- 无标题文档
查看论文信息

中文题名:

 近红外BODIPY荧光探针的设计及应用于含硝基芳烃的选择性检测    

姓名:

 薛一丁    

学号:

 20172107012    

学科代码:

 081701    

学科名称:

 化学工程    

学生类型:

 硕士    

院系:

 化学化工学院    

研究方向:

 有机化学    

第一导师姓名:

 马晓伟    

第一导师单位:

 石河子大学    

完成日期:

 2020-08-28    

外文题名:

 Design of near-infrared BODIPY fluorescent probe and its application in selective detection of nitroaromatics    

中文关键词:

  BODIPY ; 近红外 ; ; PageName=ASP.generater_searchindex_aspx& ; DbPrefix=SCDB& ; DbCatalog=%e4%b8%ad%e5%9b%bd%e5%ad%a6%e6%9c%af%e6%96%87%e7%8c%ae%e7%bd%91%e7%bb%9c%e5%87%ba%e7%89%88%e6%80%bb%e5%ba%93& ; ConfigFile=SCDB.xml& ; DBViewType=FullText& ; db_value=CJFQ%2CCDFD%2CCMFD%2CCPFD%2CCCND%2CSCPD%2CSCSD%2CSOSD%2CSNAD%2CSTJD& ; NaviField=%E4%B8%93%E9%A2%98%E5%AD%90%E6%A0%8F%E7%9B%AE%E4%BB%A3%E7%A0%81& ; orderby=relevant& ; txt_extension=xls& ; txt_1_sel=%E5%85%B3%E9%94%AE%E8%AF%8D& ; txt_1_value1=%u950c%u535f%u5549& ; txt_1_relation=%23CNKI_AND& ; txt_1_special1=%3D& ; txt_2_sel=%E5%85%B3%E9%94%AE%E8%AF%8D& ; txt_2_value1=%u8132%u5b98%u80fd%u56e2& ; txt_2_logical=or& ; txt_2_relation=%23CNKI_AND& ; txt_2_special1=%3D& ; txt_3_sel=%E5%85%B3%E9%94%AE%E8%AF%8D& ; txt_3_value1=%u82e6%u5473%u9178& ; txt_3_logical=or& ; txt_3_relation=%23CNKI_AND& ; txt_3_special1=%3D& ; txt_4_sel=%E5%85%B3%E9%94%AE%E8%AF%8D& ; txt_4_value1=%u8367%u5149%u6dec%u706d& ; txt_4_logical=or& ; txt_4_relation=%23CNKI_AND& ; txt_4_special1=%3D& ; sTab=normal& ; navicode="> ; 近红外

外文关键词:

  BODIPY ; near infrared ; picric acid ; fluorescence enhanced ; acid-base charge recombination ; PET.    

中文摘要:

含硝基芳烃爆炸物及其残留物给公共安全和环境危害带来严重的社会问题,急需开发出能够快速的、选择性的检测硝基芳烃爆炸物的方法。由于具有灵敏度高,操作简便,实时监测和背景干扰小等优点,开发用于检测硝基芳烃的近红外荧光探针已成为研究热点。基于抑制分子内光诱导电子转移过程从而导致荧光增强的原理,结合密度泛函理论计算,本文精准设计合成了8-(4-氨基苯基)-1,2,6,7-四苯基氟硼二吡咯作为新型近红外BODIPY荧光探针分子用于苦味酸的荧光检测。

本论文主要的研究内容包含以下几个方面:

第一部分主要关注新型近红外BODIPY荧光探针的设计和合成。从亚氨基二乙酸原料出发,经过酯化反应、酰基化反应、与苯偶酰的缩合反应,脱羧反应、有机磷酸催化下与芳醛缩合反应得到一系列5-芳基取代-2,3,7,8-四苯基二吡咯甲烷、再经DDQ氧化脱氢生成二吡咯烯,原位与BF3复合得到BODIPY荧光探针, 针对8-(4-氨基苯基)-1,2,6,7-四苯基氟硼二吡咯烷目标分子开展了一系列合成工作,用1H NMR、13C NMR、19F NMR、HRMS和X-单晶衍射对相应化合物进行结构表征。

