidation Promoted by Chitosan[J]. Appl. Surf. Sci., 2017, 402, 436-443.

[85] Chiara M. Chapman, Graham B. Jones. Biomimetic Oxidations of Xenobiotics by Metalloporphyrin and Salen Catalysts: Recent Applications[J]. Current Cata., 2015, 4(2): 77-110.

[86] Chiara M. Chapman, Graham B. Jones. Biomimetic Oxidations of Xenobiotics by Metalloporphyrin Catalysts: Design Considerations[J]. Current Cata., 2015, 4(3): 166-213.

[87] Cooper Harriet L. R., Groves John T.. Molecular Probes of the Mechanism of Cytochrome P450. Oxygen Traps a Substrate Radical Intermediate[J]. Arch. Biochem. Biophys., 2011, 507(1): 111-118.

[88] Craig T. Armstrong, Daniel W. Watkins, J. L. Ross Anderson. Constructing Manmade Enzymes for Oxygen Activation[J]. Dalton Trans., 2012, 42(9): 3136-3150

[89] Denisov Ilia G., Grinkova Yelena V., Baylon Javier L., Tajkhorshid Emad, Sligar Stephen G. Mechanism of Drug–Drug Interactions Mediated by Human Cytochrome P450 CYP3A4 Monomer[J]. Biochemistry, 2015, 54(13): 2227-2239.

[90] Eugene G. Hrycay, Stelvio M. Bandiera. The Monooxygenase, Peroxidase, and Peroxygenase Properties of Cytochrome P450[J]. Arch. Biochem. Biophys., 2012, 522(2): 71-89.

[91] Fasan Rudi. Tuning P450 Enzymes as Oxidation Catalysts[J]. ACS Catal., 2012, 2(4): 647-666.

[92] Hoarau Marie, Hureau Christelle, Gras Emmanuel, Faller Peter. Coordination Complexes and Biomolecules: A Wise Wedding for Catalysis Upgrade[J]. Coord. Chem. Rev., 2016, 308(308): 445-459.

[93] Sevrioukova Irina F., Poulos Thomas L.. Understanding the Mechanism of Cytochrome P450 3A4: Recent Advances and Remaining Problems[J]. Dalton Trans., 2013, 42(9): 3116-3126.

[94] Dawson John H., Sono Masanori. Cytochrome P-450 and Chloroperoxidase: Thiolate-ligated Heme Enzymes. Spectroscopic Determination of their Active-site Structures and Mechanistic Implications of Thiolate Ligation[J]. Chem. Rev., 1987, 87(5): 1255-1276.

[95] Paul R. Ortiz de Montellano, Cytochrome P450: Structure, Mechanism and Biochemistry, Kluwer Academic/Plenum Publishers, London, 2004.

[96] Rocha Bruno A., Assis Marilda D., Peti Ana P. F., Moraes Luiz A. B., Moreira Fernanda L., Lopes Norberto P., Pospíšil Stanislav, Gates Paul J., Anderson R. M. de Oliveira. In Vitro Metabolism of Monensin A: Microbial and Human Liver Microsomes Models[J]. Xenobiotica, 2014, 44(4): 326-335.

[97] Li Xiaogang, Wang Jing, He Ren. Selective Oxidation of Ethylbenzene Catalyzed by Fluorinated Metalloporphyrins with Molecular Oxygen[J]. Chin. Chem. Lett., 2007, 18(9): 1053-1056.

[98] Jiang Jun, Luo Rongchang, Zhou Xiantai, Wang Fenfen, Ji Hongbing. Metalloporphyrin-mediated Aerobic Oxidation of Hydrocarbons in Cumene: Co-substrate Specificity and Mechanistic Consideration[J]. Mol. Catal., 2017, 440, 36-42.

[99] Yao Yahong, Du Yanxia, Li Jun, Wang Chen, Zhang Zengqi, Zhao Xin. Crystal Structure of meso‐Substituted Pyrazolyl Porphyrin Complexes and their Highly Active Catalyst for Oxidation of Alkylbenzenes[J]. Appl. Organomet. Chem., 2017, 32(3): e4184.

[100] Yang Yuning, Li Guijie, Mao Xinbiao, She Yuanbin. Selective Aerobic Oxidation of 4-Ethylnitrobenzene to 4-Nitroacetophenone Promoted by Metalloporphyrins[J]. Org. Process Res. Dev., 2019, 23(5): 1078-1086.