第二部分首先对多种含硝基化合物和BODIPY分子进行量子化学密度泛函理论计算,结构表明本文所设计合成的分子8-(4-氨基苯基)-1,2,6,7-四苯基氟硼二吡咯烷和苦味酸(PA)能级匹配。通过紫外可见吸收光谱和荧光发射光谱对合成的BODIPY衍生物进行光谱分析。为了评估8-(4-氨基苯基)-1,2,6,7-四苯基氟硼二吡咯烷作为荧光探针对PA的选择性检测,相应的荧光滴定实验给予测试分析。

外文摘要:

It is become an increasing urgent need to devolpment a rapid and selective detection method for Explosives containing nitroaromatics and their residues, which have brought serious social problems to homeland security and environmental hazards. Owing to the advantages of high sensitivity, easy operation, realtime monitoring, and low background interference, developing near-infrared fluorescent probes for the detection of nitroaromatics have become research topics which are under strong spotlight. Based on the principle of inhibiting Intramolecular the photo-induced electron transfer process (PET) result in fluorescence enhancement, combined with density functional theory (DFT) calculation, 8-(4-aminophenyl)-1,2,6,7-tetraphenyl fluoride Boron dipyrromethene was precisely designed and synthesized as a novel near-infrared BODIPY fluorescent probe molecule for selectively detection of picric acid (PA).

In this dissertation, the main research contents are summarized as follows:

The first part (Chapter 2) of this dissertation focuses on the design and synthesis of a new type of near-infrared BODIPY fluorescent probe. Starting from iminodiacetic acid, via esterification reaction, acylation reaction, condensation reaction with benzil, decarboxylation reaction, organic phosphoric acid-catalyzed reaction with aromatic aldehyde to obtain a series of 5-aryl substitution-2,3,7,8-Tetraphenyldipyrromethanes, then DDQ oxidative dehydrogenation, and in situ complexation of BF3·OEt2 in the presence of a base to generate BODIPY fluorescent probe. A series of synthetic work has been carried out for the target molecule of 8-(4-aminophenyl)-1,2,6,7-tetraphenylfluoroboron dipyrromethene, the corresponding structures were characterized by 1H NMR, 13C NMR, 19F NMR, HRMS and X-single crystal diffraction.

The second part (Chapters 3) of this dissertation focuses on DFT calculation of BODIPY molecules and nitro-containing compounds, which shows has a good math in energy level between 8-(4-aminophenyl)-1,2,6,7-tetraphenylfluoroboron dipyrromethene and picric acid. UV-Vis absorption and fluorescence emission data for the BODIPY derivatives were examined, and fluorescence titration experiments were test to assess the utility of 8-(4-aminophenyl)-1,2,6,7-tetraphenylfluoroboron dipyrromethene as fluorescent probe for selectively detection of picric acid.

参考文献:

[1] Ma Y, Li H, Peng S, et al. Highly Selective and Sensitive Fluorescent Paper Sensor for Nitroaromatic Explosive Detection[J]. Analytical Chemistry,2012,84(19): 8415-8421.

[2] Xia, Y. S,Song, L. Z, Chang Q Turn-On and Near-Infrared Fluorescent Sensing for 2,4,6-Trinitrotoluene Based on Hybrid (Gold Nanorod)-(Quantum Dots) Assembly[J]. Analytical Chemisiry,2011,83(4):1401-1407.

[3] Zou W. S, Sheng D, Ge. X, et al. Room-Temperature Phosphorescence Chemosensor and Rayleigh Scattering Chemodosimeter Dual-Recognition Probe for 2,4,6-Trinitrotoluene Based on Manganese-Doped ZnS Quantum Dots[J]. Analytical Chemistry,2011,83(1):30-37.

[4] Zhang K, Zhou H, Mei Q, et al. instant visual detection of trinitrotoluene particulates on various surfaces by ratiometric fluorescence of dual-emission quantum dots hybrid[J]. Journal of the American Chemical Society,2011,133(22):8424-8427.

[5] Goldman E R, Medintz I L, Hayhurst A, et al. Self-Assembled Luminescent CdSe-ZnS Quantum Dot Bioconjugates Prepared Using Engineered Poly-Histidine Terminated Proteins[J]. Analytica Chimica Acta,2005,534(1):63-67.