[101] 石星星, 金属卟啉催化芳烃和杂环芳烃的选择性氧化研究[D]. 石河子: 石河子大学, 2017.

[102] 韩彤辉, 金属卟啉仿生催化氧化苄醚sp3 C-H键的反应研究[D]. 石河子: 石河子大学, 2019.

[103] Zhang Lushuang, Jie Shanshan, Cheng Na, Liu Zhigang. Solvent-free Melting-assisted Pyrolysis Strategy Applied on the Co/N co-doped Porous Carbon Catalyst[J]. ACS Sustain. Chem. Eng., 2019, 7(24): 19474-19482.

[104] Wang Jiarui, Liu Lei, Wang, Yefeng, Zhang Ying, Deng Wei, Guo, Qingxiang. Aerobic Oxidation with N-hydroxyphthalimide Catalysts in Ionic Liquid[J]. Tetrahedron Lett., 2005, 46(27): 4647-4651.

[105] Zhou Lipeng, Chen Yong, Yang Xiaomei, Su Yunlai, Zhang Wei, Xu Jie. Electronic Effect of Substituent of Quinones on their Catalytic Performance in Hydrocarbons Oxidation[J]. Catal. Letters, 2008, 125(1-2): 154-159.

[106] Miao Chengxia, Zhao Hanqing, Zhao Quanyi, Xia Chungu, Sun Wei. NHPI and Ferric Nitrate: A Mild and Selective System for Aerobic Oxidation of Benzylic Methylenes[J]. Catal. Sci. Technol., 2016, 6(5): 1378-1383.

[107] Patil Rajendra D., Fuchs Batya, Taha Nimer, Sasson Yoel. Solvent-free and Selective Autooxidation of Alkylbenzenes Catalyzed by Co/NHPI under Phase Transfer Conditions[J]. ChemistrySelect, 2016, 1(13): 3791-3796.

[108] Dobras Gabriela, Sitko Magdalena, Petroselli Manuel, Caruso Manfredi, Cametti Massimo, Punta Carlo, Orlińska Beata. Solvent‐Free Aerobic Oxidation of Ethylbenzene Promoted by NHPI/Co(II) Catalytic System: The Key Role of Ionic Liquids[J]. ChemCatChem, 2019, 12(1): 259-266.

[109] 威.L.F.阿.克.L.L. 柴.(林英杰,刘伟,王会萍), 实验室化学品纯化手册--原着第五版, 化学工业出版社, 北京, 2006.

[110] Jonathan S. Lindsey, Irwin C. Schreiman, Henry C. Hsu, Patrick C. Kearney, Anne M. Marguerettaz. Rothemund and Adler-Longo Reactions Revisited: Synthesis of Tetraphenylporphyrins Under Equilibrium Conditions[J]. J. Org. Chem., 1987, 52(5): 827-836.

[111] Alan D. Adler, Frederick R. Longo, Frank Kampas, Jean Kim. On the preparation of metalloporphyrins[J]. J. Inorg. Nucl. Chem. 1970, 32(7): 2443-2445.

[112] Meng Chong, Liu Peng, Tung Nguyen Thanh, Han Xingyou, Li Feng. N-Methylation of Amines with Methanol in Aqueous Solution Catalyzed by a Water-Soluble Metal-Ligand Bifunctional Dinuclear Iridium Catalyst[J]. J. Org. Chem., 2020, 85(9): 5815–5824.

[113] Tan Wei, Wang Cuihong, Jiang Xuefeng. Visible‐Light‐Mediated C(sp3)-H Thiocarbonylation for Thiolactam Preparation with Potassium Sulfide[J]. Chinese J. Chem., 2019, 37(12): 1234-1238.

[114] Li Zhuohua, Ma Pengju, Tan Yongzhu, Liu Yufei, Gao Min, Zhang Yujun, Yang Bo, Huang Xuan, Gao Yuan. Zhang Junmin. Photocatalyst- and Transition-metal-free α-Allylation of N-aryl tetrahydroisoquinolines Mediated by Visible Light[J]. Green Chem., 2020, 22(3): 646-650.

[115] Busujima Tsuyoshi, Tanaka Hiroaki. An Efficient and Convenient Synthesis of Acyl CoA: Monoacylglycerol Acyltransferase 2 Inhibitor, 2-[2-(4-tert-Butylphenyl)ethyl]-N-[4-(3-cyclopentylpropyl)-2-fluoroph

开放日期:

 2020-06-12    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式