[6] Gao D, Zhang Z, Wu M, et al. A Surface Functional Monomer-Directing Strategy

for Highly Dense Imprinting of TNT at Surface of Silica Nanoparticles[J]. Journal

of the American Chemical Society,2007,129(25):7859-7866.

[7] Gao D, Wang Z, Liu B, et al. Resonance Energy Transfer-Amplifying Fluorescence

Quenching at the Surface of Silica Nanoparticles toward Ultrasensitive Detection of TNT[J]. Analytical Chemistry,2008,80(22):8545-8553.

[8] Pushkarsky M B, Dunayevskiy I G, Prasanna M, et al. High-sensitivity detection of TNT[J]. Proceedings of the National Academy of Sciences of the United States of America,2006,103(52):19630-19634.

[9] Renyong T, Bianhua L, Zhenyang W, et al. Amine-capped ZnS-Mn2+ nanocrystals

for fluorescence detection of trace TNT explosive[J]. Analytical Chemistry,2008, 80(9):3458-65.

[10] Thomas Iii S W, Amara J P, Bjork R E, et al. Amplifying fluorescent polymer sensors for the explosives taggant 2,3-dimethyl-2,3-dinitrobutane (DMNB)[J]. Chemical Communications,2005,36:4572-4574.

[11] ATF, Fed. Regist.2010,75:70291–70293.

[12] Jenkins T. F. Leggett D. C. and Ranney T. A., US Army ColdRegions Research and Engineering Laboratory, Special Report 99–21, Hanover,1999.

[13] H. Östmark, S. Wallin and H. G. Ang, Vapor Pressure of Explosives: A Critical Review[J]. Pyrotech.2012,37:12–23.

[14] Krausa M, Schorb K. Trace detection of 2,4,6-trinitrotoluene in the gaseous phase

by cyclic voltammetry1[J]. Journal of Electroanalytical Chemistry,1999,461(1-2):10-13.

[15] Zoltán Takáts, Cotte-Rodriguez I, Talaty N, et al. Direct, trace level detection of explosives on ambient surfaces by desorption electrospray ionization mass spectrometry[J]. Chemical Communications,2005:1950-1952.

[16] Valkovic V, Sudac D, Matika D. Fast neutron sensor for detection of explosives

and chemical warfare agents[J]. Applied radiation and isotopes: including data, instru

[1] Ma Y, Li H, Peng S, et al. Highly Selective and Sensitive Fluorescent Paper Sensor for Nitroaromatic Explosive Detection[J]. Analytical Chemistry,2012,84(19): 8415-8421.

[2] Xia, Y. S,Song, L. Z, Chang Q Turn-On and Near-Infrared Fluorescent Sensing for 2,4,6-Trinitrotoluene Based on Hybrid (Gold Nanorod)-(Quantum Dots) Assembly[J]. Analytical Chemisiry,2011,83(4):1401-1407.

[3] Zou W. S, Sheng D, Ge. X, et al. Room-Temperature Phosphorescence Chemosensor and Rayleigh Scattering Chemodosimeter Dual-Recognition Probe for 2,4,6-Trinitrotoluene Based on Manganese-Doped ZnS Quantum Dots[J]. Analytical Chemistry,2011,83(1):30-37.

[4] Zhang K, Zhou H, Mei Q, et al. instant visual detection of trinitrotoluene particulates on various surfaces by ratiometric fluorescence of dual-emission quantum dots hybrid[J]. Journal of the American Chemical Society,2011,133(22):8424-8427.

[5] Goldman E R, Medintz I L, Hayhurst A, et al. Self-Assembled Luminescent CdSe-ZnS Quantum Dot Bioconjugates Prepared Using Engineered Poly-Histidine Terminated Proteins[J]. Analytica Chimica Acta,2005,534(1):63-67.

[6] Gao D, Zhang Z, Wu M, et al. A Surface Functional Monomer-Directing Strategy

for Highly Dense Imprinting of TNT at Surface of Silica Nanoparticles[J]. Journal

of the American Chemical Society,2007,129(25):7859-7866.

[7] Gao D, Wang Z, Liu B, et al. Resonance Energy Transfer-Amplifying Fluorescence

Quenching at the Surface of Silica Nanoparticles toward Ultrasensitive Detection of TNT[J]. Analytical Chemistry,2008,80(22):8545-8553.

[8] Pushkarsky M B, Dunayevskiy I G, Prasanna M, et al. High-sensitivity detection of TNT[J]. Proceedings of the National Academy of Sciences of the United States of America,2006,103(52):19630-19634.

[9] Renyong T, Bianhua L, Zhenyang W, et al. Amine-capped ZnS-Mn2+ nanocrystals

for fluorescence detection of trace TNT explosive[J]. Analytical Chemistry,2008, 80(9):3458-65.

[10] Thomas Iii S W, Amara J P, Bjork R E, et al. Amplifying fluorescent polymer sensors for the explosives taggant 2,3-dimethyl-2,3-dinitrobutane (DMNB)[J]. Chemical Communications,2005,36:4572-4574.

[11] ATF, Fed. Regist.2010,75:70291–70293.

[12] Jenkins T. F. Leggett D. C. and Ranney T. A., US Army ColdRegions Research and Engineering Laboratory, Special Report 99–21, Hanover,1999.

[13] H. Östmark, S. Wallin and H. G. Ang, Vapor Pressure of Explosives: A Critical Review[J]. Pyrotech.2012,37:12–23.

[14] Krausa M, Schorb K. Trace detection of 2,4,6-trinitrotoluene in the gaseous phase

by cyclic voltammetry1[J]. Journal of Electroanalytical Chemistry,1999,461(1-2):10-13.

[15] Zoltán Takáts, Cotte-Rodriguez I, Talaty N, et al. Direct, trace level detection of explosives on ambient surfaces by desorption electrospray ionization mass spectrometry[J]. Chemical Communications,2005:1950-1952.

[16] Valkovic V, Sudac D, Matika D. Fast neutron sensor for detection of explosives

and chemical warfare agents[J]. Applied radiation and isotopes: including data, instrumentation and methods for use in agriculture, industry and medicine, 2010, 68(4-5):888-892.

[17] F.A. Balogun. Angular variation of scattering volume and its implications for Compton scattering tomography[J]. Applied Radiation and Isotopes, 1999, 50:317-323.

[18] Harding G. X-ray scatter tomography for explosives detection[J]. Radiation Physics & Chemistry, 2004,71(3):869-881.

[19] Kristina H, Ramal V. C, Roman A. Z, Victor L. T and Per H. Low-mass ions observed in plasma desorption mass spectrometry of high explosives[J]. Journal of Mass Spectrometry,2000,35:337-346.

[20] Salinas Y, Martínez-Máez, Ramón, Marcos, María D, et al. Optical chemosensors

and reagents to detect explosives[J]. Chemical Society Reviews, 2012,41(3):1261-1296.

[21] Ma X, Tao F, Zhang Y, et al.  Detection of nitroaromatic explosives by a 3D hyperbranched σ–π conjugated polymer based on a POSS scaffold[J]. Journal of Materials Chemistry A,2017,5:14343-14354.

[22] G. Sathiyan, B. Balasubramaniam, S. Ranjan, S. Chatterjee, P. Sen, et al. A novel

star-shaped triazine-triphenylamineebased fluorescent chemosensor for the selective detection of picric acid[J]. Materials Today Chemistry,2019,12:178-186.

[23] Caiyu Y, Wanan C, Xu Z, et al. Multifunctional conjugated oligomers containing

novel triarylamine and fluorene units with electrochromic, electrofluorochromic,

photoelectron conversion, explosive detection and memory properties[J]. Dyes and Pigments,2019,160: 99-108.

[24] Zhang S R, Du D Y, Qin J S, et al. A Fluorescent Sensor for Highly Selective

Detection of Nitroaromatic Explosives Based on a 2D, Extremely Stable, Metal-Organic Framework[J]. Chemistry-A European Journal,2014,20(13):3589-3594.

[25] Shanmugaraju S, Joshi S A, Mukherjee P S. Fluorescence and visual sensing of nitroaromatic explosives using electron rich discrete fluorophores[J]. Journal of Materials Chemistry,2011,21:9130-9138.

[26] Zhang S R, Du D Y, Qin J S, et al. A Fluorescent Sensor or Highly Selective Detection of Nitroaromatic Explosives Based on a 2D, Extremely Stable, Metal-Organic Framework[J]. Chemistry-A European Journal,2014,20(13):3589-3594.

[27] Wang L H, Pan J Z, et al. Amplifying fluorescence sensing based on inverse opal

photonic crystal toward trace TNT detection[J]. Journal of Materials Chemistry, 2011,21:1730-1735.

[28] Sylvia J M, Janni J A, Klein J D, et al. Surface-Enhanced Raman Detection of

2,4-Dinitrotoluene Impurity Vapor as a Marker To Locate Landmines[J]. Analytical Chemistry,2000,72(23):5834-5840.

[29] Ali M A, Chen S S Y, Cavaye H, et al. Diffusion of nitroaromatic vapours into

fluorescent dendrimer films for explosives detection[J]. Sensors and Actuators B:

Chemical,2015,210:550-557.

[30] Shanmugaraju S, Joshi S A, Mukherjee P S. Fluorescence and visual sensing of nitroaromatic explosives using electron rich discrete fluorophores[J]. Journal of Materials Chemistry, 2011, 21:9130-9138.

[31] Anferov V P, Mozjoukhine G V, Fisher R. Pulsed spectrometer for nuclear

quadrupole resonance for remote detection of nitrogen in explosives[J]. Review of

Scientific Instruments,2000,71(4):1656-1659.

[32] Multivariate analysis of statistically poor EDXRD spectra for the detection of

concealed explosives[J]. X‐ray Spectrometry,1998,27(2):87-94.

[33] Moore, D. S. Instrumentation for trace detection of high explosives[J]. Review of

Scientific Instruments,2004,75(8):2499-2512.

[34] J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer, Singapore, 2006.

[35] M. S. Meaney and V. L. McGuffin, Anal. Investigation of common fluorophores for the detection of nitrated explosives by fluorescence quenching[J]. Electrochim Acta,2008,610:57–67.

[36] B. Valeur, Molecular Fluorescence: Principles and Applications[J]. Wiley-VCH, 2002.

[37] He G, Yan N, Yang J, H. Wang H, Ding L, Yin S and Fang Y., Pyrene-Containing Conjugated Polymer-Based Fluorescent Films for Highly Sensitive and Selective Sensing of TNT in Aqueous Medium[J]. Macromolecules, 2011,44:4759–4766.

[38] Nie H, Lv Y, Yao L, Pan Y, Zhao Y, Li P, Sun G, Ma Y and Zhang Y, J. Fluorescence detection of trace TNT by novel cross-linking electropolymerized films both in vapor and aqueous medium[J]. Hazard. Mater.2014,264:474–480.

[39] S. W. Thomas, G. D. Joly and T. M. Swager, Chemical Sensors Based on Amplifying Fluorescent Conjugated Polymers[J]. Chemical. Reviews,2007, 107:1339–1386.

[40] Zhang Y Z, Xiang X, Mei P, Dai J, Zhang L L and Liu Y, Spectroscopic studies on the interaction of Congo Red with bovine serum albumin[J]. Spectrochim Acta A, 2009,72:907–914.

[41] C. R. Cantor, Biophysical chemistry: Part II: Techniques for the study of biological structure and function, Macmillan, 1980.

[42] J. R. Cox, P. Mu¨ller and T. M. Swager, Interrupted Energy Transfer: Highly Selective Detection of Cyclic Ketones in the Vapor Phase[J]. Journal of the American Chemical Society, 2011,133:12910–12913.

[43] Tong H, Wang L, Jing X and Wang F, “Turn-On” Conjugated Polymer Fluorescent Chemosensor for Fluoride Ion[J]. Macromolecules,2003,36:2584–2586.

[44] Jiapei G., Li X Q, Zhou Z, Liao R S, Gao J W, Tang Y P,Qianming Wang. Synergistic Regulation of Effective Detection for Hypochlorite Based on a Dualmode Probe by Employing Aggregation Induced Emission (AIE) and Intramolecular Charge Transfer (ICT) Effects[J]. Chemical Engineering Journal, 2019,368:157-164.

[45] Li G, Zhu D, Wang X, et al. Dinuclear metal complexes: multifunctional properties and applications[J]. Chemical Society Reviews,2020,49(3):765-838.

[46] Homola J, Yee S S, Gauglitz G, et al. Surface plasmon resonance sensors: review[J]. Sensors and Actuators B-chemical,1999,54(1):3-15.

[47] Park T G, Hoffman A S. Sodium chloride-induced phase transition in nonionic poly(N-isopropylacrylamide) gel[J]. Macromolecules,1993,26(19):5045-5048.

[48] Xu Y, Li B, Li W, Zhao J, Sun S. and Pang Y., “ICT-not-quenching” near infrared ratiometric fluorescent detection of picric acid in aqueous media[J]. Chemical Communications,2013,49:4764–4766.

[49] Vij, V., Bhalla, V.Email Author, Kumar, M.Email Author View Correspondence (jump link).Attogram detection of picric acid by hexa- peri -hexabenzocoronene-based chemosensors by controlled aggregation-induced emission enhancement (Article)[J]. ACS Applied Materials and Interfaces,2013,5:5373-5380.

[50] Monsma, F. J.,Barton, A C,Kang, H C,Brassard, D L,Haugland, R P,Sibley, D R.Characterrization of Novel Fluorescent Ligands with High-Affinity for D1 and D2 Dopaminergic Receptors [J]. Journal of Neurochemistry,1989,52:1641-1644.

[51] Alfred Treibs,Franz-Heinrich Kreuzer.Difluorboryl-Komplexe von Diund Tripyrrylmethenen[J]. Justus Liebigs Annalen der Chemie,1968,718208-223.

[52] Michelena, J. A,Peeters, G,Vansant, E F,Debievre, P.Adsorption of Carbon-Monoxide and Carbon-Dioxied in Calcium-Exclanged Zeolite-Y[J]. Rceueildes Trvuvex Chimiques Des Pays-Bas-Journal of The Royal Netherlands Chemical Socity,1977,96:121-124.

[53]Neumeyer, J. L,Baindur, N.,Bakthavachalam, V.,Yuan, Yun,Gao, Y.,Kula, N. S.,Campbell, A.,Baldessarini, R. J..Stereoisomeric, photoaffinity, affinity and fluorescent probes for characterization of dopamine D1 and D2 receptors[J]. Pharmacochem. Libr,1992,62(21):5084-5091.

[54]Shah M, Thangaraj K, Soong M, et al. Pyrromethene‐BF2 Complexes as Laser Dyes. Part 1[J]. ChemInform,1991,22(40).

[55]Boyer J H, Haag A M, Sathyamoorthi G, et al. Pyrromethene–BF2 complexes as laser dyes: 2[J]. Heteroatom Chemistry,1990,1(1):389-399.

[56]Goud T V, Tutar A, Biellmann J, et al. Synthesis of 8-heteroatom-substituted 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene dyes (BODIPY)[J]. Tetrahedron,2006, 62(21): 5084-5091.

[57]Nicolaou K C, Claremon D A, Papahatjis D P, et al. A mild method for the synthesis of 2-ketopyrroles from carboxylic acids[J]. Tetrahedron Letters,1981,22(46): 4647-4650.

[58] Worrics H.J., Koek J H. romcthenc-BF2 complexes (4,4'-difuoro-4bora-3a,4a-diaza-s- indacenes),synthesis and huminoscences properties[J]. Recl. Trav. Chim,1985,104:288-291.

[59] Haugland R. P., Kang H. C. chemical reactive dipyrrometheneboron difluoride dyes US47 74339.1988.

[60] Ulrich G., Goze C.,Guardigli M., et al. Pyrromethene Dialkynyl Borane Complexes for “Cascatelle” Energy Transfer and Protein Labeling[J]. Angewandte Chemie International Edition, 2005,44:3694- 3698.

[61] Coze C, Ulrich G., Mallon L. J., et al. Synthesis and Photophysical Propertics of Borondi-pyro-methene Dyes Bearing Aryl Substituents at the Boron Center[J]. Journal of the American Chemical Society,2006,128,31:10231-10239.

[62]B Descalzo B, Xu H J, Li Z X,Katrin Hoffmann, Shen Z,Michael G Weller, You

X Z,Knut Rurack.Phenanthrene-fused boron-dipyrromethenes as bright long-wavelength fluorophores[J]. Organic letters.2008:1581-1584.

[63] 张恒,顾承志,马晓伟,代斌. 基于氢键策略卟啉荧光探针的合成及其在2,4,6-三硝基苯酚选择性检测中的应用[J], 石河子大学学报 (

开放日期:

 2020-08-28    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式